high-pressure thermal plasmas and sources (plasma sources ii) · 2017. 3. 29. · what is a thermal...

87
High-Pressure Thermal Plasmas and Sources (Plasma Sources II) Tony Murphy 20th European Summer School, October 2016 “Low Temperature Plasma Physics: Basics and ApplicaJons” MANUFACTURING

Upload: others

Post on 30-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • High-PressureThermalPlasmasandSources(PlasmaSourcesII)TonyMurphy20thEuropeanSummerSchool,October2016“LowTemperaturePlasmaPhysics:BasicsandApplicaJons”MANUFACTURING

  • WhatisaThermalPlasma?Atorclosetoatmosphericpressure(atleast0.1atm)Temperature~1to2eV(10000to20000K)forelectronsandheavyspeciesHighlyionised(typically100%,atleast5%)HighelectrondensiDes(~1023m-3)Formedbydcoracelectricarcs,radio-frequencyormicrowaveelectromagneDcfieldsDominatedbycollisionsVerywidelyusedinmanufacturingandotherindustries•  Highpowerfluxes•  HighfluxesofreacDvespecies•  StrongradiaDveemission

  • ThermalPlasmaApplicaJons:ArcWelding

  • ThermalPlasmaApplicaJons:PlasmaCuTng

  • ThermalPlasmaApplicaJons:PlasmaSpraying

  • ThermalPlasmaApplicaJons:WasteTreatment

  • ThermalPlasmaApplicaJons:ArcLighJng

    Carbon arc lamp Xenon arc lamp

  • ThermalPlasmaApplicaJons:MineralProcessing

    Electric arc furnaces

    Aluminium dross recovery

    Plasma remelting

  • ThermalPlasmaApplicaJons:CircuitBreakers

  • ThermalPlasmaApplicaJons:ICP-OES,ICP-MS

    Inductively-coupled plasma – optical emission spectroscopy

    Inductively-coupled plasma – mass spectroscopy

  • ThermalPlasmaApplicaJons:NanoparJcleSynthesisandParJcleSpheroidizaJon

  • ThermalPlasmasinNature:Lightning

  • TheFirstThermalPlasmaApplicaJon?

    The Miller-Urey experiment

  • Outline1.  ThermalplasmaproperDes

    •  Localthermodynamicequilibrium(LTE)•  ComposiDon•  ThermodynamicandtransportproperDes•  RadiaDveemission

    2.  GeneraDonofthermalplasmas•  Transferredarcs•  Non-transferredarcs•  RFinducDvely-coupledplasmas•  Microwaveplasmas•  Typesofplasmaflow

    3.  Modellingofthermalplasmas•  EquaDons•  Turbulence,electrodesheaths,gasmixtures

    4.  ThermalplasmadiagnosDcs•  Enthalpyprobes•  Emissionspectroscopy•  LaserscaXering

    5.  ThermalplasmaapplicaDons•  PlasmawastedestrucDon

  • CollisionsbetweenElectronsandIons

    Ar+

    Anode

    Cathode

    e

    E Ar+

    Anode

    Cathode

    e

    E = =F qE

    am m

  • CollisionsbetweenElectronsandHeavySpeciesTransferLiYleEnergy

    Ar+

    Anode

    Cathode

    e

    E

    Δ ≈kin 2 e hE m mAr+

    Anode

    Cathode

    E e

  • LotsofCollisionsbetweenElectronsandIonsTransferALotofEnergy

    Ar+

    Anode

    Cathode

    e

    E Ar+

    Ar+

    Ar+

    Ar+

    Ar+ e e

    e e

    e

    e

    e

    e e

    Ar+

    Anode

    Cathode

    E

    Ar+

    Ar+

    Ar+

    e

    e

    e 6

    5

    For 15 000 K,1 atm:

    3 10 m ~7 10 m/s

    ~ 5 ps

    e e el vτ−

    =

    ×

    ×

  • EffectofPressureonEquilibrium

    Increasing pressure increases the number density, and therefore the collision rate and the transfer of energy from electrons to heavy species

  • LocalThermodynamicEquilibrium(LTE)LTEexistsifallspeciessaDsfy• MaxwelliandistribuDonfortranslaDonaltemperatures• BoltzmanndistribuDonforexcitaDontemperatures• ChemicalequilibriumequaDonsforreacDons,e.g.,ionisaDonandallthesetemperaturesarethesameLTEexistsifthecollisionrateismuchgreaterthantheratesofdiffusionandconvecDon

    Itisgenerallyvalidinthebulkoftheplasma(awayfromtheedgesandelectrodes)

  • IfLTEexists,thenifweknow(atagivenpointintheplasma)

    •  thepressure•  thetemperature(orinsteadthedensityofanyspecies)

    •  ifthereisamixtureofgases,theproporDonsofeachgases

    thenwecanfullydescribethecomposiDonoftheplasmaatthatpoint

    ThisgreatlysimplifiesmodellinganddiagnosDcs

    0 5000 10000 15000 20000 25000 300001020

    1021

    1022

    1023

    1024

    1025

    1026

    e-,Ar+

    Ar3+

    Ar2+N

    umbe

    r den

    sity

    (m-3)

    Temperature (K)

    Ar

    Ar+

    e-

    WhyWeLoveLTE

    Example: argon arc at 1 atm

  • WhyCalculatePlasmaProperJes?1.TheyareneededforcomputaJonalmodelling

    ( )

    2

    ( ) 0

    ( ) ( )

    where 2 ,etc

    5( ) ( )2

    where isafunctionof

    0

    rr r

    p

    B

    pc c

    h

    t

    Pt

    v r

    kh h h ht e

    T

    U κ

    ρρ

    ρρ ρ

    ρ

    τ

    φ

    η

    σ

    ρσ

    ∂+∇⋅ =

    ∂∂

    +∇⋅ = −∇ −∇⋅ + × +∂

    = − ∂ ∂

    ⎛ ⎞∂+∇⋅ = − −∇⋅ ∇ + ⋅∇⎜ ⎟⎜ ⎟∂ ⎝ ⎠

    ∇ ⋅ ∇ =

    v

    v vv τ

    v

    j B g

    j j

  • WhyCalculatePlasmaProperJes?2.Measurementsareinaccurateandinadequate

    0 5000 10000 15000 20000 25000 300000

    1

    2

    3

    4

    5

    6

    Nitrogen, 1 atm

    Temperature (K)

    Ther

    mal

    con

    duct

    ivity

    (W m

    -2K

    -1)

    Calculated (Murphy) Measured (Hermann & Schade) Measured (Plantikow)

    0 5000 10000 15000 20000 25000 300000.00000

    0.00005

    0.00010

    0.00015

    0.00020

    0.00025

    Nitrogen, 1 atm

    Temperature (K)

    Vis

    cosi

    ty (k

    g m

    -1s-

    1 )

    Calculated (Murphy) Measured (Guevara et al.)

  • ClassificaJonofProperJesThermodynamicproperDes•  Massdensity(kg/m3)•  Specificheatatconstantpressurecp(J/kg/K)•  Specificenthalpy(J/kg)

    TransportproperDes(transportcoefficients)•  Viscosity(kg/m/s)•  ThermalconducDvity(W/m/K)•  ElectricalconducDvity(S/m)•  Ordinarydiffusioncoefficient(m2/s)•  Thermaldiffusioncoefficient(kg/m/s)RadiaDonproperDes•  Netemissioncoefficient(W/m3/sr)

  • RelaJonbetweenBasicDataandMaterialProperJes

    Species t hermo - d ynamic d ata

    Binary collision integrals

    Composition

    Thermodynamic properties

    Transport properties

    Fluid dynamic equations

    Basic data

    Properties

  • PlasmaComposiJon

    Useeither:•  SahaequaDonsforionisaDonreacDons&Guldberg-WaageequaDonsfordissociaDonreacDons–  Solvesimultaneously(oneequaDonforeachreacDon)

    •  MinimisaDonofGibbsfreeenergyG=H–TS(H=enthalpy,S=entropy)–  RestricDons:chemicalelementsconserved,chargeneutrality–  Inputdata(specificheatofeachspecies/parDDonfuncDonsforeachspecies)canbecalculatedfromspectraldata,ortakenfromtables

  • Examples

    0 5000 10000 15000 20000 25000 300001020

    1021

    1022

    1023

    1024

    1025

    1026

    e-,Ar+

    Ar3+

    Ar2+

    Num

    ber d

    ensi

    ty (m

    -3)

    Temperature (K)

    Ar

    Ar+

    e-

    0 5000 10000 15000 20000 25000 300001020

    1021

    1022

    1023

    1024

    1025

    Ar3+

    N2+Ar2+

    Num

    ber d

    ensi

    ty (m

    -3)

    Temperature (K)

    e-

    Ar, N2N

    N2Ar+

    N+

    Argon, 1 atm 50% Argon, 50% Nitrogen, 1 atm

  • ThermodynamicProperJes

    TheseareeasilycalculatedoncetheplasmacomposiDonisknown

    3

    1

    1

    1

    1 1

    Density (kg m )

    1Enthalpy (J kg ) (+ minor correction term)

    Specific heat (J kg K )

    N

    i ii

    N

    i i ii

    pP

    n m

    h nm h

    hCT

    ρ

    ρ

    =

    =

    − −

    =

    =

    ∂=∂

  • SpecificHeatforVariousPlasmas

    0 5000 10000 15000 20000 25000 300000

    50

    100

    150

    200

    250

    300 Argon Nitrogen Oxygen Helium Hydrogen

    Spe

    cific

    Hea

    t (kJ

    kg-

    1 K-1)

    Temperature (K)

  • EnthalpyforVariousPlasmas

    0 5000 10000 15000 20000 25000 300000

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000 Argon Nitrogen Oxygen Helium Hydrogen

    Ent

    halp

    y (M

    J kg

    -1)

    Temperature (K)

  • TransportProperJes

    For plasmas, have many species present – need information about collision cross-sections between all pairs of species: •  neutral-neutral •  neutral-ion •  neutral-electron •  charged-charged (Coulomb)

    •  Viscosity: transport of momentum perpendicular to flow •  Thermal conductivity: transport of heat •  Electrical conductivity: transport of charge •  Diffusion coefficients: transport of mass Determined by collision cross-sections (mean free paths) of all species

  • Viscosity

    ( )

    ( ) ( )

    η

    δ δ δ δ

    =

    =

    = ∑

    =∑

    = ∑+

    ⎡ ⎤× − Ω + + Ω⎣ ⎦

    102

    000

    1

    0021

    (1,1) (2,2)32

    Tofirstorder:

    where 5

    163

    5

    B j jj

    qij j i

    j

    qi i k k

    ijkj i k

    j ij jk k ij jkik ik

    k T n b

    Q b n

    n m n mQ

    m m m

    m m

  • CollisionIntegralsareCalculatedfromtheIntermolecularPotenJals(using3integraJons)

    ( ) ( ) ( )( , ) ( )2 2 30

    exp where 2 2

    ijl s lsij ij ij ij ijij ij

    ij

    kTT Q g d gkTµ

    γ γ γ γπµ

    ⌠⎮⌡

    ∞+Ω = − =

    ( )0

    ( ) 2 1 cosl lijQ g bdbπ

    π χ⌠⎮⌡

    = −

    are averages over a Maxwellian distribution of the gas kinetic cross-section

    02

    2 2 212

    ( , ) 2(1 )

    mrr

    dr rb g bg b r

    χ πµϕ

    ⌠⎮⎮⎮⌡

    = −− −

    intermolecular potential ϕ(r) reduced mass µ initial relative speed g impact parameter b

    where the angle of deflection is

  • ViscosityforVariousPlasmas

    0 5000 10000 15000 20000 25000 300000.0000

    0.0001

    0.0002

    0.0003

    0.0004

    Argon Nitrogen Oxygen Helium Hydrogen

    Vis

    cosi

    ty (k

    g m

    -1s-

    1 )

    Temperature (K)

    Viscosity describes relationship between shear stress and velocity gradient

    , is collis~ ion cross e n s ctio

    x

    i

    dvFdy

    mT

    η η

    η

    = −

    ΩΩ

  • ThermalConducJvityforVariousPlasmas

    0 5000 10000 15000 20000 25000 300000

    2

    4

    6

    8

    10

    12

    14 Argon Nitrogen Oxygen Helium Hydrogen

    Ther

    mal

    Con

    duct

    ivity

    (W m

    -1K

    -1)

    Temperature (K)

    Thermal conductivity describes relationship between heat flux density an

    ~

    d temperature gradient

    , is collision cross-secti onp ii

    dTk q kdx

    C Tkm

    = −

    ΩΩ

  • ComponentsofThermalConducJvityforNitrogen

    0 5000 10000 15000 20000 25000 300000

    1

    2

    3

    4

    5

    6 Total Heavy species Reaction Electron Internal

    Ther

    mal

    Con

    duct

    ivity

    (W m

    -1K

    -1)

    Temperature (K)

  • ElectricalConducJvityforVariousPlasmas

    0 5000 10000 15000 20000 25000 300000

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    Argon Nitrogen Oxygen Helium Hydrogen

    Ele

    ctric

    al C

    ondu

    ctiv

    ity (S

    m-1)

    Temperature (K)

    Electrical conductivity describes relationship between current density and voltage gradient

    , is electron density, is density of other species, is collision cross sectio n~ e e

    dVjdx

    n n nTn

    σ σ

    σ

    =

    ΩΩ

  • RadiaJveEmissionImportantinthermalplasmasAfulltreatmentisdifficult:•  DetermineemissionandabsorpDonateveryvolumeelement

    •  AlargenumberofwavelengthintervalsrequiredtocoverlineandconDnuumradiaDon

    NetemissioncoefficientsareaverysuccessfulapproximaDon•  Foragiventemperature,integrateemissionoverallwavelengths

    •  TakeintoaccountabsorpDoninasphereofagivenradius

    ForapplicaDonsinwhichradiaDonfluxatboundaryisimportant,needmorecomplextreatments

    J. J. Lowke J Quant Spectrosc. Radiat. Transf. 16 (1974) 111 A. Gleizes et al. J. Phys. D: Appl. Phys. 26 (1993) 1921

  • NetEmissionCoefficientsforArgonat1atm

    L is the radius of the absorbing sphere J. A. Menart PhD Thesis Uni. of Minnesota (1996)

  • 2.GeneraJonofThermalPlasmasa)ElectricArcs:TransferredArcs

    •  Arcbetweenoneelectrode(usuallycathode)andmetalorconducDngworkpiece

    •  Highenergytransferefficiencytoworkpiece•  Lowgasflow•  RelaDvelyinexpensive•  Highpeaktemperature,narrowdistribuDon(highgradients)•  Usedinwelding,plasmacuing,electricarcfurnaces,arclamps,

    wastedestrucDon,etc.

  • b)ElectricArcs:Non-transferredArcs

    •  Arcisconfinedwithinplasmatorch•  HighefficiencyheaDngofbulkgas(“archeater”)•  Highgasflow•  BroaderheatfluxdistribuDon,lowerpeaktemperature•  Usedinplasmaspraying,wastedestrucDon,etc.

  • c)RFInducJvely-CoupledPlasmas

    •  Noelectrodes,solowcontaminaDon•  Generatesalarger,moreuniform,plasmavolume•  Moreexpensive;lowerefficiency•  MoresensiDvetoprocessvariaDons•  Usedforpowderprocessing(densificaDon,spheroidisaDon),

    nanoparDcleproducDon,etc.

  • d)MicrowavePlasmas

    •  No electrodes •  Several different designs •  Relatively small and expensive •  Strongly non-equilibrium (gas temp. < 5000 K, electron temp. > 10 000 K •  Applications include MP-AES (microwave plasma - atomic emission spectroscopy),

    gas treatment

  • TypesofPlasmaFlowGravity-drivenflow•  Lowcurrent(<20A)arcs•  Flowdrivenbybuoyancy•  Arclamps

    FlowdrivenbyjxBforces•  Highercurrent(>30A)arcs•  Pressuregradient=jxB(themagneDcpincheffect)

    •  MaximumvelociDesfrom100to1000m/s

    •  Arcsforwelding,plasmacuing,etc

  • j

    MagneJcPinch(LorentzorjxB)Force

    B F

  • TypesofPlasmaFlowFlowsdrivenbythermalexpansion•  Inplasmatorches,thearcoccursinaconfinedregion,causingthepressuretorise

    •  SupersonicvelociDes(over2000m/s)typicallyachieved•  Arcstabilisedbyhighgasflowandopenswirlofgas•  Typicalinplasmaspraying

    Shock diamonds indicating supersonic flow

  • 3.ModellingofThermalPlasmas•  UsecomputaDonalfluiddynamicequaDonsforviscous

    incompressibleflow•  AconservaDonofenergyequaDonisrequiredbecausethe

    temperatureisnotconstant•  Maxwell’sequaDonsareusedtodescribecurrentconDnuity

    (chargeconservaDon)andmagneDcfields•  AddiDonaltermsdescribing‘plasma’effectsareincluded(ohmic

    heaDng,radiaDveemission,magneDcpincheffect,electrondiffusion)

    •  TheequaDonofstateisimplicitinthedependenceofthermophysicalproperDesontemperature

    •  ModificaDonsrequiredforelectroderegions,turbulentflows,departuresfromLTE,highMachnumberflow,etc.

  • ConservaJonEquaJons:SingleGas

    ( )

    2

    02

    ( )

    ( )

    ( )

    0

    52

    0

    ( )

    (

    )

    B

    p

    κ

    P

    kU

    t

    t

    ch h

    eht

    T

    ρ

    σ

    ρ

    ρ

    ρ

    ρ

    ρ

    µσ φ

    ρ

    ∇⋅

    ⎛ ⎞∇ ⋅ ∇ +⎜ ⎟⎜ ⎟⎝ ⎠

    + =

    + = − − + +

    ∇⋅ ∇

    + = − − +

    =

    ∂∇⋅

    ∇ ⋅

    ∇ ⋅

    ∇ ×

    ∂∂

    = −∇

    v

    vv

    v

    j B g

    j

    v

    j

    τ

    A j

    Time-dependent term Convective term Diffusive term Source term

  • ConservaJonofMass(MassConJnuity)

    0

    mass density time velocity

    Note: if there is a source of mass (e.g., evaporation of a surface) then a source term is re u ed

    (

    q ir

    )t

    t

    ρρ

    ρ∂

    ∇⋅+∂

    =

    v

    v

  • ConservaJonofMomentum

    where

    mass density, time, velocity viscous stress tensor, visco

    2

    sity pressure current de

    ( )

    2 ,

    (

    nsity, a

    ,

    )

    3

    m

    ji iii iji j i

    P

    vv v i jx x

    t

    t

    P

    x

    ρ

    ρ

    η

    η

    ρ

    τ τ

    ρ

    η

    ∇⋅

    ⎛ ⎞∂⎛ ⎞∂ ∂= − ∇⋅ = + ≠⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠

    ∇ ×+ = − − +∇

    ⎝ ⎠

    +∂

    ⋅∂ τ

    v

    vv

    τ

    g

    j

    v

    B

    B

    v

    j

    gnetic field strength acceleration due to gravityg

    Magnetic pinch force

    Gravity

    Pressure gradient

  • ConservaJonofEnergy2

    mass density, time, velocity, temperature enthalpy, thermal conductivity, speci

    (

    fic heat

    current density, electr

    5

    ical conductivity

    (2

    ))

    p

    B

    p

    kht

    U Te

    t Th c

    h κc

    U

    h

    ρ

    κ

    ρσ

    σ

    ρ∇ ⋅∇⎛ ⎞

    ∇ ⋅ ∇ +⎜ ⎟⎜+ = − − +

    ∂⋅

    ⎟⎝∂ ⎠

    j j

    v

    j

    v

    radiative emission coefficient Boltzmann constant, elementary chargeBk e

    ( )

    For compressible flow (Mach number > 0.5), need to add

    . , where , to right-hand sideDp Dp p pDt Dt t

    ∂− ⋅∇ + ≡ + ⋅∇

    ∂τ v v

    %

    Ohmic heating

    Radiative cooling

    Electron diffusion

  • ChargeConJnuity,MagneJcPotenJal,Maxwell’sEquaJons

    ( )2

    0

    0

    0

    electrical conductivity, electric potential magnetic potential, current density permeability of free space

    0

    σ φ

    µ

    σ φ

    µ

    σ

    µ

    φ∇ ⋅ ∇

    =

    = −

    = − ∇

    ∇× =

    jB j

    A

    A

    j

    j

  • ComplicaJons:TurbulenceManythermalplasmaflowsareturbulent•  Plasmajets(e.g.,forplasmaspraying)•  PlasmacuingarcsDifferentapproaches•  DirectnumericalsimulaDon(DNS)

    –  Solvesallthescalesofflow–  Veryexpensive,andunfeasibleforindustrialproblems

    •  LargeeddysimulaDon(LES)–  Solvesforlargescalesandapproximatelymodelssmallscalesoftheflow–  Turbulencemodelneededtoapproximatethesmallscales

    •  Reynolds-averagedNavier-Stokes(RANS)–  Approximatelymodelsallscalesoftheflow–  Themostcommonapproachforindustrialproblems–  Include:

    –  0equaDons:Prandtlmixinglength–  1equaDon:Spalart-Allmaras–  2equaDons:K-ε,K-εRNG,K-ω

  • TheK-εModelTurbulenceismodelledasanaddiDonaldiffusionmechanismSolveaddiDonaltransportequaDonsforK(turbulencekineDcenergy)andε(turbulenceenergydissipaDon),whichthengiveviscosityandthermalconducDvity

    2

    1 2

    2

    2

    1

    ( ) ( ) 2

    ( ) ( ) 2

    2

    is turbulent viscosity, is turbulent thermal conductivityPr

    , , ,

    t

    K

    t

    Tt

    t pt t

    t

    K

    K K K Gt S

    C G Ct S K K

    G

    CKC

    S S C

    ε

    η

    ε

    ηρρ η ρε

    ηρε ε ερ ε η ε ρ

    η

    ηη ρ κ

    ε

    ⎡ ⎤⎛ ⎞∂+∇⋅ =∇⋅ + ∇ + −⎢ ⎥⎜ ⎟

    ∂ ⎝ ⎠⎣ ⎦

    ⎡ ⎤⎛ ⎞∂+∇⋅ =∇⋅ + ∇ + −⎢ ⎥⎜ ⎟

    ∂ ⎢ ⎥⎝ ⎠⎣ ⎦

    = ∇ +∇

    = =

    v

    v

    v v

    2, Pr are constantstC

  • EffectofTurbulence

    Mass fraction of air for argon plasma jet discharging into air A. B. Murphy and P. Kovitya, J. Appl. Phys. 73 (1993) 4759

    Laminar

    Turbulent

    Argon

    Air

    Argon

    Air

  • EffectofTurbulence

    Temperature (1000 K) of argon plasma jet discharging into air A. B. Murphy and P. Kovitya, J. Appl. Phys. 73 (1993) 4759

    Laminar

    Turbulent

  • Ar plasma jet into Air T (K): 300 12,000

    ω (s-1): -50,000 50,000

    Temperature

    Vorticity

    (mm)

    captures small~large eddies.

    Pfender et al. (1991)

    (2D-axisym)

    Eddy-breakup

    Eddy-breakup

    Direct numerical simulation

    (mm)

    Courtesy Dr Masaya Shigeta, Osaka University

  • ComplicaJons:ElectrodeSheathRegions

    10-1 mm 10-5 mm

    Te > Th ne ≠ ni

  • AnodeTreatments

    ( ) ( )*2 * 30 0

    the temperature adjacent to the anode is low, so if assume LTE, then 0 0

    Add electron diffusion term (Sansonnens et al.)

    0

    and ar

    Problem:

    Approach

    el

    1:

    e

    e

    a e e e e

    e

    e a

    e

    n

    D

    e

    n n n n n n

    D

    D n

    D

    σ

    σ φ

    α

    ≈ ⇒ ≈

    = − ∇ +

    ∇⋅ ∇ + − =

    ∇j

    ectron and ambipolar diffusion coefficients is three-body recombination coefficient, * indicates LTE value

    "LTE-diffusion approximation" (Lowke and Tanaka)Set mesh size near anoApp

    de roach

    to 2:

    width

    α

    of region in which electron diffusion dominates ( 0.1 mm).Then use LTE everywhere.

    Bk T eEΛ = ≈

    L. Sansonnens, J. J. Lowke and J. Haidar J. Phys. D: Appl. Phys. 33 (2000) 148 J. J. Lowke and M. Tanaka J. Phys. D: Appl. Phys. 39 (2006) 3634

  • ComparisonofApproaches1and2

    (Sansonnens et al)

    (Lowke & Tanaka)

    Anode

  • ThermionicCathodeTreatment

    • Applies to high melting point materials e.g., W, C, Mo, Zr • Electrons emitted from cathode • Cathode heated through ion bombardment • Current densities around 100 A/mm2

    ( )25 2 2

    Richardson equation

    6 10 A mm K for most metals (work function) 4.5 V for W

    exp

    2.5 V for W(Th)

    w B

    w

    j AT k

    A

    e Tφ

    φ

    − −≈ ×

    =

  • ThermionicCurrentDensityvsTemperature

    Decreasing work function by 2 V reduces the cathode temperature by 1700 K (for 100 A mm-2) Metals that don’t have high melting points (Cu, Al, Fe etc) cannot be thermionic emitters

    0 1000 2000 3000 4000 500010-6

    10-4

    10-2

    100

    102

    104

    106

    Cur

    rent

    den

    sity

    (A m

    m-2

    )

    Temperature (K)

    φw = 4.5 V φw = 2.5 V

  • ComplicaJons:PlasmasinGasMixturesIfmorethanonegaspresent,thesegasescanmixordemix

    EveninLTE,needtoknowtheirrelaDvefracDons

    Foreachspeciesi

    ( ) ( )

    2

    1

    : mass fraction : reaction source term : diffusion mass flux

    : ordinary diffusion coefficient

    : thermal diffusion coefficient: mole

    l

    fr

    n

    ρ ρ

    ρ =

    ∂ +∇⋅ = −∇⋅ +

    = ∇ − ∇∑

    i i i i

    q Tii j ij j

    i i

    i

    ijTi

    i

    i

    j

    Y dt Y r

    n

    Y

    m m D x D

    r

    D

    Dx

    T

    v J

    J

    J

    action

    A. B. Murphy J. Phys. D: Appl. Phys. 34 (2001) R151

  • CombinedDiffusionCoefficients

    Groupspeciesintogases

    E.g.,forAr-Hearc

    •  argongas=Ar,Ar+,Ar2+,Ar3+,e-

    •  heliumgas=He,He+,He2+,e-

    Modeldiffusionofheliumgasthroughargongas

    Typically50ordinaryandthermaldiffusioncoefficientsreplacedbytwocombineddiffusioncoefficients

    ExactforhomonucleargasesthatdonotreactforplasmasinLTE

  • GasConservaJonEquaJon

    SpeciesconservaDonequaDonsforeachspecies(Ar,Ar+,

    Ar2+,Ar3+,He,He+,He2+,e-)

    ( )i i iY rρ∇⋅ = −∇⋅ +v Jreplaced by a single gas conservation equation

    ( ) ( )( )Ar Ar Ar

    2Ar Ar He Ar,He He Ar/ ln

    x T

    Y t Y

    n m m D x D T

    ρ ρ

    ρ

    ∂ ∂ +∇⋅ = −∇⋅

    = ∇ − ∇

    v J

    J

    The overbarred quantities are averaged over all species A. B. Murphy Phys. Rev. E 48 (1993) 3594

    Combined diffusion coefficients

  • Example:DemixinginanArgon-HeliumArc

    A. B. Murphy Phys. Rev. E 55 (1997) 7473

  • Example2:MetalVapourinWeldingArc

    All emission Atomic iron line Atomic argon line

    Argon arc with steel wire

    GoeckeSF,MetzkeE,Spille-KohoffAandLangulaM2005ChopArc.MSG-LichtbogenschweißenfürdenUltraleichtbau(StuXgart:FraunhoferIRB)

  • MeasurementsShowaRelaJvelyCoolArc,andaLocalTemperatureMinimumonAxis

    ZielińskaS,MusiołK,DzierżęgaK,PellerinS,ValensiF,deIzarraC,BriandFPlasmaSourcesSci.Technol.16832–8(2007)

    Current = 326 A Steel wire 6 mm above workpiece 4.5 mm above workpiece 3 mm above workpiece

  • ModellingIndicatesCoolingCanOccurduetoIncreasedRadiaJveEmissionfromMetalVapour

    SchnickM,FüsselU,HertelM,Spille-KohoffAandMurphyABJ.Phys.D:Appl.Phys.43022001(2010)

    5000 10000 15000 20000 25000100101102103104105106107108109

    1010

    Net

    em

    issi

    on c

    oeffi

    cien

    t (W

    m-3

    sr-1

    )

    Temperature (K)

    1% Fe, 99% Ar 1% Al, 99% Ar 100% Ar

  • 4.ThermalPlasmaDiagnosJcsProbes•  Langmuirprobes•  EnthalpyprobesSpectroscopy•  Emissionspectroscopy•  AbsorpDonspectroscopyLaserscaXering•  ElasDcscaXering

    –  RayleighscaXering–  ThomsonscaXering–  RamanscaXering

    •  InelasDc–  LIF(laser-inducedfluorescence)–  Two-photonLIF–  CARS(coherentanD-StokesRamanscaXering)

  • EnthalpyProbesShut-off valve

    Coolant in

    Coolant out

    ( ) ( )( )stagnation atm

    water gas flow no gas flow

    2

    Enthalpy Flow velocity

    is cooling water mass flow rate is gas sampl

    ing w

    w

    g

    pg

    P Pmh

    m

    T v

    m

    C Tm Tρ

    −= Δ −Δ =

    &&

    &&

    mass flow rate

    Can also measure composition using gas analyser

  • EnthalpyProbeResults

    Entrained air %, temperature (K) and velocity (m/s) for enthalpy probe (●) and laser scattering (Δ) Plasma torch, 900 A, argon, 2 mm downstream from orifice J. C. Fincke, S. C. Snyder, W. D. Swank, Rev. Sci. Instrum. 64 (1993) 711

  • OpJcalEmissionSpectroscopy

    x

    Arc

  • EmissionSpectroscopy:DeterminingtheTemperature

    ( ) ( )( )

    Intensity exp

    is energy of upper levelA is transition probability

    is statistical weight of upper level is transition frequency

    is number density of species (e.g.

    mmn m mn

    B

    m

    mn

    m

    mn

    n T ES T A g hZ T k T

    E

    g

    n

    ν

    ν

    ⎛ ⎞= −⎜ ⎟

    ⎝ ⎠

    atoms) is partition function of speciesZ

    The measurement system has to be calibrated Three standard methods: 1.  Use a calibrated radiation source 2.  Use ratio of intensity of two or more lines 3.  Fowler-Milne method – use maximum in S(T)

    m

    n

    hνmn

  • LaserScaYeringLightisscaYeredfromelectrons–bothbound(toatomsorions)andfreeTheintersecJonofthelaserbeamandtheobservaJonaxisdefinesapoint

    scattered laserλ λ=laser transitionElastic scattering: λ λ≠

    Thomson scattering: elastic scattering from free electrons Rayleigh scattering: elastic scattering from bound electrons Raman scattering: elastic scattering from bound electrons

    scattered laserλ λ≠Resonance scattering: inelastic scattering from bound electrons

    Laser-induced fluorescence: inelastic scattering from bound electrons

    laser transitionInelastic scattering: λ λ=

    scattered laserλ λ≠

    scattered laserλ λ=

    +

    _ Dipole oscillates with E field; emits perpendicular to oscillation axis

  • ThomsonScaYeringSpectrum of scattered light depends on Te and ne Approach 1. Wavelength-resolved scattering: Measure scattered light as a function of wavelength – need to be careful of heating the plasma! Approach 2. Integrated scattering: No wavelength resolution Accept all light in a given range of wavelengths around laser wavelength

  • LaserScaYering:Wavelength-ResolvedScaYering

    M. Kuhn-Kauffeldt, J.-L. Marques, J. Schein, J. Phys. D: Appl. Phys. 48 (2015) 012001

    Sca

    ttere

    d si

    gnal

    Wavelength (rel. to laser wavelength) (nm)

    T (1

    04 K

    )

    n e (1

    023 m

    -3)

    r (mm)

  • LaserScaYering:IntegratedScaYeringRayleighscaXering(elasDcscaXeringfromatoms/ions)ThomsonscaXering(elasDcscaXeringfromfreeelectrons)ResonancescaXering(inelasDcscaXeringfromatoms/ions)

    100 A argon arc: T vs r

    Spectroscopy

    Laser scatt.

    A. B. Murphy and A. J. D. Farmer, J. Phys. D: Appl. Phys. 25 (1992) 634

    Ar ion laser – 514.5 nm

  • 5.ThermalPlasmaApplicaJonsArcweldingPlasmasprayingPlasmacuingMineralprocessing•  Arcfurnaces•  PlasmaremelDngPlasmaspheroidisaDonArclighDngCircuitinterrupDonChemicalsynthesisProducDonofnanostructuredmaterials•  NanoparDcles•  Bulknanostructuredmaterials•  Carbonnanomaterials(nanotubes,graphene,etc.)Plasmawastetreatment

  • PlasmaWasteTreatmentComparedtohigh-temperatureincineraDon,plasmagives:

    HighertemperatureandenergydensiDes•  ShorterresidenceDmes•  Morecompactsystems

    Heatsourceisindependentofwaste•  Exhaustgasflowdecreased•  Rapidshut-offpossible

    Nolowerlimitonsize•  EasyintegraDonintoprocesses•  On-sitedestrucDonpossible

    BUT:

    Highcost

    ComponentlifeDmescanbelimited

    Highpowerplasmasourcedifficulttomake

    J. Heberlein and A. B. Murphy J. Phys. D: Appl. Phys. 41 (2008) 053001

  • TrendfromNichetoMainstreamApplicaJons

    Highly-concentratedwastesorwastesrequiringhightemperatures:Asbestos-containingwastes

    Incineratorfly-ashandgrate-ash

    Ozone-depleDngsubstances

    Otherconcentratedchemicals

    Generalwastes:Municipalsolidwastes

    Medicalwastes

    Auto-shredderresidues

    Tyres

    Sewagesludge

  • WesJnghousePlasma:WasteTreatment&FuelProducJon

    DCplasmatorch,upto2.5MW

    TreatMSW,auto-shredderresidue,industrialliquidandsolidwastesPlantscapaciDesfrom25to300tonnesperday

    E.g.,EcoValleyUtashinai,Japan:165tauto-shredderwasteperday,8MWelectricalpowerfromburningsyngas(CO+H2)produced

  • PLASCON

    Treatsliquidandgaseouswastestreams

    150kWnon-transferredarc10plantsinAustralia,Japan,USA,Mexico

    Treats•  Ozone-depleDngsubstances•  PCB-contaminatedoils•  Greenhousegases•  Liquidorganicwastes

    A. B. Murphy, T. McAllister, Appl. Phys. Lett. 73 (1998) 459

  • FluorocarbonGreenhouseGasesareFormedasaBy-productofHCFCProducJonHFC-23=CHF3=trifluoromethane

    GlobalwarmingpotenDalof11700

    ByproductofCHClF2(HCFC-22)producDon(2.4%bymass)

    185tonne/yearproducedatQuimobasicosSAdCV,Monterrey,Mexico+ → + + +3 2 2 36HF 2CHCl CHCl F CHClF CHF 6HCl

  • 185tonnesperyearofHFC23 is equivalent to 2.2 million tonnes per year CO2

    i.e., the annual emissions from a 300 MW coal-fired power station

    a 600 MW gas-fired power station

    or 500 000 cars

  • TrifluoromethaneisSuccessfullyDestroyedByPLASCON

    + + → +13 2 2 22CHF H O O CO 3HF

  • PLASCONDestrucJonofHCF23isVeryProfitable

    Economics (under Kyoto Protocol Clean

    Development Mechanism): Destruction of 1 t HCF 23

    •  Equivalent to destruction of 11 663 t CO2 •  Carbon credits (@ $10/t CO2) have value of $120

    000 •  Cost of destruction < $10 000

    185 t/year gives a profit of ~$20M/year

    Carbon accounting: Destroying 1 t HFC 23

    Destroys equivalent of 11 700 t CO2 Produces direct emissions of 0.6 t and indirect emissions of 6 t CO2

  • ThankyouCSIROManufacturingTonyMurphyChiefResearchScienDstt +61294137150e [email protected] www.csiro.au

    MANUFACTURING