high performance computing for neutron diffusion and ... · for neutron diffusion and transport...

32
High performance computing for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron, C. Calvin, J. Dubois, E. Jamelot , J.-J. Lautard, O. Mula-Hernandez Commissariat à l’Énergie Atomique et aux Énergies Alternatives Centre de Saclay CEA/DEN/DANS/DM2S/SERMA/LLPR December 20, 2012

Upload: others

Post on 10-Nov-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

High performance computingfor neutron diffusion and transport

equations

Horizon Maths 2012

Fondation Science Mathématiques de Paris

A.-M. Baudron, C. Calvin, J. Dubois,E. Jamelot, J.-J. Lautard, O. Mula-Hernandez

Commissariat à l’Énergie Atomique etaux Énergies Alternatives

Centre de Saclay

CEA/DEN/DANS/DM2S/SERMA/LLPR

December 20, 2012

Page 2: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Outline

Physical background

MINOS solver

MINARET solver

Conclusions

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 2 / 26

Page 3: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Top view of a nuclear reactor core (PWR 900MW)

After discretization: millions of unknowns. .

⇒ HPC to reduce volume of data and CPU time.

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 3 / 26

Page 4: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Fission chain reaction

Target nucleus

γ

(x, Ω, E)

NeutronFission product

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 4 / 26

Page 5: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Fission chain reaction

Target nucleus

γ

(x, Ω, E)

NeutronFission product N : neutron density,

ψ = vN : neutron angular flux,

J = Ωψ: neutron angular current.∂N∂t

= Production rate − Loss rate,

∂N

∂t=

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 4 / 26

Page 6: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Fission chain reaction

Target nucleus

γ

(x, Ω, E)

NeutronFission product N : neutron density,

ψ = vN : neutron angular flux,

J = Ωψ: neutron angular current.∂N∂t

= Production rate − Loss rate,

Σs: scattering cross section,

Σf : fission cross section,

Sext: external sources,

∂N

∂t=

+∞

0

S2Σs

(

x, (Ω,Ω′), E′→ E

)

ψ(x,Ω′, E

′)dΩ

′dE

+χ(E)

(∫

+∞

0

ν(E′) Σf (x, E

′)

S2ψ(x,Ω

′, E

′)dΩ

′dE

)

+Sext

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 4 / 26

Page 7: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Fission chain reaction

Target nucleus

γ

(x, Ω, E)

NeutronFission product N : neutron density,

ψ = vN : neutron angular flux,

J = Ωψ: neutron angular current.∂N∂t

= Production rate − Loss rate,

Σs: scattering cross section,

Σf : fission cross section,

Sext: external sources,

div J: leakage and streaming,

Σt: total cross section.

∂N

∂t=

+∞

0

S2Σs

(

x, (Ω,Ω′), E′→ E

)

ψ(x,Ω′, E

′)dΩ

′dE

+χ(E)

(∫

+∞

0

ν(E′) Σf (x, E

′)

S2ψ(x,Ω

′, E

′)dΩ

′dE

)

+Sext

−div J(x,Ω, E)−Σt(x, E)ψ(x,Ω, E).

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 4 / 26

Page 8: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Fission chain reaction

Target nucleus

γ

(x, Ω, E)

NeutronFission product N : neutron density,

ψ = vN : neutron angular flux,

J = Ωψ: neutron angular current.∂N∂t

= Production rate − Loss rate,

Σs: scattering cross section,

Σf : fission cross section,

Sext: external sources,

div J: leakage and streaming,

Σt: total cross section.

+∞

0

S2Σs

(

x, (Ω,Ω′), E′→ E

)

ψ(x,Ω′, E

′)dΩ

′dE

+χ(E)

(∫

+∞

0

ν(E′) Σf (x, E

′)

S2ψ(x,Ω

′, E

′)dΩ

′dE

)

=

div J(x,Ω, E)+Σt(x, E)ψ(x,Ω, E).

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 4 / 26

Page 9: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Criticality calculation: 6 variables

div J(x,Ω, E)+Σt(x, E)ψ(x,Ω, E)

=

∫ +∞

0

S2

Σs

(

x, (Ω,Ω′), E′ → E)

ψ(x,Ω′, E′)dΩ′dE′

+1

λ

χ(E)

(∫ +∞

0

ν(E′)Σf (x, E′)

S2

ψ(x,Ω′, E′)dΩ′dE′

)

Physical solution: ψ ≥ 0, λ = keff | 1/keff = smaller EV.

Criticality:

keff < 1: production rate < loss rate, subcritical state,keff = 1: production rate = loss rate, critical state,keff > 1: production rate > loss rate, supercritical state.

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 5 / 26

Page 10: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Description of MINOS [Baudron, Lautard 2007]

• Criticality calculations, source problems, kinetics.• Cartesian or hexagonal mesh.• Energy E: multigroup theory.Eg ∈ [EG, EG−1] ∪ ... ∪ [E1, E0], EG < E0.

• Angular discretization Ω :Simplified spherical harmonics SPN (coupled diffusion equations).Diffusion.

• Space discretization x: Raviart-Thomas-Nédélec finite elements.Accurate computation of the neutron current and flux.

• C++, librairie boost, MPI.

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 6 / 26

Page 11: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

SP1 multigroup equations

• φg(x) =∫ Eg−1

Eg

S2ψ(x,Ω, E)dΩ dE,

• pg(x) =∫ Eg−1

Eg

S2J(x,Ω, E)dΩ dE,

Solve in (pg, φg) |

σgr,1 p

g +grad φg =∑

g′ 6=g

σg′→gs,1 pg′

,

divpg +σgr,0 φ

g =∑

g′ 6=g

σg′→gs,0 φg

+1

λχg

G∑

g′=0

νg′σg′

f φg′

.

• σgr,0 and σg

r,1: Removal cross-sections of order 0 and 1,• σg

s,0 and σgs,1: Scattering cross-sections of order 0 and 1,

• νg: Nb of neutrons emitted by fission,

• σgf : Fission cross section, χg : Fission spectrum.

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 7 / 26

Page 12: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

MINOS solver algorithm (criticality)

SPN solverEnergy sweeping

Outer iterations

of keffComputationSource

computation fission sourceUpdate of the

Acceleration of the outer iterations by means of Chebychev polynomials.The outer iterations lead the convergence.

More details in [Baudron, Lautard 2007].

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 8 / 26

Page 13: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Schwarz iterative method with optimized Robin interface conditions

[Lions (DD3) 1990, Guérin 2007, Nataf and Nier 1994].Let (p0

I , φ0I). ∀n ∈ N, solve in (pn+1

I , φn+1I ) such that :

σr,1 pn+1I +grad φn+1

I = QI in RI ,

divpn+1I +σr,0 φ

n+1I = SI in RI ,

φn+1I = 0 on ∂R∩ ∂RI ,

−pn+11 · n1 +α1φ

n+11 = pn

2 · n2 +α1φn2 on Γ,

−pn+12 · n2 +α2φ

n+12 = p

n(+1)1 · n1 +α2φ

n(+1)1 on Γ.

α1, α2 positive parameters. (pnI , φ

nI ) → (p, φ)|RI

with α1 = α2.

SPN case: more details in [Jamelot, Baudron, Lautard 2012].

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 9 / 26

Page 14: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Schwarz iterative method with optimized Robin interface conditions

[Lions (DD3) 1990, Guérin 2007, Nataf and Nier 1994].Let (p0

I , φ0I). ∀n ∈ N, solve in (pn+1

I , φn+1I ) such that :

σr,1 pn+1I +grad φn+1

I = QI in RI ,

divpn+1I +σr,0 φ

n+1I = SI in RI ,

φn+1I = 0 on ∂R∩ ∂RI ,

−pn+11 · n1 +α1φ

n+11 = pn

2 · n2 +α1φn2 on Γ,

−pn+12 · n2 +α2φ

n+12 = p

n(+1)1 · n1 +α2φ

n(+1)1 on Γ.

Other DD at EDF: Lagrange multiplier [Lathuilière 09].

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 9 / 26

Page 15: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

MINOS solver algorithm with domain decomposition

Outer iterations

Subdomain j

Subdomain i

Exchange of the interfaceconditions if Γij 6= ∅

fission sourcecomputationSource

MPI calls

computationSource

Outer iterations

Exchange of the scalarproducts on the sources

Computationof keff

Computationof keff

Energy sweepingSPN solver

Energy sweepingSpatial solver

Update of thefission source

Update of the

The outer iterations lead the convergence. One DD iteration only.

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 10 / 26

Page 16: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Plate-fuel nuclear core.

SP3, 4 energy groups, RTN0,364× 364× 100 unit meshes: 425× 106 unknowns,εf = 5× 10−5.

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 11 / 26

Page 17: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Power maps

keff = 1.078065

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 12 / 26

Page 18: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Efficiency and accuracy tests (Titane, CCRT)

SP3, 4 energy groups, RTN0,364× 364× 100 unit meshes: 425× 106 unknowns.εf = 5× 10−5. Eff.= T1/(N × TN ) (%).

N (x, y, z) Nout Err. (10−5) CPU (s) Eff.1 (1, 1, 1) 644 0.0 7 165 100%2 (2, 1, 1) 651 0.0 4 175 86%4 (2, 2, 1) 642 0.0 2 290 78%8 (2, 2, 2) 654 0.0 1 285 70%16 (2, 2, 4) 650 0.0 639 70%32 (4, 4, 2) 657 0.4 319 70%64 (4, 4, 4) 659 0.4 170 66%128 (8, 8, 2) 654 0.2 68 82%

The method seems robust: our optimization choice is validated.

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 13 / 26

Page 19: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Numerical results with a PWR 900MW

Diffusion approximation, 2 energy groups, cell by cell, RTN0,289× 289× 60 unit meshes: 40× 106 unknowns,εf = 10−5.

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 14 / 26

Page 20: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Power maps

keff = 1.230157

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 15 / 26

Page 21: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

GPU and DD (Titane, CCRT)

[Jamelot, Dubois, Lautard, Calvin, Baudron M&C 2011].

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 16 / 26

Page 22: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Kinetics diffusion equations

∀(x, t) ∈ R× [0, T ], ∀g ∈ 1, ..., G, ∀l ∈ 1, ...L :

Dggrad φg(x, t) + pg(x, t) = 0,

1

vg∂φg

∂t(x, t)− divpg(x, t) + σg

t (x)φg(x, t)

=G∑

g′=1

Sgg′

s (x)φg′

(x, t) +

G∑

g′=1

Sg′

f (x)φg′

(x, t) +

L∑

l=1

χgl (x)λlCl(x, t),

∂Cl

∂t(x, t) = −λlCl(x, t) +

G∑

g′=1

Fg′

l φg′

(x, t).

• Cl delayed neutron precursor concentrations.

• λl decay constant of precursor l.

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 17 / 26

Page 23: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Parareal algorithm (O. Mula-Hernandez)

∂ty +A(t; y) = 0, t ∈ [0, T ), y(0) = y0.

y(Tn) is approched by Y kn . Recurrence relation :

Y 0n+1 = G

Tn+1

Tn,

Y k+1n+1 = G

Tn+1

Tn(Y k+1

n ) + FTn+1

Tn(Y k

n )− GTn+1

Tn(Y k

n ),

0 10 20 30 40 500

2

4

6

8

Number of processors (N)

Spe

ed−

up

D, S−SMS, S−SD, W−SMS, W−S

More details in [Baudron, Lautard, Maday, Mula-Hernandez (DD21) 2012]

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 18 / 26

Page 24: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Description of MINARET (J.-J. Lautard, [Moller 2011])

• Criticality calculations, source problem and kinetics under progress.• Cylindrical mesh, unstructured in the (x, y) plane.• Energy E: multigroup theory.Eg ∈ [EG, EG−1] ∪ ... ∪ [E1, E0], EG < E0.

• Angular discretization Ω :SN transport (discrete ordinates method).SPN eqs and diffusion.

• Space discretization x : DGFEM.

• C++, librairie boost, MPI.

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 19 / 26

Page 25: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

SN neutron transport equations

Ωd ∈ S2, d ∈ 1, ..., D. Solve in ψgd(x) such that:

Ωd .gradψgd(x)+ σg

t (x)ψgd(x) =

G∑

g′=0

∞∑

l=0

σg′→gs,l (x)

l∑

m=−l

Y ml (Ωd)φ

g′

lm(x)

+1

keff

χg

G∑

g′=0

νg′

σg′

f (x)φg′

(x),

φgl,m(x) =

D∑

d=1

Y ml (Ωd)ψ

gd(x), φg(x) =

D∑

d=1

ωd ψgd(x).

Source iterationsAngular iterations d = 1 à D⇒ Jacobi

Spatial sweeping:

Ωd .gradψgd(x)+ σt(x)ψ

gd(x) = S(x, ψg′

d′ ,Ωd).

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 20 / 26

Page 26: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

SN neutron transport equations

Ωd ∈ S2, d ∈ 1, ..., D. Solve in ψgd(x) such that:

Ωd .gradψgd(x)+ σg

t (x)ψgd(x) =

G∑

g′=0

∞∑

l=0

σg′→gs,l (x)

l∑

m=−l

Y ml (Ωd)φ

g′

lm(x)

+1

keff

χg

G∑

g′=0

νg′

σg′

f (x)φg′

(x),

φgl,m(x) =

D∑

d=1

Y ml (Ωd)ψ

gd(x), φg(x) =

D∑

d=1

ωd ψgd(x).

Source iterationsAngular iterations d = 1 à D⇒ Distributed computing

Spatial sweeping:

Ωd .gradψgd(x)+ σt(x)ψ

gd(x) = S(x, ψg′

d′ ,Ωd).

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 20 / 26

Page 27: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

MINARET solver algorithm (criticality)

SN solverEnergy sweeping

Outer iterations

of keffComputationSource

computation fission sourceUpdate of the

Acceleration of the outer iterations by means of Chebychev polynomials.DSA to accelerate the source iteration [Moller, Lautard, M&C 2011].

Parallelism: distributed computing.

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 21 / 26

Page 28: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

J. Horowitz experimental core reactor

6 energy groups, 2D, 48× 103 cells, DG P1.

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 22 / 26

Page 29: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Numerical results.

6 energy groups, 2D, 48× 103 cells, DG P1, εf = 10−4.Opteron, 30 nodes, 4 proc. by nodes, 4 cores by proc., 2.6 Ghz.gcc 4.1.1 compiler, MPI Voltaire/Infiny Band 1.2.6 version.

keff = 1.31305S4, D = 12, 10.4M unknownsN Nd CPU (s) Eff.1 12 219 100%2 6 142 77%4 3 96 56%8 2 79 34%12 1 68 27%

keff = 1.31314S8, D = 40, 34.6M unknownsN Nd CPU (s) Eff.1 40 647 100%2 20 371 87%4 10 213 76%8 5 127 64%12 4 116 47%16 3 97 40%20 2 89 35%40 1 85 18%

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 23 / 26

Page 30: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

CCRT Challenge: ESFR core reactor

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 24 / 26

Page 31: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Conclusions and perspectives

Numerical analysis:

• MINOS: DD for the source problem and kinetics (under work).

• MINOS kinetics: coupling DD and parareal [O. Mula-Hernandez].

• MINOS: Non conforming grids.

• MINARET kinetics: parareal [O. Mula-Hernandez].

• MINARET: unstructured 3D mesh.

• Coupling the solvers.

Computer engineering:

• MINOS: DD on hexagonal meshes.

• Data parallelism.

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 25 / 26

Page 32: High performance computing for neutron diffusion and ... · for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron,

Physical background MINOS solver MINARET solver Conclusions

Thank you!

CEA/DEN/DANS/DM2S/SERMA/LLPR – E. Jamelot – HPC for neutronics – 20/12/12 – 26 / 26