high performance? · 2020. 2. 21. · alize extension viscoroute multi-axle loads alt vs...

16
Institut français des sciences et technologies des transports, de l’aménagement et des réseaux www.ifsttar.fr High Performance? Impact of Equivalent Young’s Modulus Ratio Values b/w Material Layers on Pavement Structural Fracture Performance Armelle Chabot Materials & Structures Department https://www.lames.ifsttar.fr/ RILEM High Performance Asphalt Materials Symposium University of Waterloo, Oct. 2nd, 2019

Upload: others

Post on 28-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Institut français des sciences et technologies des transports, de l’aménagement et des réseauxwww.ifsttar.fr

    High Performance?Impact of Equivalent Young’s Modulus Ratio Values b/w

    Material Layers on Pavement Structural Fracture Performance

    Armelle ChabotMaterials & Structures Department

    https://www.lames.ifsttar.fr/

    RILEM High Performance Asphalt Materials SymposiumUniversity of Waterloo, Oct. 2nd, 2019

    https://www.lames.ifsttar.fr/

  • Stiffness of French pavement materials

    § Subgrades§ Unbound materials

    • Unbound granular materials§ Bituminous materials

    • Gravel emulsion• Bituminous concrete (BB)• Grave Bitume (GB)• High modulus bit. mix (EME)

    § Hydraulic materials (GC)• Gravels and Sands treated with HB• Concrete

    200-600

    5000

    9000

    14000

    15-30000

    24-35000

    Modulus range in MPa

    20-200

    15°C10Hz

    360 days

    3000

    2/15

  • kdkskrkcNEb

    ´´´´÷øö

    çèæ´£ 66 10

    eadmt ,e

    French Context(SETRA-LCPC, 1994)

    *Fatigue testNF EN 12697 - 24

    E*eq (15°C, 10Hz); n=0.35

    (Burmister, 1943)- Elastic Multilayers- 2D axisym.- Half ∞ space

    es

    Corte JF, Goux MT (1996) Design of pavement structures: the French technical guide. Transp Res Rep 1539:116–124

    3/15

  • -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    -3.0e+006

    -2.5e+006

    -2.0e+006

    -1.5e+006

    -1.0e+006

    -5.0e+005

    0.0e+000

    X(m)

    sxx_

    (x,0

    ,0.0

    01) (

    Pa)

    sxx 30° viscoélastique 0.001

    sxx 15° viscoélastique 0.001

    sxx 15° élastique 0.001

    … But for top layers ?

    x

    BB

    GNT (E=400 MPa, n=0.35)

    Tension stress

    Sol (E=50 MPa, n=0.35)

    V32500 N

    Msc. (Senti, 2007)

    (Tamagny et al., CP2004)

    Lateral loadingsDEVIN PROJECT

    INRETS - LMT Cachan - SMIT/LCPC

    (Hammoum et al., 2010)

    Hammoum F., Chabot A., St. Laurent D., Chollet H., Vulturescu B. (2010). Accelerating and Decelerating Effects of Tramway Loads moving on Bituminous Pavement. Materials and Structures, 43:1257-1269

    Shearstresses

    4/15ViscoRoute©(LCPC,2009) simulations

    Grellet et al. (CP2012)

    +

  • ØGood performance:üHigh Young modulus à Fatigue /Rutting oküUsed for heavy traffic or bus way

    Ø But needüGood soilüThickness design value

    § Correct traffic hypothesisüConstruction care: Cst % of void

    and good bond between layers

    EME2 uses & limitations?

    SOIL

    5/15

  • Bending case with Discontinuitiesand climate change

    6/15

    F/2F/2

    2

    1

    SOIL

  • Dedicated pavement analysisTran PHD thesis (2004) & Nasser PHD thesis (2016)

    Chabot, A., Tran Q. D., Ehrlacher A., 2007. A modeling to understand where a vertical crack can propagate inpavements. In Proc. Advanced Characterization of Pavement and Soil Engineering Materials, 1: 431-440.

    Nasser H., Chabot A., 2018. A Half-analytical Elastic Solution for 2D Analysis of Cracked Pavements.Advances in Engineering Software, 117: 107-122.

    Interface 2,3 Shear stress

    1 2

    Interface 2,3 Normal stress

    3

    x

    zν1,2 (x) =σ zz x,h1

    +( ) =σ zz x,h2−( )ν 2,3(x) =σ zz x,h2

    +( ) =σ zz x,h3−( )

    M4 Chabot (1997)

    Pouteau (2004)

  • Dedicated M4-5nW analysis≠T°C à Effect of ≠ E Ratio on Interface stresses

    Nasser H., Chabot A., 2018. A Half-analytical Elastic Solution for 2D Analysis of Cracked Pavements. Advances in Engineering Software, 117: 107-122.

    8/15

    1 2 3∼0,5 MPa

    ν1,2 (x) =σ zz x,h1+( ) =σ zz x,h2−( )

    ν 2,3(x) =σ zz x,h2+( ) =σ zz x,h3−( )

    Interface 2,3 Normal stress

    (zoom)

  • Debonding?

    9/15

    Petit C., Chabot A., Destrée A., Raab C, 2018. Recommendation of RILEM TC 241-MCD on Interface Debonding Testing in Pavements. Materials and Structures, 51 (4): article 96

  • IIIRolling path

    Cold T°Cà 3 materials? Hot T°C: Ecc>>Eac

    Why? When?

    Chabot A., Pouteau B., Balay J.-M., De Larrard F., 2008. FABAC Accelerated Loading Test of Bond between Cement Overlay and Asphalt layers. RILEM CP2008, June 16-18, Chicago, US.

    Essais Fabac

    Bond ALT for urbain French roadsPouteau PHD thesis (2004)

    10/15

  • F/2F/2

    2

    1A B C D

    Chabot A., Hun M., Hammoum F., 2013, Mechanical analysis of a bond testbetween layers of composite pavements, CBM, 40:1076-1088

    -0.50

    0.00

    0.50

    1.00

    1.50

    2.00

    2.50

    3.00

    3.50

    4.00

    -3.00

    -2.50

    -2.00

    -1.50

    -1.00

    -0.50

    0.00

    0.50

    1.00

    1.50

    70 140 210 280 350

    1,2

    (MP

    a)

    11,2

    (MP

    a)

    x (mm)

    E2/E1=1E2/E1=3E2/E1=5E2/E1=20

    0.00

    0.50

    1.00

    1.50

    2.00

    2.50

    3.00

    0 70 140 210 280 350 420

    xx (x

    ,e1 )

    (MP

    a)

    x (mm)

    E2/E1=1E2/E1=3E2/E1=5E2/E1=20

    A B C D

    A

    B C

    B C

    D

    t ns

    Bending case: geometry & E2/E1Hun PHD thesis (2012)

    11/15

    Interface 1,2 stresses

    Tension stress at

    theBottom of

    layer2

    shear

    normal

  • High performance of bituminous materials…- Loading conditions?- With other layers?- New pavement geometries?

    Ó Solar RoadWays 12/15

  • Charging Unit(CU) slab

    eRoad

    One Geometrical Solution proposed by KTH (Chen, PHD 2016)

    (Chen et al., 2018)

    Chen, F., Balieu, R., Cordoba, E., & Kringos, N. (2018). Towards an understanding of the structural performance of future electrified roads: A finite element simulation study. IJPE, 20 (2): 204-215.

    13/15

    eRoads examples

  • 14/15

    Chabot A., Deep P., 2019. 2D Multilayer Solution for an Electrified Road with a built-in Charging Box. RMPD, 20 (sup2), s590-s603.

    High Bond Performance Needs!

    eRoad composite system (Chabot & Deep, 2019)

  • Thanks!

    https://apt2020.sciencesconf.org/ à Registration open! 15/15

  • S1 - tridem- transversal strain at bottom of RBA

    -40

    -20

    0

    20

    40

    60

    80

    100

    120

    140

    160

    43 45 47 49 51 53

    distance (m)

    stra

    in (

    stra

    in)

    gage T1ALIZEVISCOROUTEextension

    Multi-axle loadsALT vs visco-elastic calculus

    (Kerzreho et al., 2012)

    Kerzrého J.P., Hornych P., Chabot A., Deloffre L., Trichet S., Coirier G., Gouy T, 2012. Evaluation of the

    aggressiveness of different multi-axle loads using APT tests. In Advances in Pavement Design through Full-scale Accelerated Pavement Testing. Jones, D., Harvey, J., Al-Qadi, I. and Mateos, A. (Eds): 505–517.