(high-order) finite elements for the shallow-water ...dubos/talks/2014kritsikispdes.pdf ·...

19

Upload: others

Post on 05-Sep-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

(High-order) �nite elements for the shallow-waterequations on the cubed sphere

E.Kritsikis, T. Dubos

University of Paris 13 & LMD � Ecole polytechnique

PDEs on the Sphere 2014

Plan

1 Formulation

2 Fixing the spectral gap

3 Sphering the cube

4 Results

2/18

The problem

Shallow water

∂th +∇ · U = 0 , U = hu

∂tu + qU⊥ +∇B = 0 , B = hg + u2/2

Questions

ensure the conservation requirements (mass, energy, momentum, PV)

get good dispersion properties

do it on the sphere

Formulation 3/18

The Hamiltonian structureH(u, h) = 1

2

∫h(gh + u2)

The Poisson bracket

dF

dt= {F ,H} =

∫q ·(∂F

∂u× ∂H

∂u

)+∂H

∂hdiv

∂F

∂u− ∂F

∂hdiv

∂H

∂u

track evolution of any F (h, u)recover eqs of motion if U := ∂H/∂u, B := ∂H/∂hantisymmetry → energy conservation

Procedure

de�ne (U,B) on U ′ ×H′ i.e. as functional derivatives of H

(δu,U) + (δh,B) = δH

de�ne antisymmetric bilinear form J on U ′ ×H′ s.t.

∂t(U, u) + ∂t(B, h) = J((

UˆBˆ

),(UB

))= (q, U × U) + (B, div U)− (B, divU)

Formulation 4/18

Spaces (Cotter & Shipton '13)

u,U ∈ Uh,B ∈ Hlose regularity going left to right

Z∇⊥ // Urotoo

div // H∇oo

Formulations

Solve ∀u ∈ U , (U, u) = (hu, u)

Compute ∂th = − divU

Compute (for discr.) ∀h ∈ H, the (B, h) = (u2/2+ hg , h)

Solve ∀q ∈ Z, (qh, q) = (∇⊥q, u)Solve ∀U ∈ U , (U, ∂tu) + (U, qU⊥)− (div U,B) = 0

Note : we have (q, ∂t(hq)) = (∇⊥q, ∂tu) = (∇⊥q, qU⊥) = (q, curl(qU⊥)),weak form of the PV transport ∂t(hq) + div(qU) = 0.

Formulation 5/18

FE spaces

Triangle mesh + RT

P1∇⊥ // RT0

div // Pd0

2N div. vs N rot. DOFs ⇒ numerical modes(Gaÿmann '12)

Quad mesh + ⊗

A∂x // B

Pn Pn−1 (?)

A⊗A ∇⊥ // A⊗ B~ι+ B ⊗A~j div // B ⊗ B

Fixing the spectral gap 6/18

Linear analysis for P2 − Pd1

Regular periodic 1D, (h, u, v) ∼ exp i(kx − ωt)ω = 0 : transport of PV ⇒ geostrophic balanceω2 = f 2 + gH k2 : 2 DOFs per element breaks translational invariance ⇒spectral gap

0 10 20 30 4010

15

20

25

30

35

40

N

ωc=1 f=10

DG1

continuous

(Melvin '13)

Fixing the spectral gap 7/18

Fixing the spectral gap : the �FDn − FVn−1� pair

let B be the image of a reconstruction operator (hk) 7→ h s.t.∫ xk+1

xk

h(x) dx = hk

e.g. a nth order FV reconstruction with h ∈ Pdn−1

a basis is bk(x) with∫ xj+1

xj

bk(x) dx = δjk −→ h =∑k

bk(x)

∫ xk+1

xk

h(x) dx

let A be the span of the

ak(x) =

∫ x

−∞(bk+1(x

′)− bk(x′)) dx ′

h 7→∑

k h(xk)ak(x) is a nth order

interpolation and A ∂x→ B−2 0 2 4

−0.5

0

0.5

1

1.5

a(x)

b(x)

Fixing the spectral gap 8/18

Fixing the spectral gap : the �FD2 − FV1� pair

0 10 20 30 4010

15

20

25

30

35

40

N

ω

c=1 f=10

DG1

continuous

Extends to arbitrarily-high order (but stencil increases)

Fixing the spectral gap 9/18

Fixing the spectral gap : the �FD2 − FV1� pair

0 10 20 30 4010

15

20

25

30

35

40

N

ω

c=1 f=10

FV1

continuous

Extends to arbitrarily-high order (but stencil increases)

Fixing the spectral gap 9/18

Wave velocities

Fixing the spectral gap 10/18

Covariant formulation

Patch-based approach

6 squares mapped to the sphere

(x1, x2) 7→ r(x1, x2) Gij = ∂i r · ∂j r

J = (e1 × e2) · r =√detGij

solve for J-weighted height and J-weightedcontravariant velocity components

m = J h u =1

Jui∂i r

u ∈ H(div) ↔ continuity of ui ↔copy DOF across patch boundary

Sphering the cube 11/18

Covariant formulation

Hamiltonian

H(uj ,m) =1

2

∫m

(gm

J+

Gij

J2ujui

)B =

δHδm

=gm

J+

Gij

2J2ujui

U i =δHδui

=m

Jui = hui

Poisson bracket

δF =

∫Gij

J

δFδui

δuj +δFδm

δm

{F ,H} = J((

δF/δui

δF/δm

),(δH/δui

δH/δm

))J((

Uˆi

),(Uˆi

B

))= εijqU

iU j +

∫B∂i U

i − B∂iUi

Sphering the cube 12/18

The weak and the strong

Zεij∂j // U i

∂i // M , Z = A⊗A, U1 = A⊗ B, U2 = B ⊗A, M = B ⊗ B

(U j ,

Gij

JU i

)=

(U j ,

Gij

J2mui

), U i ,U i ∈ U i

(m,B) =

(m

(g

Jm +

1

2

Gij

J2ujui

)), m,B ∈M(

ψm, q)=

(ψJf − εik Gij

Juj∂k ψ

), ψ, q ∈ Z(

U i ,Gij

J∂tu

j

)+(U i , εijU

jq)−(B∂i u

i)= 0, U i , ui ∈ U i

∂tm + ∂iUi = 0

Strong cont. eq. → can be coupled to FV transport schemes

Sphering the cube 13/18

FD3/FV2 : basis functions

Results 14/18

FD3/FV2 : order of individual operators

101

102

10−10

10−8

10−6

10−4

10−2

0−form

L

error

4−th order

101

102

10−6

10−5

10−4

10−3

10−2

1−form

L

error

3rd order

101

102

10−10

10−8

10−6

10−4

10−2

curl

L

error

4th order

101

102

10−5

10−4

10−3

10−2

10−1

Laplacian

L

error

2nd order

Results 15/18

Results : rotating shallow-water

test cases from Williamson et al. (1991)

3rd-order convergence for solid-body rotation, other tests closer to 2nd-order

Results 16/18

Results : Galewsky test-case

Results 17/18

Summary

Discretize Hamiltonian, Poisson bracket

Mimetic properties result from exact suites

Use quadrangles to balance DOFs and avoid numerical modes

Standard higher-order spaces su�er from spectral gap

Use 1 DOF per element to restore discrete translational invariance

New 1D spaces based on interpolation-reconstruction operators

Promising results on cubed sphere

Ongoing work : stabilization, e�ciency

Results 18/18