high gradient enrichment functions for crack propagation ... · high gradient enrichment functions...

67
High gradient enrichment functions for crack propagation in cohesive and cohesion-less cracks Safdar Abbas Thomas-Peter Fries AICES, RWTH Aachen University, Aachen, Germany IV European Conference on Computational Mechanics, Paris, France, May 17, 2010 1

Upload: others

Post on 04-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

  • High gradient enrichment functions for crackpropagation in cohesive and cohesion-less cracks

    Safdar AbbasThomas-Peter Fries

    AICES, RWTH Aachen University, Aachen, Germany

    IV European Conference on Computational Mechanics,Paris, France, May 17, 2010

    1

  • Outline

    Outline

    Motivation

    XFEM in fracture mechanics

    Numerical examples (cohesionless cracks)

    Numerical examples (cohesive cracks)

    Conclusions

    Future outlook

    2

  • Motivation

    Outline

    Motivation

    XFEM in fracture mechanics

    Numerical examples (cohesionless cracks)

    Numerical examples (cohesive cracks)

    Conclusions

    Future outlook

    3

  • Motivation Types of fracture

    Types of fracture

    Strain

    Ductile Fracture

    Brittle FractureStress Brittel Ductile

    From: Fracture mechanics: fundamentals andapplications by Ted L. Anderson

    4

  • Motivation Types of fracture

    Types of fractureσ

    Fracture Behavior

    Linear ElasticFracture Mechanics

    Fracture Process ZoneCohesive

    Plastic Collapse

    5

  • Motivation Types of fracture

    Cohesionless fracture

    • Negligible Plastic Zone.• Infinite Stresses at Crack Tip.• Different Criteria for Crack Growth.

    6

  • Motivation Types of fracture

    Cohesionless fracture

    • Negligible Plastic Zone.

    • Infinite Stresses at Crack Tip.• Different Criteria for Crack Growth.

    6

  • Motivation Types of fracture

    Cohesionless fracture

    • Negligible Plastic Zone.• Infinite Stresses at Crack Tip.

    • Different Criteria for Crack Growth.

    6

  • Motivation Types of fracture

    Cohesionless fracture

    • Negligible Plastic Zone.• Infinite Stresses at Crack Tip.• Different Criteria for Crack Growth.

    6

  • Motivation Types of fracture

    Cohesive fracture

    • Presence of ”Damaged” zone:1. Plastic Zone for metals.2. Fracture Process Zone for cementitious materials and ceramics.

    • Finite Stresses at Crack Tip.• Different size of the Plastic or Process zone.• Different criteria for crack growth.

    7

  • Motivation Types of fracture

    Cohesive fracture

    • Presence of ”Damaged” zone:1. Plastic Zone for metals.2. Fracture Process Zone for cementitious materials and ceramics.

    • Finite Stresses at Crack Tip.• Different size of the Plastic or Process zone.• Different criteria for crack growth.

    7

  • Motivation Types of fracture

    Cohesive fracture

    • Presence of ”Damaged” zone:1. Plastic Zone for metals.2. Fracture Process Zone for cementitious materials and ceramics.

    • Finite Stresses at Crack Tip.

    • Different size of the Plastic or Process zone.• Different criteria for crack growth.

    7

  • Motivation Types of fracture

    Cohesive fracture

    • Presence of ”Damaged” zone:1. Plastic Zone for metals.2. Fracture Process Zone for cementitious materials and ceramics.

    • Finite Stresses at Crack Tip.• Different size of the Plastic or Process zone.

    • Different criteria for crack growth.

    7

  • Motivation Types of fracture

    Cohesive fracture

    • Presence of ”Damaged” zone:1. Plastic Zone for metals.2. Fracture Process Zone for cementitious materials and ceramics.

    • Finite Stresses at Crack Tip.• Different size of the Plastic or Process zone.• Different criteria for crack growth.

    7

  • Motivation Types of fracture

    Linear elastic fractureu

    x

    x

    σ

    Cohesive fractureu

    x

    x

    σ

    8

  • Motivation High-gradient enrichment functions

    High-gradient enrichment functions

    ψ = r x ;dψ

    dx= xr x−1

    =>dψ

    dx=

    ∞ x < 1,0 x > 1 & x < 2,

    0 x > 2.

    9

  • Motivation High-gradient enrichment functions

    High-gradient enrichment functions

    ψ = r x ;dψ

    dx= xr x−1 =>

    dx=

    ∞ x < 1,

    0 x > 1 & x < 2,

    0 x > 2.

    0 0.2 0.4 0.6 0.8 10

    0.5

    1

    1.5

    2

    r

    d! /

    dr

    9

  • Motivation High-gradient enrichment functions

    High-gradient enrichment functions

    ψ = r x ;dψ

    dx= xr x−1 =>

    dx=

    ∞ x < 1,0 x > 1 & x < 2,

    0 x > 2.

    0 0.2 0.4 0.6 0.8 10

    0.5

    1

    1.5

    2

    r

    d! /

    dr

    9

  • Motivation High-gradient enrichment functions

    High-gradient enrichment functions

    ψ = r x ;dψ

    dx= xr x−1 =>

    dx=

    ∞ x < 1,0 x > 1 & x < 2,

    0 x > 2.

    0 0.2 0.4 0.6 0.8 10

    0.5

    1

    1.5

    2

    r

    d! /

    dr

    9

  • Motivation High-gradient enrichment functions

    • Interpolated function f• Interpolation functions Ψ = [ψ1, ψ2, ψ3]• Find

    ∫ωuh =

    ∫ωf , for ω ∈ Ψ,

    where uh =∑ψiui = Ψ

    Tu

    10

  • Motivation High-gradient enrichment functions

    • Interpolated function f

    • Interpolation functions Ψ = [ψ1, ψ2, ψ3]• Find

    ∫ωuh =

    ∫ωf , for ω ∈ Ψ,

    where uh =∑ψiui = Ψ

    Tu

    10

  • Motivation High-gradient enrichment functions

    • Interpolated function f• Interpolation functions Ψ = [ψ1, ψ2, ψ3]

    • Find∫ωuh =

    ∫ωf , for ω ∈ Ψ,

    where uh =∑ψiui = Ψ

    Tu

    10

  • Motivation High-gradient enrichment functions

    • Interpolated function f• Interpolation functions Ψ = [ψ1, ψ2, ψ3]• Find

    ∫ωuh =

    ∫ωf , for ω ∈ Ψ,

    where uh =∑ψiui = Ψ

    Tu

    10

  • Motivation High-gradient enrichment functions

    • Interpolated function f• Interpolation functions Ψ = [ψ1, ψ2, ψ3]• Find

    ∫ωuh =

    ∫ωf , for ω ∈ Ψ,

    where uh =∑ψiui = Ψ

    Tu

    10

  • Motivation High-gradient enrichment functions

    Optimal set of functions

    Ψ = {r1.1, r1.3, r1.5, r1.7}

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    r

    !

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    r

    d! /

    dr

    11

  • Motivation High-gradient enrichment functions

    Optimal set of functions

    Ψ = {r1.1, r1.3, r1.5, r1.7}

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    r

    !

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    r

    d! /

    dr

    11

  • Motivation High-gradient enrichment functions

    Optimal set of functions

    Ψ = {r1.1, r1.3, r1.5, r1.7}

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    r

    !

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.5

    1

    1.5

    r

    d! /

    dr

    11

  • Motivation High-gradient enrichment functions

    Optimal set of functions

    Ψ = {r1.1, r1.3, r1.5, r1.7}

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    r

    !

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    r

    d! /

    dr

    11

  • XFEM in fracture mechanics

    Outline

    Motivation

    XFEM in fracture mechanics

    Numerical examples (cohesionless cracks)

    Numerical examples (cohesive cracks)

    Conclusions

    Future outlook

    12

  • XFEM in fracture mechanics

    XFEM Formulation in Fracture Mechanics

    uh(x) =∑i∈I

    Ni (x)ui︸ ︷︷ ︸Continuous

    +∑j∈I?1

    N?j (x) · H(x)aj +∑

    k∈I?2N?k (x) ·

    (4∑

    m=1

    Bm(x)bmk

    )︸ ︷︷ ︸

    Discontinuous

    • Set of nodes whose support is cut by the interface.• Set of crack tip nodes.• Partition-of-unity functions.• Enrichment functions.• Additional degrees of freedom.

    13

  • XFEM in fracture mechanics

    XFEM Formulation in Fracture Mechanics

    uh(x) =∑i∈I

    Ni (x)ui︸ ︷︷ ︸Continuous

    +∑j∈I?1

    N?j (x) · H(x)aj +∑

    k∈I?2N?k (x) ·

    (4∑

    m=1

    Bm(x)bmk

    )︸ ︷︷ ︸

    Discontinuous

    • Set of nodes whose support is cut by the interface.

    • Set of crack tip nodes.• Partition-of-unity functions.• Enrichment functions.• Additional degrees of freedom.

    135 140 145 150 15592

    94

    96

    98

    100

    102

    104

    106

    108

    13

  • XFEM in fracture mechanics

    XFEM Formulation in Fracture Mechanics

    uh(x) =∑i∈I

    Ni (x)ui︸ ︷︷ ︸Continuous

    +∑j∈I?1

    N?j (x) · H(x)aj +∑

    k∈I?2N?k (x) ·

    (4∑

    m=1

    Bm(x)bmk

    )︸ ︷︷ ︸

    Discontinuous

    • Set of nodes whose support is cut by the interface.• Set of crack tip nodes.

    • Partition-of-unity functions.• Enrichment functions.• Additional degrees of freedom.

    135 140 145 150 15592

    94

    96

    98

    100

    102

    104

    106

    108

    13

  • XFEM in fracture mechanics

    XFEM Formulation in Fracture Mechanics

    uh(x) =∑i∈I

    Ni (x)ui︸ ︷︷ ︸Continuous

    +∑j∈I?1

    N?j (x) · H(x)aj +∑

    k∈I?2N?k (x) ·

    (4∑

    m=1

    Bm(x)bmk

    )︸ ︷︷ ︸

    Discontinuous

    • Set of nodes whose support is cut by the interface.• Set of crack tip nodes.• Partition-of-unity functions.

    • Enrichment functions.• Additional degrees of freedom.

    135 140 145 150 15592

    94

    96

    98

    100

    102

    104

    106

    108

    13

  • XFEM in fracture mechanics

    XFEM Formulation in Fracture Mechanics

    uh(x) =∑i∈I

    Ni (x)ui︸ ︷︷ ︸Continuous

    +∑j∈I?1

    N?j (x) · H(x)aj +∑

    k∈I?2N?k (x) ·

    (4∑

    m=1

    Bm(x)bmk

    )︸ ︷︷ ︸

    Discontinuous

    • Set of nodes whose support is cut by the interface.• Set of crack tip nodes.• Partition-of-unity functions.• Enrichment functions.

    • Additional degrees of freedom.

    135 140 145 150 15592

    94

    96

    98

    100

    102

    104

    106

    108

    13

  • XFEM in fracture mechanics

    XFEM Formulation in Fracture Mechanics

    uh(x) =∑i∈I

    Ni (x)ui︸ ︷︷ ︸Continuous

    +∑j∈I?1

    N?j (x) · H(x)aj +∑

    k∈I?2N?k (x) ·

    (4∑

    m=1

    Bm(x)bmk

    )︸ ︷︷ ︸

    Discontinuous

    • Set of nodes whose support is cut by the interface.• Set of crack tip nodes.• Partition-of-unity functions.• Enrichment functions.• Additional degrees of freedom.

    135 140 145 150 15592

    94

    96

    98

    100

    102

    104

    106

    108

    13

  • XFEM in fracture mechanics

    Crack-tip polar coordinate system

    From: Aspects of Energy Minimization in Solid Mechanics: Evolution of Inelastic Microstructures and CrackPropagation by Ercan Gürses

    • Modes I & II.• r is the length of a small vector extending forward from the

    crack tip.• θ is the angle from rectangular to polar coordinates.

    14

  • XFEM in fracture mechanics

    Asymptotic Enrichment functions

    B(x) = {√

    r sinθ

    2,√

    r sinθ

    2sin θ,

    √r cos

    θ

    2,√

    r cosθ

    2sin θ}

    From: T.P. Fries, T. Belytschko, 2010 accepted. 15

  • XFEM in fracture mechanics

    High-gradient enrichment functions

    B(x) = {r1.1θ, r1.3θ, r1.5θ, r1.7θ, r1.1 sin θ2

    sin θ}

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    r

    !

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    r

    d! /

    dr

    16

  • Numerical examples (cohesionless cracks)

    Outline

    Motivation

    XFEM in fracture mechanics

    Numerical examples (cohesionless cracks)

    Numerical examples (cohesive cracks)

    Conclusions

    Future outlook

    17

  • Numerical examples (cohesionless cracks)

    Cohesionless fracture: Problem statement

    F

    nΓc

    Γt Ω

    Γu

    f int = f ext∫Ω

    �(uh) : C : �(v)dΩ =

    ∫Γt

    F · v

    u ∈ U = {v ∈ V : v = 0 on Γu}

    18

  • Numerical examples (cohesionless cracks)

    Pure Mode-I edge crack

    H/2

    H

    W

    a = W/2

    KI = 1, KII = 0E = 10000 MPaν = 0.3

    19

  • Numerical examples (cohesionless cracks)

    Pure Mode-I edge crack: L2-Norm

    10−2 10−110−3

    10−2

    Element Size (h)

    L2 N

    orm

    Branch Enr. Func.High−Grad. Enr. Func.

    20

  • Numerical examples (cohesionless cracks)

    Mixed Mode I and II edge crackqx

    L

    W

    a

    W = 7, L = 16E = 10000 MPaν = 0.3, qx = 1

    21

  • Numerical examples (cohesionless cracks)

    Mixed Mode I and II edge crack: Convergence of KI

    0 1 2 3 4 5 6x 104

    30

    30.5

    31

    31.5

    32

    32.5

    33

    33.5

    34

    Degrees of Freedom

    K I

    Branch Enr. Func.High−Grad. Enr. Func.

    22

  • Numerical examples (cohesionless cracks)

    Mixed Mode I and II edge crack: Convergence of KII

    0 1 2 3 4 5 6x 104

    4.3

    4.35

    4.4

    4.45

    4.5

    Degrees of Freedom

    K II

    Branch Enr. Func.High−Grad. Enr. Func.

    23

  • Numerical examples (cohesionless cracks)

    Single edge notched beam (Areias & Belytschko [2005])

    E = 3× 107 psiν = 0.3, q = −10000 lbs

    q

    262.5 75

    50

    300

    150

    37.5

    75

    24

  • Numerical examples (cohesionless cracks)

    (Loading Movies/Movie3.avi)

    25

    Movie3.aviMedia File (video/avi)

  • Numerical examples (cohesionless cracks)

    Single edge notched beam

    330 335 340 345 350 355 360 3650

    50

    100

    150

    Crackpath for High Grad. Enr.Crackpath for the Branch Enr.

    Crackpath for the Branch enrichments and High-gradient enrichments

    26

  • Numerical examples (cohesionless cracks)

    Single edge notched beam (Areias & Belytschko [2005])

    E = 3× 107 psi,ν = 0.3, q = −10000 lbs,

    37.5

    262.5 75

    50

    300

    15075

    q

    37.5

    27

  • Numerical examples (cohesionless cracks)

    (Loading Movies/Movie4.avi)

    28

    Movie4.aviMedia File (video/avi)

  • Numerical examples (cohesionless cracks)

    Single edge notched beam

    300 320 340 360 380 400 420 4400

    50

    100

    150

    Crackpath for High Grad. Enr.Crackpath for the Branch Enr.

    Crackpath for the Branch enrichments and High-gradient enrichments

    29

  • Numerical examples (cohesive cracks)

    Outline

    Motivation

    XFEM in fracture mechanics

    Numerical examples (cohesionless cracks)

    Numerical examples (cohesive cracks)

    Conclusions

    Future outlook

    30

  • Numerical examples (cohesive cracks)

    Cohesive fracture: Problem statement

    F

    nΓc

    ΓCoh

    Γt Ω

    Γu

    Fc

    ft

    Str

    ess

    Crack opening displacementwc

    Gf

    f int =λf ext + f coh

    f int =

    ∫Ω

    �(uh) : C : �(v)dΩ = K · uh

    f ext =

    ∫Γt

    F · vdΓ

    f coh =−∫

    ΓCoh

    Fcn · vdΓ

    Fc =ft − kw(uh)

    u ∈ U = {v ∈ V : v = 0 on Γu}

    31

  • Numerical examples (cohesive cracks)

    Cohesive fracture: Problem statement

    F

    nΓc

    ΓCoh

    Γt Ω

    Γu

    Fc

    r =

    [K · uh − λf ext − f coh

    ft − Suh]

    A =

    K− ∂f coh∂u −f ext−S 0

    S = MTCB; M = n ⊗ n{4uh4λ

    }i= −(Ai−1)−1·ri−1

    Goangseup Zi and Ted Belytschko: New crack-tip elements for XFEM and applications to cohesive cracks, Internat.

    J. Numer. Methods Engrg., 2003; 57:2221–2240

    32

  • Numerical examples (cohesive cracks)

    Double cantilever beam (straight crack)

    ft

    Str

    ess

    Crack opening displacementwc

    Gf

    h

    P

    P

    0.3L

    L

    L = 400 mm, E = 36500 MPa, ν = 0.18, ft = 3.19 MPa, Gf = 50N/m

    33

  • Numerical examples (cohesive cracks)

    Double cantilever beam (straight crack)

    0 100 200 300 400−0.5

    0

    0.5

    1

    1.5

    Distance [mm]

    Dim

    ensi

    onle

    ss s

    tress

    0 0.2 0.4 0.6 0.80

    10

    20

    30

    40

    50

    60

    Deflection [mm]

    Load

    [KN]

    High gradient Enr. Str.Zi and Belytschko (2003) Str.

    34

  • Numerical examples (cohesive cracks)

    Double cantilever beam (curved crack)

    0 50 100 150 200 250 300 350 4000

    50

    100

    150

    200

    0 0.2 0.4 0.6 0.80

    10

    20

    30

    40

    50

    60

    Deflection [mm]

    Load

    [KN]

    High gradient Enr. Str.High gradient Enr. Cur.Zi and Belytschko (2003) Str.Zi and Belytschko (2003) Cur.

    35

  • Numerical examples (cohesive cracks)

    Three point bending test

    a

    2b 2b

    b

    E = 36500 MPa, ν = 0.1, ft = 3.19 MPa, b = 150, a = 0

    36

  • Numerical examples (cohesive cracks)

    Three point bending test

    0 0.2 0.4 0.6 0.8 1x 10−3

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    Deflection/b

    Load/f tb2

    High gradient EnrCarpinteri and Colombo (1989)

    Load-point displacement curvefor Gf = 50 N/m

    0 1 2 3 4x 10−4

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    Deflection/b

    Load/f tb2

    Load-point displacement curvefor Gf = 5 N/m

    37

  • Numerical examples (cohesive cracks)

    Three point bending test

    0 0.2 0.4 0.6 0.8 1x 10−3

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    Deflection/b

    Load/f tb2

    High gradient EnrCarpinteri and Colombo (1989)

    Load-point displacement curvefor Gf = 50 N/m

    0 1 2 3 4x 10−4

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    Deflection/bLoad/f tb2

    Load-point displacement curvefor Gf = 5 N/m

    37

  • Conclusions

    Outline

    Motivation

    XFEM in fracture mechanics

    Numerical examples (cohesionless cracks)

    Numerical examples (cohesive cracks)

    Conclusions

    Future outlook

    38

  • Conclusions

    Conclusions

    • An enrichment scheme for the XFEM has been proposedwhich enables highly accurate approximations of high gradientstresses/strains near the crack-tip.

    • The scheme is independent of the fracture model.• Accuracy in the case of linear elastic fracture mechanics is

    better than that achieved through classical branchenrichments.

    39

  • Future outlook

    Outline

    Motivation

    XFEM in fracture mechanics

    Numerical examples (cohesionless cracks)

    Numerical examples (cohesive cracks)

    Conclusions

    Future outlook

    40

  • Future outlook

    Future outlook

    • Application of proposed enrichment functions to more generalmaterial and geometric non-linearities.

    • Considering for the shear traction condition.• General interest in model-independent methods for problems

    involving high gradients.

    A. Alizada, T.P. Fries: Cracks and crack propagation with xfemand hanging nodes in 2d (17.05.2010 @ 17:20 )

    41

  • Future outlook

    Future outlook

    • Application of proposed enrichment functions to more generalmaterial and geometric non-linearities.

    • Considering for the shear traction condition.• General interest in model-independent methods for problems

    involving high gradients.

    A. Alizada, T.P. Fries: Cracks and crack propagation with xfemand hanging nodes in 2d (17.05.2010 @ 17:20 )

    41

  • Acknowledgements

    Financial support from the DeutscheForschungsgemeinschaft (German ResearchAssociation) through grant GSC 111 andthe Emmy-Noether program is gratefullyacknowledged.

    42

  • Acknowledgements

    Thanks for your attention

    43

    Outline

    0.0: 0.1: 0.2: 0.3: 0.4: 0.5: 0.6: 0.7: 0.8: 0.9: 0.10: 0.11: anm0: 1.0: 1.1: 1.2: 1.3: 1.4: 1.5: 1.6: 1.7: 1.8: 1.9: 1.10: 1.11: anm1: 2.0: 2.1: 2.2: 2.3: 2.4: 2.5: 2.6: 2.7: 2.8: 2.9: 2.10: anm2: 3.0: 3.1: 3.2: 3.3: 3.4: 3.5: 3.6: 3.7: 3.8: 3.9: 3.10: anm3: 4.0: 4.1: 4.2: 4.3: 4.4: 4.5: 4.6: 4.7: 4.8: 4.9: 4.10: anm4: