high average power new frontiers in all-solid-state lasers:...

38
Swiss Federal Institute of Technology Zürich Ultrafast Laser Physics New frontiers in all-solid-state lasers: High average power High pulse repetition rate Ursula Keller Ultrafast Laser Physics Swiss Federal Institute of Technology Ë Zürich, Switzerland Ultrafast laser oscillators: perspectives from past to futures Ultrafast laser oscillators: perspectives from past to futures

Upload: others

Post on 24-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    New frontiers in all-solid-state lasers:High average power

    High pulse repetition rate

    Ursula Keller

    Ultrafast Laser PhysicsSwiss Federal Institute of Technology Ë

    Zürich, Switzerland

    Ultrafast laser oscillators:perspectives from past to futures

    Ultrafast laser oscillators:perspectives from past to futures

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    Research Group of Prof. KellerUltrafast diode-pumped solid-state lasers (R. Paschotta)

    Sub-10-femtosecond pulse generation (G. Steinmeyer)

    Novel materials: III-V/fluoride MBE (S. Schön)

    Attosecond Science (J. Tisch, J. Biegert)

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    Current status in ultrafast lasersKerr-lens modelocked Ti:sapphire lasers

    Pulse duration of about two optical cycles (≈≈≈≈ 5.5 fs)

    Ultrafast diode-pumped solid-state lasersSESAM modelocking is becoming the “standardapproach”Compact reliable lasers commercially availableNew Frontier: High average powerfs lasers: 22 W, 240 fs, 25 MHz, 3.3.MW peak (Yb:KYW)ps lasers: 60 W, 6 - 24 ps, 34 MHz, 1.7 µJ (Yb:YAG)New Frontier: High pulse repetition rateUp to 157 GHz (Nd:Vanadate miniature laser)

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    Mode locking

    I (ω)

    φ (ω)

    0

    I (t)

    ~

    ~φ (t)

    • axial modes in laser not phase- locked

    • noise

    I (ω) I (t)

    φ (ω)

    0

    τ ≈ 1∆ν

    φ (t)~

    ~

    • axial modes in laser phase- locked

    • ultrashort pulse

    • inverse proportional to phase- locked spectrum

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    Ultrashort pulse generation (Science 286, 1507, 1999)

    1960 1970 1980 1990 2000

    First ML Laser Ti:Sapphire

    KLM

    Chirped Mirror

    CEO control

    FWH

    M p

    ulse

    wid

    th (s

    ec)

    20001990198019701960 Year

    10 fs

    100 fs

    1 ps

    1 fs

    10 ps

    Ti:sapphire laser≈5.5 fs with ≈200 mW

    dye laser27 fs with ≈10 mW

    compressed

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 16, 42, 1991

    Effective Saturable Absorber Fast Self-Amp. Modulation

    Pulse

    Gain

    Loss

    Time

    Kerr Lens Modelocking (KLM)

    Incident beam

    Nonlinear mediumKerr lens

    Low intensity light

    Aperture

    Intense pulse

    Loss

    Pulse fluence on absorber

    Saturation fluence

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    Passively modelocked solid-state lasersA. J. De Maria, D. A. Stetser, H. HeynauAppl. Phys. Lett. 8, 174, 1966

    200 ns/div

    50 ns/div

    1960 1970 1980 1990 2000

    Nd:glassFirst passively modelocked laser

    Q-switched modelockedTi:Sapphire

    KLM

    SESAM

    First passively modelocked(diode-pumped) solid-state laserwithout Q-switching

    U. Keller et al. Opt. Lett. 17, 505, 1992

    Flashlamp-pumped solid-state lasers

    Diode-pumped solid-state lasers(first demonstration 1963)

    Q-switching instabilitiescontinued to be a problem until 1992

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    U. Keller et al., IEEE JSTQE 2, 435, 1996Chapter 4 in Semiconductors and Semimetals, vol. 59, Academic Press, 1999

    R ≈ 0 %Saturableabsorber(Sat. abs.) Sat. abs.

    R ≈ 95 %

    R ≈ 30 %

    High-finesseA-FPSA

    Thin absorberAR-coated

    Low-finesseA-FPSA,SBR

    D-SAMSaturableabsorber and negativedispersion

    Sat. abs. Sat. abs.R ≈ 30 %

    April 92 Feb. 95 June/July 95 April 96

    R ≈ 100 % R ≈ 100 % R ≈ 100 % R ≈ 100 %

    Enabling Technology: SESAMSemiconductor saturable absorber mirror (SESAM)

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    ∝Aeff,L

    em,Lσ

    = A F Reff,A sat,A∆=

    P

    fintra

    rep

    2E E E RP sat,L sat,A

    2 > ∆

    C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller,JOSA B 16, 46 (1999)

    cw mode locking

    Lase

    r pow

    er

    403020100Time (multiples of round trip time)

    Q-switched mode locking

    Lase

    r pow

    er

    403020100

    Time (multiples of round trip time)

    Q-switched mode locking is avoided if...

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    E E E RP sat,L sat,A2 > ∆

    C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller,JOSA B 16, 46 (1999)

    Saturation fluence and modulation depth

    100

    95

    90

    Ref

    lect

    ivity

    (%

    )

    300250200150100500

    Incident pulse fluence Fp ( µJ/cm2)

    ∆R Modulation depth

    Fsat, A Saturation fluence ∆R ns

    Non-saturable losses

    SESAM

    Semiconductor saturable absorber mirror A F Reff,A sat,A∆F

    Asat,A ∝

    Absorber σ A cm2[ ]ion-doped solid-state

    0 1019 22− −−

    dye 0 16−

    semiconductor 0 14−

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    Recovery times in semiconductors

    Density of states D

    D

    E

    IntrabandThermalization

    ≈ 100 fs

    Density of states D

    D

    E

    InterbandRecombination

    ≈ nsLT grown materials:

    Electron trapping≈ ps - nsA

    bsor

    ptio

    nTime Delay

    τ τ τA p p≤ to 10 30

    R. Paschotta, U. Keller, Applied Physics B 73, 653, 2001

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    KLM vs. SESAM modelocking

    Kerr lens modelocking (KLM)

    - fast/broadband saturable abs.

    - critical cavity adjustment: KLM

    better at cavity stability limit

    - typically not self-starting

    SESAM modelocking

    - “not so fast” saturable absorber

    - absorber independent of cavity

    design

    - self-starting

    pulse

    gain

    loss

    time time

    loss

    gain

    pulse

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    time

    loss

    Slow saturable absorber modelockingR. Paschotta, U. Keller, Appl. Phys. B submitted

    leading edge of pulse

    has significant loss from

    the saturable absorber

    Fully saturated absorber:

    negligible loss for

    trailing edge of pulse

    absorber delays pulse

    Dominant stabilization process:

    Picosecond domain: absorber delays pulse

    The pulse is constantly moving backward and

    can swallow any noise growing behind itself

    Femtosecond domain: dispersion in soliton modelocking

  • {A(T , t ) = Asech tτ exp i Φ0 TTR +Soliton Perturbation Theory:Frequency domain Time domain

    soliton

    {

    “continuum”only GVD & SAM

    small perturbations

    spreading

    F. X. Kärtner, U. Keller, Optics Lett. 20, 16, 1995Invited Paper: F. X. Kärtner, I. D. Jung, U. Keller, IEEE JSTQE, 2, 540, 1996

    fs domain: soliton modelocking

    Dispersion spreads continuum out where it sees more loss

    Continuum

    Time

    Pulse

    Gain

    Loss

    GDD GDD

    Frequency

    Gain

    Pulse

    Continuum

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    Motivation for Mode-LockedHigh-Power Lasers

    Multi-kW to MW peak powers, ≈ µJ pulse energiesApplications:

    Material processingMedical applicationsNonlinear frequency conversione.g. with high-power optical parametric oscillators:

    ➔ RGB laser displays

    ➔ mid-infrared sources

    ➔ tunable femtosecond sources

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    16-pass arrangement

    Thin-Disk Laser HeadS. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, and K. Contag,

    in OSA Topical Meeting, Advanced Solid-State Lasers, 1999

    efficient pump absorption

    • efficient cooling• high pump intensities possible• very weak thermal lensing

    • excellent thermal properties• broad emission bandwidth

    nearly one-dimensional longitudinal heat flow

    Yb:YAG as gain material

    fiber coupleddiode laser

    collimating lens

    heat sink withcrystal in focal plane

    laser output

    parabolic mirror

    roof prism

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    ➤ saturation parameter S := Ep/(Fsat,A·Aeff,A) in our thin disk laser: S < 10 ⇒ far below damage threshold (S > 100-200) negative group delay dispersion generated with a GTI linear polarization enforced by Brewster plate

    Passively Mode-Locked Thin Disk Laser

    GTI

    wedged Yb:YAG diskon cooling finger

    R=1.5 m

    output coupler

    Brewster plate

    R=0.5 m

    SESAM: Fsat,A ≈ 100 µJ/cm2 ∆R ≈ 0.5% ∆Rns ≈ 0.3%

    SEmiconductor Saturable

    Absorber Mirror

    R=1 mheat sink

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0Aut

    ocor

    rela

    tion

    trac

    e

    -3 -2 -1 0 1 2 3

    Time delay (ps)

    τp = 730 fs

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0Spe

    ctra

    l int

    ensi

    ty (

    a.u.

    )

    10341032103010281026

    Wavelength (nm)

    1.55 nm

    Passively ML Yb:YAG thin-disk laser

    frep = 34.6 MHz

    Ep ≈ 0.47 µJ

    S ≈ 7M 2 < 1.5

    Pavg = 16.2 W

    τp = 730 fs

    Ppeak ≈ 560 kW

    ∆ν τp = 0.32

    optical-to-optical efficiency: 28%

    far away fromSESAM damage(S > 100-200)

    J. Aus der Au et al., Opt. Lett. 25, 859, 2000

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    Thin disk laser head:

    double pump power and modearea in gain medium

    SESAM:

    double mode area on SESAM,keep SESAM parametersunchanged

    Power Scaling:How to Double the Output Power

    • unchanged temperature rise (1-dim. heat flow)• unchanged intensities no SESAM damage• thermal lensing not increased• Q-switching tendency not increased

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    Passively ML Yb:KYW thin-disk laser

    Ppeak ≈ 3.3 MW

    Ep ≈ 0.9 µJ

    Ipeak = 2 x 1014 W/cm2 , 2 µm radius

    Pavg = 22 W

    τp = 240 fs

    frep = 24.6 MHzM 2 ≈ 1.1

    F. Brunner et al., CLEO 2002, accepted

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0Spe

    ctra

    l int

    ensi

    ty (

    norm

    aliz

    ed)

    1040103010201010Wavelength (nm)

    6.9 nm

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Aut

    ocor

    rela

    tion

    sign

    al

    -0.4 0.0 0.4Time delay (ps)

    240 fs

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    New frontiers: high pulse repetition rates

    100

    101

    102

    103

    104

    Aver

    age

    Out

    put P

    ower

    [mW

    ]

    1 10 100 1000Repetition Rate [GHz]

    Nd:BEL

    Nd:YLF

    Cr:YAG

    Ti:sapphire

    Miniature Nd:YVO4

    Fiber lasersSemicon. lasers

    Semicon. lasers

    Er:Yb:glass

    High Power Nd:YVO4

    VECSEL

    Passive ML Active ML

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    Quasi-Monolithic Cavity Setup

    Crystal lengths: 0.9 - 2.3 mm (FSR ~ 77 - 29 GHz)

    Nd:YVO4 doping: 3 % (90 µm absoption length)

    L. Krainer et al., Electron. Lett. 35, 1160, 1999 (29 GHz)APL 77, 2104, 2000 (up to 59 GHz), Electron. Lett. 36, 1846, 2000 (77 GHz)

    4

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    Passively modelocked Nd:VanadateAppl. Phys. Lett., 77, 14, (2000)

    39 GHzCrystal length = 1.76 mm

    ττττP = 5 psEp = 1.5 pJ

    Pout = 60 mW

    ττττP = 2.7 psEp = 0.8 pJ

    Pout = 65 mW

    Electron. Lett., submitted

    77 GHzCrystal length = 0.9 mm

    Electron. Lett., 34, 14, (1999)

    29 GHzCrystal length = 2.31 mm

    ττττP = 6.8 psEp = 2.8 pJ

    Pout = 81 mW

    Aut

    ocor

    rela

    tion

    -40 -20 0 20 40

    Time, ps

    34 ps

    Aut

    ocor

    rela

    tion

    -20 -10 0 10 20Time, ps

    26 ps

    Opt

    ical

    spe

    ctru

    m

    1064.41064.01063.61063.2Wavelength, nm

    Aut

    ocor

    rela

    tion

    -20 -10 0 10 20Time, ps

    13 ps

    Opt

    ical

    Spe

    ctru

    m

    1064.41064.01063.61063.2Wavelength, nm

    Opt

    ical

    spe

    ctru

    m

    1064.51064.01063.5Wavelength, nm

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    150 GHz Nd:Vanadate Laser

    Autocorrelation trace of the ≈157 GHz pulse train.The pulses are about 6.4 ps apart.

    L. Krainer et al., CLEO 2002

    1.0

    0.5

    0.0

    s.h

    . in

    ten

    sity

    , a

    .u.

    -20 0 20

    time, ps

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    10 GHz Er:Yb:glass laserL. Krainer et al., Electron. Lett., to be published March 1, 2002

    10

    8

    6

    4

    2

    0

    P out a

    t QM

    L th

    resh

    old

    (mW

    )

    15701560155015401530

    Wavelength (nm)

    10

    8

    6

    4

    2

    0

    Pulse duration (ps)

    -80

    -60

    -40

    -20

    0

    Phot

    o de

    tect

    or s

    igna

    l (dB

    c)

    10.52610.52410.522Frequency (GHz)

    span: 5 MHzres. bw.: 30 kHz

    0.01

    0.1

    1

    Aut

    ocor

    rela

    tion

    sign

    al

    -10 0 10Time delay (ps)

    measured

    sech2 fit

    τp

    = 3.8 ps

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    What about diode-pumped semiconductor lasers?

    Edge emitting lasersStripe width limited by beam quality requirementsFacet damage limits peak power

    Surface emitting deviceExternal cavity needed (repetition rate: 1–100 GHz)Electrical pumping: ring electrode limits sizeOptical pumping: large area with homogeneousinversion

    Optical pumped Vertical-External-CavitySurface-Emitting Laser (VECSEL)*

    * M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, JSTQE 2, 435-453 (1996)

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    Optically pumped VECSEL

    First demonstration of passively modelocked optically pumped VECSEL:

    S. Hoogland et al., IEEE Photon. Technol. Lett. 12, 1135 (2000).

    Simple cavityfiber coupled diode arraylarge pump diametercurved output couplerspot size smaller on SESAMthan on gain structure

    time

    loss

    gain

    pulse

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    Autocorrelation at 530 mW

    Pulses with low chirpSESAM absorber: 8 nm In0.15Ga 0.85As (∆∆∆∆R ≈≈≈≈ 1.5%)

    Gaussian pulse shape3.9 ps FWHM durationonly 1.5 times over Fourier limit

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0Aut

    ocor

    rela

    tion

    sign

    al (a

    .u.)

    -10 -5 0 5 10Delay time (ps)

    measured3.9 ps gaussian

    1.0

    0.5

    0.0O

    ptical density (a.u.)954953952951Wavelength (nm)

    0.5 nm

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    Microwave Frequency at 530 mW

    Stable mode-lockingResolution 300 kHzNoise free to -55 dBcRepetition rate = 5.9533 GHz

    Polarized: >100:1

    nearly diffraction limitedM2 < 1.05

    18 W pump power300 µm pump diameter3°C heat sink temperature

    -60

    -50

    -40

    -30

    -20

    -10

    0

    RF

    pow

    er d

    ensi

    ty (d

    Bc)

    5.975.965.955.94Frequency (GHz)

    -60

    -40

    -20

    151050Frequency (GHz)

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0Aut

    ocor

    rela

    tion

    sign

    al (a

    .u.)

    -40 -20 0 20 40Delay time (ps)

    measured15.3 ps sech2

    1.0

    0.5

    0.0O

    ptical density (a.u.)958957956955Wavelength (nm)

    1 nm

    Autocorrelation at 950 mW

    Higher power / longer pulsesech2 shape, 15.3 ps FWHM duration

    1 nm optical bandwidth ⇒⇒⇒⇒ chirp

    continuous wave: 2.2 W

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    4

    3

    2

    1

    0Ref

    ract

    ive

    inde

    x

    6000 4000 2000 0Position (nm)

    Mirror ARQWs

    Gain structure

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    4

    3

    2

    1

    0Ref

    ract

    ive

    inde

    x

    6000 4000 2000 0Position (nm)

    Mirror ARQWs

    Gain structure

    R > 99.95% for 950 nmR ≈ 97% for 805 nm, 45°double pass pump light

    100

    50

    0

    Ref

    lect

    ivity

    (%)

    1000950900850800Wavelength (nm)

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    4

    3

    2

    1

    0Ref

    ract

    ive

    inde

    x

    6000 4000 2000 0Position (nm)

    Mirror ARQWs

    Gain structure

    R < 1% for 950 nmR ≈ 10% for 805 nm, 45°R > 99.95% for 950 nmR ≈ 97% for 805 nm, 45°

    double pass pump light

    100

    50

    0

    Ref

    lect

    ivity

    (%)

    1000950900850800Wavelength (nm)

    100

    50

    0

    Ref

    lect

    ivity

    (%)

    1000950900850800Wavelength (nm)

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    4

    3

    2

    1

    0Ref

    ract

    ive

    inde

    x

    6000 4000 2000 0Position (nm)

    Mirror ARQWs

    Gain structure

    R < 1% for 950 nmR ≈ 10% for 805 nm, 45°

    5 InGaAs Quantum wellsSpacer absorbs pump,carrier trapped in QWs

    R > 99.95% for 950 nmR ≈ 97% for 805 nm, 45°double pass pump light

    100

    50

    0

    Ref

    lect

    ivity

    (%)

    1000950900850800Wavelength (nm)

    100

    50

    0

    Ref

    lect

    ivity

    (%)

    1000950900850800Wavelength (nm)

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    Thermal impedance: Idea

    Consider epitaxial lift-off structure(substrate replaced with a heat sink)

    heat source is a thin sheetd ≈ 1 µm, Ø ≈ 500 µm

    1-dimensional heat flow in vicinity of source

    power scalable approache.g. double pump spot, keep pump intensity constant

    ⇒ temperature is unchanged, output power doubled

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    Thermal impedance

    Check of validity

    Simulationconstant intensityvaried pump spotcopper heat sink

    Critical radiusheat sink andsemiconductorcontribute equally

    100

    80

    60

    40

    20

    0

    ∆T (K

    )

    4 6 810

    2 4 6 8100

    2 4 6 8

    Radius (µm)

    wcrit ∆T

    1d model

    ∆T3d

    model

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    Success story is base on ... Transition from dye to solid-state lasers– Kerr lens modelocking– Ti:sapphire laser produces shorter pulses and more

    average power

    Diode-pumped solid-state lasers– development of high-power and high-brightness diode

    lasers for direct pumping of solid-state lasers– efficient, compact and reliable sources

    Semiconductor saturable absorbers– stable passive modelocking of diode-pumped solid-state

    lasers (self-starting and no Q-switching instabilities)– many different parameter regimes such as laser

    wavelength, pulse duration and power levels– engineering of linear and nonlinear optical response

  • Swiss Federal Institute of Technology ZürichUltrafast Laser Physics

    Hot topics in the near future

    Ultrafast diode-pumped solid-state lasers

    High average power in the 100 W regime for picosecondto sub-100-fs pulse durations

    Very simple (“single-pass”) and efficient nonlinearfrequency conversion (SHG, OPG, fiber OPO, ….)

    Many 10 GHz pulse repetition rates at longer wavelength(1.3 µm and 1.5 µm, telecom application)