higgs production through sterile...

21
Higgs Production through Sterile Neutrinos based on arXiv:1512.06035 Oliver Fischer University of Basel, Switzerland oliver.fi[email protected] IAS Conference, “The Future of High Energy Physics 2016” Hongkong, January the 19th, 2016

Upload: others

Post on 04-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Higgs Production through Sterile Neutrinos

    based on arXiv:1512.06035

    Oliver FischerUniversity of Basel, Switzerland

    [email protected]

    IAS Conference, “The Future of High Energy Physics 2016”Hongkong, January the 19th, 2016

  • Motivation for sterile neutrinos

    I Observation of neutrino oscillations requires at least two ofthe light neutrinos to be massive.

    I Neutrino masses can be accounted for efficiently byright-handed or “sterile neutrinos”.

    I Seesaw formula: (mν)αβ = −12v2EW(Y Tν ·M−1Yν

    )αβ

  • The Seesaw Mechanism

    I Näıve (1 νL, 1 νR) version: mν =12v2EW|yν |

    2

    MR

    I More realistic example, the (2 νL, 2 νR) version:

    Yν =

    (O(yν) 0

    0 O(yν)

    ),

    (MR 0

    0 MR + ε

    )

    ⇒ mνi =v2EWO(y2ν )

    MR(1 + ε)

    ⇒ Knowledge of mνi implies a relation between yν and MR .

  • Lowscale Seesaw

    I This example uses a specific structure of the Yukawa and massmatrices that can be realised by symmetries (no fine tuning).

    I A (2 νL, 2 νR) example:

    Yν =

    (O(yν) 0O(yν) 0

    ),

    (0 MRMR ε

    )

    ⇒ mνi = 0 + εv2EWO(y2ν )

    M2R

    ⇒ In general: no fixed relation between yν and MR .⇒ Large yν are compatible with neutrino oscillations.

  • The Big Picture

    GUT

    Leptogenesis also

    for larger masses

    EW scale

    models

    ë

    reactor

    anomaly

    ø

    øø

    warm Dark Matter

    Lowscale Leptogenesis

    mΝ2=Dmatm

    2

    mΝ2=Dmsol

    2

    eV keV MeV GeV TeV PeV EeV ZeV MGUT MPl

    perturbativity

    Ytop

    Ye

    10-5

    10-7

    10-9

    10-11

    Majorana Mass MR

    Neu

    trin

    oY

    ukaw

    aco

    upli

    ng

    y î

  • Symmetry Protected Seesaw Scenario

    I Assumption: collider phenomenology dominated by two sterileneutrinos Ni with protective symmetry, such that

    LN = −1

    2N1RM(N

    2R)

    c − yναN1R φ̃† Lα + H.c.

    I The active-sterile mixing parameter: θα =yναvEW√

    2M

    I The leptonic mixing matrix to leading order in θα

    U =

    Ne1 Ne2 Ne3 − i√2θe1√2θe

    Nµ1 Nµ2 Nµ3 − i√2θµ1√2θµ

    Nτ1 Nτ2 Nτ3 − i√2θτ √2θτ0 0 0 i√

    21√2

    −θ∗e −θ∗µ −θ∗τ − i√2(

    1− θ22)

    1√2

    (1− θ22

    )

  • Interactions between heavy neutrinos and the SM

    I Charged current (CC):

    j±µ =g

    2θα ¯̀α γµ (−iN1 + N2)

    I Neutral current (NC):

    j0µ =g

    2 cW

    [θ2N̄2γµN2 + (ν̄i γµ ξα1N1 + ν̄i γµ ξα2N2 + H.c)

    ]I Higgs boson Yukawa interaction:

    LYukawa =3∑

    i=1

    ξα2

    √2M

    vEWνiφ

    0(N1 + N2

    )I With the mixing parameters: ξα1 = (−i)N ∗αβ

    θβ√2, ξα2 = i ξα1

  • Combination of present bounds

    50 100 150 200

    1

    10-1

    10-2

    10-3

    10-4

    10-5

    10-6

    M @GeVD

    Q2

    50 100 150 200

    1

    10-1

    10-2

    10-3

    10-4

    M @GeVD

    ÈyÈ

    Direct searches

    Delphi HZ pole searchesL 2Σ: ÈyÈ= ÚΑ yΝΑ2 , Q2=ÚΑÈΘΑ

    2

    LHC HHiggs decays*L 1Σ: ÈyÈ= ÚΑ yΝΑ2 , Q2=ÚΑÈΘΑ

    2

    Aleph He+e- ® 4 leptonsL 1Σ: ÈyÈ=ÈyΝe È, Q2=ÈΘe

    2

    Other Hglobal fitLÈyÈ= ÈyΝe È, Q

    2=ÈΘe2

    ÈyÈ= ÈyΝΜ È, Q2=ÈΘΜ

    2

    ÈyÈ= ÈyΝΤ È, Q2=ÈΘΤ

    2

    Antusch, OF; arXiv:1502.05915 (2015)

    ∗ Currently dominated by h → γγ.

  • Resonant mono-Higgs from sterile neutrinos

    ν

    W ν

    hN

    e+

    e−

    Z

    ν

    ν

    h

    N

    e+

    e−

    I Generally: σhνν = σSMhνν + σ

    Non-Uhνν + σ

    Directhνν .

    I σDirecthνν from on-shell production of sterile neutrinos.

    ? Interference with SM-background strongly suppressed.? W -exchange process effective at larger centre-of-mass

    energies, but sensitive only to yνe .? s-channel production (Z boson) produces all flavours.

    I σNon-Uhνν : indirect effect (via input parameters) from theinduced non-unitarity of the PMNS matrix.

  • Resonant mono-Higgs-production cross section

    200 400 600 800 1000

    10

    20

    30

    40

    50

    M @GeVD

    ΣhΝΝ

    Direct HÈΘe

    2L@fbD

    200 400 600 800 1000

    0.05

    0.10

    0.15

    0.20

    0.25

    M @GeVD

    ΣhΝΝ

    Direct HÈΘΤ2L@fbD

    Ecm @GeVD

    240

    350

    500

    1000

    Antusch, Cazzato, OF, arXiv:1512.06035 (2015)

    I Using present upper bounds at 68% Bayesian confidence level.

    I Mono Higgs production cross section in the SM is ∼ 54 fb at250 and 350 GeV

  • Simulation, reconstruction and kinematic cuts

    I Event simulation: WHIZARD 2.2.7

    I Showering: PYTHIA 6.427

    I Reconstruction: Delphes 3.2.0 (ILD card)

    I Anaylsis: Madanalysis5

  • The Higgs Peak: |yνe | = 0.036 & M = 152 GeV, 10 ab−1

    Ecm=240 GeV

    100 105 110 115 120 125 1300

    10000

    20000

    30000

    40000

    di-jet invariant mass @GeVD

    EventsBin10ab-1

    e+e-®ΝN®ΝΝh®jj

    e+e-®ΝΝh SM®jj

    e+e-®4f SM®jj

    Antusch, Cazzato, OF, arXiv:1512.06035 (2015)

    Our cuts (not fully optimised):

    I Pre selection: Nj = 2,N` = 0, 110 < Mjj < 125 GeV

    I For the example:Pjj > 70,�ET > 15 GeV

    Event counts: (starting with pre selection)

    BKG 548.584 → 18.627σDirecthνν 15.335 → 4.846

    ⇒ S√S+B' 30!

  • Contamination of SM parameters

    150 200 250 300 350

    0.001

    0.002

    0.005

    0.010

    0.020

    0.050

    0.100

    M @GeVD

    ΣhΝΝΣ

    hΝΝ

    SM-1

    Ecm = 240 GeV

    Ecm = 350 GeV

    HΣbbΝΝH240 GeVL´10ab-1L-12

    HΣbbΝΝH350 GeVL´3.5ab-1L-12

    Antusch, Cazzato, OF, arXiv:1512.06035 (2015)

    Standard cuts for Higgs events at lepton colliders:√s 240 GeV 350 GeV

    Missing Mass [GeV] 80 ≤ Mmiss ≤ 140 50 ≤ Mmiss ≤ 240Transverse P [GeV] 20 ≤ PT ≤ 70 10 ≤ PT ≤ 140Longitudinal P [GeV] |PL| < 60 |PL| < 130Maximum P [GeV] |P| < 30 |P| < 60Di-jet Mass [GeV] 100 ≤ Mjj ≤ 130 100 ≤ Mjj ≤ 130Angle (jets) [Rad] α > 1.38 α > 1.38

  • Sensitivity of the mono-Higgs channel to neutrino mixing

    Case I

    150 200 250 300 350 400 450 5000.002

    0.005

    0.010

    0.020

    0.050

    0.100

    0.200

    M @GeVD

    ÈyΝeÈ

    Ecm @GeVD

    240, reconstructed

    350, reconstructed

    500, reconstructed

    240, parton

    350, parton

    500, parton

    Present upper bound

    Antusch, Cazzato, OF, arXiv:1512.06035 (2015)

    Considered:10 ab−1 for 240 GeV, 3.5 ab−1 for 350 GeV, 1 ab−1 for 500 GeV

  • Summary and conclusions

    I Sterile neutrinos are well motivated extensions of the SM.

    I Symmetry protected scenarios allow for large Yukawacouplings and masses in the interesting range.

    I Higher center-of-mass energies lead to increasedmono-Higgs production cross sections from sterileneutrinos.

    I√s = 350 GeV is even more sensitive than 240 GeV.

    I A contamination of the Higgs sample can lead to a 3σdeviation of the SM parameters.

    I Sensitivity to |yνe | down to 6× 10−3 is possible.? Important for understanding the data.? Complementarity to other searches for sterile Neutrinos.

    I For other search channels, see: Antusch, OF; arXiv:1502.05915 (2015)

  • Thank you for your attention.

  • Backup I: Prospects of Sensitivity at the CEPC

    L>10m CEPC

    50 100 150 200 250

    10-2

    10-4

    10-6

    10-8

    10-10

    10-12

    M @GeVD

    Q2

    L>10m CEPC

    50 100 150 200 250

    10-1

    10-2

    10-3

    10-4

    10-5

    10-6

    10-7

    M @GeVD

    ÈyÈ

    Direct searches

    Z pole search 2Σ: ÈyÈ= ÚΑ yΝΑ2 , Q2=ÚΑÈΘΑ

    2

    Higgs ®WW 1Σ: ÈyÈ= ÚΑ yΝΑ2 , Q2=ÚΑÈΘΑ

    2

    e+e-® h +MEHTL 1Σ: ÈyÈ=ÈyΝe È, Q2=ÈΘe

    2

    e+e-® lΝlΝ* 1Σ: ÈyÈ=ÈyΝe È, Q2=ÈΘe

    2

    Other

    Precision constraints: ÈyÈ= yΝe2 + yΝΜ

    2 , Q2=ÈΘe2+ÈΘΜ

    2

    Precision constraints: ÈyÈ=ÈyΝΤ È, Q2=ÈΘΤ

    2

    ’’Unprotected’’ type-I seesaw

    Antusch, OF; arXiv:1502.05915 (2015)

    ∗ Preliminary estimate using statistical uncertainty only.

  • Backup II: Higgs Boson Branching Ratio into Neutrinos

    I From “indirect” tests andDelphi.

    I O(1) branching ratiopossible.

    ⇒ Possible effect on Higgsdecay rates into StandardModel particles.

    i=1«Θe

    i=3«ΘΤ

    i=2«ΘΜ

    DELPHI

    0 20 40 60 80 100 12010-6

    10-5

    10-4

    0.001

    0.01

    0.1

    1

    M @GeVD

    BrHh®ΝiNL

    Antusch, OF; arXiv:1502.05915 (2015)

  • Backup III: Cross sections for SM background

    Final state σSM@240 GeV σSM@350 GeV σSM@500 GeV

    bb̄νν 146.492 134.614 183.594cc̄νν 88.0172 73.7956 82.7041jjνν 528.8 463.1 500.3bb̄bb̄ 81.2629 47.6152 25.5571bb̄cc̄ 146.566 87.6518 51.6446bb̄jj 6820.6 4259.5 2537.8bb̄e+e− 2080.87 2500.82 2920.9bb̄τ+τ− 34.1905 19.7975 11.0619cc̄τ+τ− 25.2553 15.0695 9.15227jjτ+τ− 116.0 72.4 37.6τ+τ−νν 235.89 163.851 119.989single top 0.012 63.3 1092tt̄ — 322. 574.

    All cross sections in fb.

  • Backup IVa: High Energy Physics Time Scales

    LEP

    LHC

    HL-LHC

    Future collider

    Today

    1980 1990 2000 2010 2020 2030 2040 2050

    Design

    Proto

    Construction

    Physics

  • Backup IVb: High Energy Physics Time Scales

    LEP

    LHC

    HL-LHC

    Future collider

    Future Physicist

    Today

    1980 1990 2000 2010 2020 2030 2040 2050

    Happy years

    Kindergarten

    School

    Physics Studies

    PHD

    Academic career