hidden order and dynamics of susy vbs models...hidden order and dynamics of susy vbs models keisuke...

25
Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe Takuma National College of Technology 29/10/2010 “New development of numerical simulations in low-dimensional quantum systems” @ YITP Refs : D. Arovas, KH, X-L.Qi and S-C. Zhang, Phys.Rev.B 79, 224404 (2009) KH and KT, preprint (2010) and in preparation

Upload: others

Post on 25-Sep-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

Hidden Order and Dynamics of SUSY VBS models

Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University

Kazuki Hasebe Takuma National College of Technology

29/10/2010 “New development of numerical simulations in low-dimensional quantum systems” @ YITP

Refs: D. Arovas, KH, X-L.Qi and S-C. Zhang, Phys.Rev.B 79, 224404 (2009) KH and KT, preprint (2010) and in preparation

Page 2: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

Outline

IntroductionValence-Bond Solid (VBS) model(s)

definition, matrix product & analogiesHidden (string) order

Supersymmetric VBS stateHoles in VBS statesAnalogies (FQHE, BCS) & hidden orderLow-lying excitation (SMA)Some generalizations

Summary

Page 3: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

Introduction

VBS model ... a paradigmatic model for spin-gap ststems in 1D

generalization to other groups: SU(n), SO(n), ...

What about adding “holes” to VBS model ?✓a single spin-0 hole ... an exact eigenstate

for a t-J-like model (S=1 VBS background)

✓a single spin-1/2 hole ... a model for Y2BaNiO5

Model with many holes??Hidden order (robust against hole) ? Excitation?Possible future generalizations??

Zhang-Arovas ’89

Penc-Shiba ’95

Tu-Zhang-Xiang ’08, etc.

Page 4: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

Valence-bond solid (VBS) states

Page 5: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

Valence-bond solid modelsClass of models for which short-range valence-bondcrystals are (rigorous) ground states

Majumdar-Ghosh model (S=1/2 J1-J2 chain with J2/J1=1/2)

2D Shastry-Sutherland model, and many more...

Soluble models which realize Haldane’s scenario:HS=1 =

i

�Si·Si+1 +

13

(Si·Si+1)2 +

23

HS=2 =�

i

�Si·Si+1 +

29

(Si·Si+1)2 +

163

(Si·Si+1)3 +

107

HS=3 =�

i

�Si·Si+1 +

59358

(Si·Si+1)2 +

191611

(Si·Si+1)3 +

13222

(Si·Si+1)4 +

396179

Affleck et al ’88, Arovas et al. ’88

Majumdar-Ghosh state: a “Kekule” structure

Page 6: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

Valence-bond solid models(Many) important features:✓short-range spin correlation:

✓ “Haldane gap” to triplon excitation

✓edge states & (exact) degeneracy in a finite open system

✓Hidden order

Arovas et al. ’88, Freitag-Müller-Hartmann ’91

�Szi Sz

j � =

(S+1)2

3

�− S

S+2

�|j−i|for i �= j

S(S+1)3 for i = j

Spin Gap (SMA) Approximation

1 2027 → 7.41× 10−1

2 15 → 2.00× 10−1

3 2646265 → 4.21× 10−2

4 71590318 → 7.92× 10−3

5 884634711 → 1.39× 10−3

6 2826251203274644 → 2.35× 10−4

1 2 3 4 5 6 7 8

10 4

0.001

0.01

0.1

1

spin

gap

KT-Suzuki ’95

Page 7: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

Supersymmetric VBS states

Page 8: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

A quick look at supersymmetry... Schwinger boson construction of SU(2)

Generators (“spin”):commutation relations:

Schwinger-boson representation:

Label for irreps. = “boson number” = spin “S”

{Sx , Sy , Sz}

[Sa , Sb] = i �abc Sc

a†a + b†b = 2S

S+ = a†b , S− = b†a , Sz = (a†a− b†b)/2 (a†a + b†b = 2S)

|S;m� =1�

(S + m)!(S −m)!(a†)S+m(b†)S−m|0�

Page 9: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

A quick look at supersymmetry ...Schwinger operator construction of UOSp(1|2)

5 Generators & 3 Schwinger op.✓ Generators-(i) (“bosonic” = spin):✓ Generators-(ii) (“fermionic”):

commutation relations:

Label of irreps.

two SU(2) irreps:

{Sx , Sy , Sz}

K1=12(x−1fa† + xf†b) , K2=

12(x−1fb† − xf†a)

[Sa , Sb]=i �abcSc , [Sa , Kµ] =12(σa)νµKν

{Kµ , Kν} =12(iσyσa)µνSa

S = L (nf = 0) , S = L−1/2 (nf = 1)

na + nb + nf = 2L (∈ Z) spin-1 state

1-hole (S=1/2) state

L=1

(a† , b† , f†)

Page 10: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

SUSY VBS state... construction

prepare two (super)spin-1/2s on each site:

“Physical” state @site = superspin-1Schwinger-op rep. :“spin-1” or “1-hole(S=1/2)”

Form “entangled pairs”:

SUSY-VBS state:

a†jaj + b†jbj + f†j fj = 2L = 2

(a†jb†j+1−b†ja

†j+1−r f†

j f†j+1)

Def |sVBS� =�

j

(a†jb†j+1 − b†ja

†j+1 − r f†

j f†j+1)|0� (r ≡ x2 ∈ R)

spin-↑ spin-↓ hole

☞ super-qubit... L=1/2(spin-↑, spin-↓, hole) ⇔ (a† , b† , f†)

Page 11: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

SUSY VBS state... Physical picture

Schwinger-op. rep. :

expansion w.r.t. “r”:lowest-order in “r”... S=1 VBS state

highest-order in “r”... S=1/2 Majumdar-Ghosh

r→0: VBS, r→∞: MG

a†jaj + b†jbj + f†j fj = 2L = 2

Def |sVBS� =�

j

(a†jb†j+1 − b†ja

†j+1 − r f†

j f†j+1)|0� (r ≡ x2 ∈ R)

spin-↑ spin-↓ hole

Page 12: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

SUSY VBS state ... Parent Hamiltonian

usual VBS (S=1):valence-bond = “SU(2) singlet”:addition of angular-momenta:

Projection operator:

SUSY VBS:valence-bond = “UOSp(1|2) singlet”:addition of angular momenta:

Projection operator:

(a†jb†j+1−b†ja

†j+1)

1⊗ 1 � 0⊕ 1⊕ 2

(a†jb†j+1−b†ja

†j+1−rf†

j f†j+1)

(L = 1)⊗ (L = 1) � (0)⊕ (1/2)⊕ (1)⊕ (3/2)⊕ (2)

V3/2(P†3/2P3/2) + V2(P †

2 P2) (V3/2, V2 > 0)

hlocal = V2 P2 =V2

2

�Si·Si+1 +

13

(Si·Si+1)2 +

23

cf) Klein model ’82

Page 13: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

Analogy to FQHE

✓coherent state w.f.

✓projection to J≧S+1 state

VBS models

HVBS =2S�

J=S+1

VJPJ(Sj ·Sj+1)

✓spin-hole coherent state w.f.✓projection to Ltot ≧ L+1/2

state

SUSY VBS models

✓Laughlin w.f. on sphere

✓two-particle int:

FQHE (Laughlin w.f.)

i<j

(uivj − viuj)m

H =�

i<j

J>2L−m

VJ PJ(i, j)

✓SUSY Laughlin w.f.

✓projection to J>2L-m state ... exact G.S.

SUSY FQHE (Laughlin w.f.)

j

(ujvj+1 − vjuj+1)S

Arovas et al ’88

Haldane ’83

Page 14: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

Matrix-product representation... SUSY VBS states

Schwinger-op. rep. :Matrix-product representation:

size = number of (L/R) edge states (up, down & 1-hole...3)KEY: “valence-bond insertion” = “matrix multiplication”

gj =

−a†jb

†j −(a†j)

2 −√

ra†jf†j

(b†j)2 a†jb

†j

√rb†jf

†j

−√

rf†j b†j −

√rf†

j a†j 0

g†j =

−ajbj (bj)2 −

√rbjfj

−(aj)2 ajbj −√

rajfj

−√

rfjaj√

rfjbj 0

|sVBS� =�

j

(a†jb†j+1−b†ja

†j+1−r f†

j f†j+1)|0�

g1 ⊗ g2 ⊗ · · ·⊗ gL⊗gL+1

|sVBS� =

�g1 ⊗ · · · ⊗ gj ⊗ · · · gL . . . for open chain

STr [g1 ⊗ · · · ⊗ gj ⊗ · · · gL] . . . for periodic chain

Fannes et al. ’92,93

hole↓ ↑

hole

↑↓

⇧Left

⇦Right

Page 15: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

Correlation functions (i) ...spin-spin correlation functions

“transfer-matrix” formalism:

spin-spin correlation function:

Correlation length:9 edge states((2L+1)2, in general)

Klümper et al ’92, KT-Suzuki ’94-95, etc..

Arovas et al. ’09

�Sαi Sα

j � =

2(r2+√

8r2+9+3)√8r2+9(

√8r2+9+3) for i = j

13r2+24+(r2+8)√

8r2+9

2√

8r2+9(√

8r2+9+3)

�− 2√

8r2+9+3

�|j−i|for i �= j

“edge states”

0 5 10 15 20

!0.5

0.0

0.5

site-j

hole

�sVBS|sVBS� = GL ,

�sVBS|OAx O

By |sVBS� = Gx−1G(OA)Gy−x−1G(OB)GL−y

Ga,a;b,b ≡ g∗(a, b)g(a, b) , G(OA)a,a;b,b ≡ g∗(a, b)OA g(a, b)

Page 16: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

Correlation functions (ii) ...”superconducting” correlation

Possible “hole pairing”...

Need to modify “transfer-matrix” formalism:

Order parameter for “hole pairing”: Arovas et al. ’09

S=1 VBS

S=1/2 MG�∆j� =

�(ajbj+1 − bjaj+1)f†

j f†j+1

=144r

�r2 + 3 +

√8r2 + 9

√8r2 + 9

�3 +

√8r2 + 9

�2 �5 +

√8r2 + 9

(ajbj+1 − bjaj+1)f†j f†

j+1

�sVBS|sVBS� = GL ,

�sVBS|OAx O

By |sVBS� = Gx−1G(OA) �Gy−x−1G(OB)GL−y

�Ga,a;b,b ≡ g∗(a, b)(−1)F g(a, b) , G(OA)a,a;b,b ≡ g∗(a, b)OA g(a, b)

1 2 3 j

Page 17: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

Analogy ... BCS wavefunction

BCS wavefunction:

gk=0: (trivial) vacuum0< gk <∞: superconducting gk=∞: filled Fermi sphere (normal state)

SUSY VBS state:

“vacuum” = spin-1 VBS stater=0: pure VBS state0<r<∞: “hole-pair condensate”r=∞: Majumdar-Ghosh state

electron pair

hole pair|sVBS� =

j

(a†jb†j+1 − b†ja

†j+1 − r f†

j f†j+1)|0� (r ≡ x2 ∈ R)

|ΨBCS� =�

k

(1 + gkc†k,↑c†−k,↓)|0�

Page 18: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

Hidden Order... (usual) VBS state

Order in VBS state:No ordinary (local) magnetic LRO, no dimerization...But there is “hidden” order (“string order”)

How to detect ?Néel order:VBS:

den Nijs-Rommelse ’89, Tasaki ’91Pérez-García et al ’08

Oshikawa ’92, KT-Suzuki ’95

S=2

Szj (−1)nSz

j+n ⇒ ferro

Girvin-Arovas ’90

cf) Gu-Wen ’09

Ozstring = lim

n�∞�sVBS|Sj exp

iπj+n−1�

k=j

Szk

Szj+n|sVBS�

Page 19: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

Hidden Order... SUSY VBS state

“string order” in SUSY VBS ?matrix-product rep. ⇒ ”almost” flat surface

string order parameter captures hidden order...

gj =

−a†jb

†j −(a†j)

2 −√

ra†jf†j

(b†j)2 a†jb

†j

√rb†jf

†j

−√

rf†j b†j −

√rf†

j a†j 0

k�

j=1

gj =

|Sz

tot=0� |Sztot= + 1� |Sz

tot= + 1/2�|Sz

tot=− 1� |Sztot=0� |Sz

tot=− 1/2�|Sz

tot=− 1/2� |Sztot= + 1/2� |Sz

tot=0�

Sztot ≡

k�

j=1

Szj

-1 0

Ozstring = �sVBS|Sj exp

iπj+n−1�

k=j

Szk

Szj+n|sVBS�

S=1 VBS

“S”=1 sVBS

Page 20: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

Low-lying excitations ...“spin”

Failure of “Lieb-Schultz-Mattis” like excitation = want for alternative way to physical excitations

triplon = “crackion”

single-mode approximation:

Fáth-Sólyom ’93, KT-Suzuki ’94-95, Rommer-Östlund ‘95,’97

Szj |sVBS� =

12

�−|ψ(0)

j−1�+ |ψ(0)j �

ωzSMA(k) = −

12�sVBS| [[H, Sz(k)], Sz(−k)] |sVBS�

�sVBS|Sz(k)Sz(−k)|sVBS�

=�ψ(0)(k)|H|ψ(0)(k)��ψ(0)(k)|ψ(0)(k)�

=12

(1 − cos k)Szz(k)

�ψ(0)x |hx,x+1|ψ

(0)x �

SUSY valence bond

triplet bond

Page 21: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

Low-lying excitations ...“hole”

In SUSY, we have two more (fermionic) generators

“charege-crackion” = “spinon-hole pair”

can be treated by MPS, toolack of unitary operationconnecting “spin” and “charge” ➡ different spectra ...

SUSY valence bond

spinon-hole pair

0.0

0.5

1.0

0.0

0.5

1.0

0

1

2

3

K1(j) =12

�1√ra†jfj +

√rf†

j bj

�, K2(j) =

12

�1√rb†jfj −

√rf†

j aj

K1,j |sVBS� =12√

r�

|ψ(1/2)j−1 � − |ψ(1/2)

j ��

Page 22: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

Generalizations

Page 23: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

On Square Lattice...

model-I: 1-species of fermion

model-II: 3-species of fermion

=

|Ψ2D-(I)sVBS � =

�i,j�

(a†i b†j−b†ia

†j−r f†

i f†j )|0�

|Ψ2D-(II)sVBS � =

�i,j�

(a†i b†j−b†ia

†j−r1 f†

i f†j−r3 g†i g

†j−r3 h†

ih†j)|0�

r1,r2,r3→∞−−−−−−−−→�

all possible dimer coverings

Rokhsar-Kivelson RVB liquid Rokhsar-Kivelson ’88

+ ... +

Page 24: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

More fermions...

Case with two species of holes (1D)...

Matrix-product rep.:

Matrix-product formalism:finite string ordersymmetric behavior w.r.t. “r”

|sVBS� =�

j

�a†jb

†j+1−b†ja

†j+1−r(f†

j f†j+1 + h†

jh†j+1)

�|0�

gj =

−a†jb†j −(a†j)

2 −√

ra†jf†j −

√ra†jh

†j

(b†j)2 a†jb

†j

√rb†jf

†j

√rb†jh

†j

−√

rh†jb

†j −

√rh†

ja†j −rh†

jf†j 0

−√

rf†j b†j −

√rf†

j a†j 0 −rf†j h†

j

|0�j

Page 25: Hidden Order and Dynamics of SUSY VBS models...Hidden Order and Dynamics of SUSY VBS models Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University Kazuki Hasebe

Summary

SU(2) -> UOSp(1|2) generalization of VBS model(s)✓ “spin-L” or “spin-(L-1/2)+one (spin-1/2) hole”

Matrix-product representation in terms of (2L+1)×(2L+1) matrix:

✓ short-range spin-spin cor., finite hole-pairing correlation✓ hidden string order (symmetry-protected phase ?)✓ single-mode approx. ⇒ gapped magnetic excitations

Generalizations:

✓ 2D case ⇒ relation to Rokhsar-Kivelson point...

✓ physics of QDM, topological order ??

(a†jb†j+1−b†ja

†j+1) ⇒ (a†jb

†j+1−b†ja

†j+1−rf†

j f†j+1)