heritability and intertrait correlations … and intertrait correlations in breeding subpopulations...

11
HERITABILITY AND INTERTRAIT CORRELATIONS IN BREEDING SUBPOPULATIONS OF JACK PINE If Don E. ~iemenschneider- Abstract .--Twenty breedi ng populat i ons of jack pi ne were e s t a b l i s h e d n 1979 and 1980 i n Minnesota, Wisconsin, and Michigan. Four populations were index populations and were each established at 4 locations by research cooperators, Sixteen populations were applied breeding populations and were established at single loca- tions by public and private cooperators. Combined analysis of height at age 5 in index populations at three locations indicated l i t t l e genotype x environment interaction and heritability of 0.19. Separate analysis of index populations indicated that the amount of genotype x envi ronment interact ion varied in re1at ion to main effect family variance but was never more than 50 percent of the family variance. Heritability estimates for height at age 3 in 13 sur- viving breeding populations varied from 0 to 0.57. Population related differences in heritability may have been due to sampling variation, envi ronmental differences, or both. The data suggested a need for remeasurement of the 13 survi vi ng breedi ng populations which are currently 6 years old. Heritability in most populations i s suf f i ci ent to recommend that selection and breedi ng to produce the second generation be initiated now. Selection of parents at age 5 or 6 has previously been shown to be effective i n many species of Pi naceae, : Population site, genotype x envi ronment inter- branch size, branch angle, The concept of subdi vidi ng tree breedi ng populations (Kang 1980) has been applied to loblolly pine (Pinus taeda L.) i n Texas (Low and van Bui jtenen 1981) and jack pine (Pinus b a n k s K l W i n the Lake States (Riemenschneider 1981). Mu1 t i p1 e, subdi vided populations are expected to have several advantages i n com-

Upload: vuongnga

Post on 28-Mar-2018

223 views

Category:

Documents


3 download

TRANSCRIPT

HERITABILITY AND INTERTRAIT CORRELATIONS I N BREEDING SUBPOPULATIONS OF JACK PINE

I f Don E. ~iemenschneider-

Abstract .--Twenty breedi ng populat i ons o f jack p i ne were e s t a b l i s h e d n 1979 and 1980 i n Minnesota, Wisconsin, and Michigan. Four populat ions were index populations and were each establ ished a t 4 loca t ions by research cooperators, Sixteen populat ions were appl ied breeding populations and were establ ished a t s ing le loca- t i o n s by pub l i c and p r i v a t e cooperators. Combined analys is of he igh t a t age 5 i n index populat ions a t th ree loca t ions ind ica ted l i t t l e genotype x environment i n t e r a c t i o n and h e r i t a b i l i t y of 0.19. Separate analys is o f index populations ind ica ted t h a t the amount of genotype x envi ronment i n t e r a c t i on var ied i n re1 a t i o n t o main e f f e c t f am i l y var iance but was never more than 50 percent of the fami ly variance. H e r i t a b i l i t y estimates f o r height a t age 3 i n 13 sur- v i v i n g breeding populat ions var ied from 0 t o 0.57. Population re la ted d i f fe rences i n h e r i t a b i l i t y may have been due t o sampling var ia t ion , envi ronmental di f ferences, o r both. The data suggested a need f o r remeasurement o f the 13 surv i v i ng breedi ng populat ions which are c u r r e n t l y 6 years old. H e r i t a b i l i t y i n most populations i s suf f i c i ent t o recommend t h a t se lec t ion and breedi ng t o produce t h e second generation be i n i t i a t e d now. Select ion o f parents a t age 5 o r 6 has prev iously been shown t o be e f f e c t i v e i n many species of P i naceae,

: Population s i t e , genotype x envi ronment i n t e r - branch size, branch angle,

The concept o f subdi v i d i ng t r e e breedi ng populat ions (Kang 1980) has been appl ied t o l o b l o l l y p ine (Pinus taeda L.) i n Texas (Low and van Bui j tenen 1981) and jack p ine (Pinus b a n k s K l W i n the Lake States (Riemenschneider 1981). Mu1 t i p1 e, subdi vided populat ions are expected t o have several advantages i n com-

t r e e he igh t ) . However, t he poss ib le in f luences o f popu la t ion s i z e on h e r i t a b i - 1 i t y est imates are unknown. Previous est imates o f h e r i t a b i l i t y f o r t r e e he igh t i n jack p ine (Yeatman, 1975; Canavera, 1969, 1975; Riemenschneider, 1979) were based on l a r g e popu la t ions and, there fo re , may not apply t o smal l e r , subdivided populat ions. The f o rmu la t i on and t e s t i n g o f hypotheses concerning a l t e r n a t i v e breedi ng s t r a t e g i es , such as subdi v ided populat ions, may be profoundly i n f l uenced i f h e r i t a b i 1 i t y f o r se lec t i on c r i t e r i a var ies among small popula- t i ons . Thus, t h e purpose o f t h e present research was t o determine t h e magnitude o f popu la t ion re1 a ted v a r i a t i o n i n h e r i t a b i 1 i t y , genotype x envi ronment i n t e r a c - t ions, and se lec ted genet ic i n t e r t r a i t co r re l a t i ons .

Th is paper presents h e r i t a b i l i t y est imates f o r e a r l y he igh t growth i n 4 index populat ions and 13 breeding populat ions o f jack p ine i n t h e Lake States. Genotype x envi ronment i n t e r a c t i o n s were est imated f o r t h e 4 index populat ions t h a t were es tab l i shed a t m u l t i p l e locat ions. Add i t i ona l l y , gene t i c c o r r e l a t i o n s between several c h a r a c t e r i s t i c s r e l a t e d t o crown form were est imated i n two index populat ions a t Rhinelander, W I .

MATERIALS AND METHODS

Open-pol 1 i nated seed from 400 phenotypi c a l l y se lec t w i 1 d t r ees i n Minnesota, Wisconsin, and Michigan was used t o produce foundat ion breedi ng popu- l a t i o n s . Seedlots were subdivided a t random i n t o 20 populat ions o f 20 f a m i l i es each. O f t he 20 populat ions, 4 were designated ' index popu la t ions ' t o be managed by research organizat ions (Uni v e r s i t i es o f Minnesota and Wisconsin, Michigan S ta te U n i v e r s i t y , and Fo res t r y Sciences Laboratory, Rhinelander, WI). The remaining 16 populat ions were designated 'breedi ng populat ions ' t o be managed by USFS Region 9; t h e Minnesota, Wisconsin, and Michigan Departments o f Natura l Resources; Po t l a t ch Corporat ion, Cloquet, MN; Consol idated Papers, Rhinelander, W I ; and Mead Corporat ion, Escanaba, M I .

Seedl ings f o r t h e f o u r index populat ions were grown i n t he greenhouse a t Rhinelander from February t o May 1979 and outp lanted i n May and June, 1979 a t

innesota ( U n i v e r s i t y o f Minnesota), Rhinelander, Wisconsin (Fores t ry Laboratory) , Hancock, Wisconsin (Uni v e r s i t y o f Wisconsin), and

Michigan (Michigan S ta te Un i ve rs i t y ) . Seedlings f o r t he 16 breeding s were grown i n t he greenhouse one year l a t e r and outp lanted i n May

June 1980. Breeding populat ions were p lanted a t on ly one l o c a t i o n per popu- . Most p l an t i ngs shared a common randomized complete block experimental w i t h 12 r e p l i c a t i o n s o f 4- t ree p l o t s . Index populat ions p lanted a t

quet , Minnesota con ta i ned 10 rep1 i c a t i ons o f 4 - t ree p l o t s .

t r e e he igh t was measured i n a1 1 breeding populat ions i n 1982 a f t e r o f seasonal growth. Trees i n t he index populat ions a t Hancock, h ine lander , Wisconsin; and We1 1 ston, Michigan were measured i n 1983.

index populat ions a t Cloquet, Minnesota were measured i n 1981.

n t s o f crown form were measured i n two populat ions a t Rhinelander i n 1983 ( t r e e he ight , leader l eng th and diameter, number o f whorls, anches per whorl, branch l eng th angle).

p l o t est imates f o r t r e e he igh t i n a l l breeding and index popula- omputed according t o Snedecor and Cochran (1967) and var iance com-

est imated v i a ana lys is o f var iance us ing p l o t means. Wi th in -p lo t

-13-

an ana lys is a f t e r

d mean squares t o i ance component,

basis

es

r o r

and V, i s w i t h i n p l o t e r ro r .

the

t e l y ions.

RESULTS

Heri t a b i 1 i t y and Genotype x Envi ronment I n t e r a c t i o n

Combined ana l ys i s o f t r e e he igh t i n 4 index populat ions grown a t 3 loca- t i o n s i n Wisconsin and Michigan showed s i g n i f i c a n t d i f fe rences between f am i l i es , and s i g n i f i c a n t f a m i l y x l o c a t i o n i n t e r a c t i o n s ( t a b l e 1). Combined ana lys is o f t h e two l oca t i ons i n Wisconsin, however, i nd i ca ted non -s i gn i f i can t v a r i a t i o n due t o f am i l y x l o c a t i o n i n t e r a c t i o n . H e r i t a b i l i t y f o r he igh t a t age 5 was e s t i - mated t o be 0.19 f o r a l l s i t e s and 0.22 when only t he Wisconsin s i t e s were ana- lyzed. The h igher h e r i t a b i l i t y obtained by exc lud ing t h e Michigan l o c a t i o n was p r i m a r i l y due t o increased f am i l y var iance and t h e lack o f f am i l y x l o c a t i o n i n t e rac t i on.

Table -Combined analyses o f var iance f o r he igh t (cm) a t age 5 i n 4 index opu la t ions o f jack p ine a t 2 l oca t i ons i n Wisconsin and 1 l o c a t i o n

Pn t h e Lower Peninsula o f Michigan. Each index popu la t ion cons is ted o f 20 open-pol l inated f a m i l i e s o f jack p ine i n 12 r e p l i c a t i o n s o f

2 Wisconsin s i t e s 3 s i t e s i n Wfsconsin and Michigan

1 320,751 7.49 ns 2 1,676,590 26.40 * 3 83,796 1.96 ns 3 33,118 0.52 ns

Locat ions x Fami l i es/Pop. 88 573 0.99 ns 152 673 1.25 *

600 1.90 ** 2508 539 1.92 **

i f i c a n t a t P < 0.01

t y f o r t r e e he igh t va r ied w i t h index popu la t ion loca t ion , d i f f e rences were a1 ways s i g n i f i c a n t ( t a b l e 3). Her i t a b i 1 i t y

4 t o 0.44 over t he t h ree l oca t i ons i n Wisconsin and Michigan. r t r e e he igh t a t age 3 i n Minnesota was 0.37.

-15-

C: s 0 V) 0 r U 0 S U * L n I= *r 3

F4

a c,c, a 0 3 V) u-a 0 r 7 t 0 .F

£

0s r-4 LC) h

M a2

LC) w LC)

LC) CU

'r- * rC 2K 0 .r- 0 r -

a .r 3 L m u-a 0-c a Vc, L 0 0 *

3 4J-V v * a V)

ic- s 0 0 *r

act 0 a L *F

3 1 0 a m >

Her i tab i 1 i t y var ied more i n the 13 su rv i v ing breedi ng populations establ ished a t s ing le loca t ions ( t a b l e 4). Estimates ranged from 0 t o 0.57, and there was no apparent associat ion of h e r i t a b i l i t y o r i t s components t o mean p l a n t a t i o n growth o r any envi ronmental var iable. Standard er rors fo r he r i t a b i - l i t y i n the 16 breeding populat ions ranged from 0.15 t o 0.25.

Table 4.-

Populat ion Hei ght Add i t i ve number Cooperator (em) Variance H e r i t a b i l i t y

USFS Region 9 t l

tl

II

Wisconsin D N R ~ 11

M i nnesot a D N R ~ I t

Michigan D N R ~ 11

Cons01 i dated It

Mead Corp. t i

Pot 1 atch Corp.

1. Populat ion abandoned due t o poor surv iva l o r loss of fami ly i den t i t y . 2. Department o f Natural Resources,

I n t e r - t r a i t co r re la t i ons

A genet ic c o r r e l a t i o n was declared s i g n i f i c a n t i f i t was a t l eas t 1.96 t imes the associated standard e r r o r ( t a b l e 5). Total t r e e height was s i g n i f i - c a n t l y cor re la ted w i t h leader length ( r =0.824) and leader diameter ( r =0.529). There was l i t t f e v a r i a t i o n between popu a t ions f o r these two cor re la t i8ns . Tree he igh t was not cor re la ted w i t h number of whorls. Height was s i g n i f i c a n t l y cor re la ted w i t h whorl 1 branch length (r9=0.694) and whorl 2 branch angle ( rg=-0.477).

I n t he present study estimates of he r i t ab i 1 i t y and genotype x envi ronment i n t e r a c t i o n f o r t r e e height i n the 4 index populations were comparable t o pre- vious estimates (Yeatman 1974, Riemenschneider 1979). Yeatman (1974) found s i n g l e l oca t i on h e r i t a b i l i t i e s of 0.14 t o 0.18 a t th ree loca t ions and a combined h e r i t a b i 1 i t y of 0.15. The genotype x e n ~ i ronment i n t e r a c t i on was not s i g n i f i -

-3.8-

cant. Riemenschneider (1979) found t h a t h e r i t a b i 1 i t y f o r t r e e he igh t a t com- parable ages i n Minnesota ranged from 0.08 t o 0.17 over two l oca t i ons and two years, and from 0.14 t o 0.18 i n combined analyses. Again, t he genotype x e n v r i onment i n t e r a c t i o n was not s i gni f i cant.

Table 5.--Genetic c o r r e l a t i o n s between t r e e he igh t a t age 5 and form-re la ted t r a i t s f o r two jack p ine index populat ions a t Rhinelander, Wisconsin. Each popu la t ion cons is ted o f 20 open-pol l inated f a m i l i e s i n a ran- domi zed complete block desi gn w i t h 12 rep1 i c a t i ons o f 4-t ree p l o t s . A pooled genet ic c o r r e l a t i o n was considered s i g n i f i c a n t i f i t was a t l e a s t 1.96 t imes t he associ a ted standard e r ro r .

Populat ion Populat ion T r a i t 1 2 Pooled (Standard E r r o r )

Leader leng th (cm) 0.638 0.408 0.824 (0.304) Leader d i ameter (mm) 0.385 0.397 0.529 (0.270) No. o f whorls 0.057 0.041 -0.224 (0.253)

Cycle 1

No. branches -0.038 -0.062 -0.202 (0.247) Branch l eng th (cm) 1.030 0.230 0.694 (0.325) B ranch d i ameter (mm) 0.076 0.180 0.416 (0.345) Branch angle (degrees) -0.428 -0.147 -0.463 (0.250)

Cycle 2

Mo. branches 0.156 0.177 -0.197 (0.216) Branch l eng th (cm) 0.567 0.195 0,001 (0.195) Branch d i ameter (mm) 0.713 0.260 0.270 (0.278)

nch angle (degrees) -0 560 -0.206 -0.477 (0.222)

The weak genotype x envi ronment i n t e r a c t i o n s between index popu la t ion i n t h i s study were expected because o f the method used t o e s t a b l i s h

a t i o n populat ions. It i s known t h a t seed sources from Northeastern c o n t r i b u t e s t r o n g l y t o genotype x environment i n t e r a c t i o n s i n Lake

p ine seed source t e s t s ( J e f f e r s and Jensen 1980; Riemenschneider o f these sources were inc luded i n t h e index and breeding popula- absence o f s t rong genotype x envi ronment i n t e r a c t ions i n t he jack

u l a t i ons i n d i cates t h a t breedi ng f o r broadly adapted populat ions e .

i l i t y d i f f e rences i n t he 13 s u r v i v i n g breeding populat ions may cause ome cooperators, p a r t i c u l a r l y those who have populat ions w i t h

v a r i a t i o n . The d i f f e rences may be p a r t l y due t o t h e l a rge a t i o n which resu l t ed from small popu la t ion size. However, even ions w i t h low h e r i t a b i 1 i t y conta i n progenies o f geographical l y

8 Thus i t should not be concluded t h a t populat ions w i t h low h e r i - mpoveri shed w i t h regard t o addi t i ve genet ic va r i a t i on .

i o n r e l a t e d v a r i a t i o n i n h e r i t a b i l i t y may be s i t e re la ted . It i s

-19-

known t h a t va r i a t i on age-dependent i n

nces may expla in a r i a t i o n i n h e r i t a -

on01 ogi ca l age. provide data w i t h

e computed f o r each t h i s study. The , variance com- research too l s i n

Many fam i l i es are requi red t o e s t i i c i n t e r t r a i t cor re la t ions w i t h low standard e r ro rs ( T a l l i s 1959). I n t y a confidence i n t e r v a l of 2 standard e r ro rs would be 0.5 t o 0.6 f o r i t s . Genetic cor re la t ions be- tween t r e e height, and leader and branch were mostly consis tent between two populations, a t l eas t i n sign, i n la rge est imat ion errors. Corre lated responses t o se lec t i on f o r t t w i l l probably inc lude l a rge r whorl 1 branches and more acute branch

It i s i n t e r e s t i n g t o note t h a t whorl 1 branch length was wel l cor re la ted w i t h t r e e height whi le whorl 2 branch length was not. This was most l i k e l y due t o d i f ferences i n l a t e r a l shoot development pat terns (Van Den Berg and Lanner 1971). For example, assume a l l l a t e r a l long shoot buds are i n i t i a t e d i n year n. Then a1 1 but t he top-most buds are elongated i n year n+l. Thus the top-most buds continue development dur ing year n+ l and are elongated dur ing year n+2 as the basal 'whorl. This development pa t te rn i s more l i k e t h a t of the terminal bud than t h a t of other l a t e r a l long shoots and may be the cause of the cor re la t ions observed i n t h i s study.

RECOMMENDATIONS

The 13 breeding populat ions should be remeasured immediately and appropr iate genet ic and phenotypic variances should be reestimated. This addi - t iona l in fo rmat ion w i l l i n d i c a t e whether the low h e r i t a b i 1 i t y observed i n some breedi ng populat ions i n t he present study i s a t rans i to ry , t ime-re lated phenome- non. Select ion a t about age 5 o r 6 has been recommended f o r con i fe rs (Lambeth 1980). Since t rees i n t he jack p ine breeding populat ions are now 6 years 01 d, parents s h o d d be selected, and breedi ng t o produce the next generat i on should be i n i t i a t e d . Select ion of a mating scheme has l i t t l e impact on the long term response t o se lec t i on (Kang and Namkoong 1979, 1980; Kang 1983) and thus each populat ion may be advanced w i t h as few as 10 s ing le p a i r matings.

A t ten t i on should be pa id t o l o g i s t i c s re la ted t o the current geographic d i s t r i b u t i o n o f the breedi ng populations. In many cases populat ions are remote from the cooperator 's f a c i l i t i e s which may delay t ime ly completion o f breedi ng work. It may prove p r o f i t a b l e t o designate a l i m i t e d number of locat ions ( 5 o r 6) i n the Lake States where breeding populations could be concentrated and work could be j o i n t l y supported by a l l cooperators.

LITERATURE CITED

Burdon, R. D. 1982. Se lec t ion ind ices us ing i n fo rma t i on from m u l t i p l e sources f o r t h e s i n g l e - t r a i t case. S i l vae Genetica 31: 81-85.

Canavera, D. S. 1969. Geographic and stand v a r i a t i o n i n jack pine. Ph.D. Thesis, Michigan S t a t e Un ivers i t sy . 100 p.

Canavera, D. S. 1975. V a r i a t i o n among t h e o f f s p r i n g o f se lected Lower Michigan jack pines. S i l vae Genetica 24: 12-15.

F rank l i n , E. C. 1979. Model r e l a t i n g l e v e l s o f genet ic var iance t o stand development o f f o u r Nor th American con i fe rs . S i l vae Genetica 28: 207-212.

Je f fe rs , R. M. and R. A. Jensen. 1980. Twenty-year r e s u l t s o f t h e Lake States jack p ine seed source study. Research Paper NC-181. St. Paul, MN. U.S. Department o f Ag r i cu l t u re , Forest SErvi ce, North Central Forest Experiment S ta t ion . 22 p.

Kang, H. 1980. Designing a t r e e breeding system. I n : Proceedings of t h e Seventeenth Meeti ng o f t h e Canadi an Tree Improvemex Associ a t i on : p a r t 2. Gander, Newfoundland. August 27-30, 1979. Canadi an Forest Service, Envi ronment Canada. pp. 51-63.

Kang, ti. 1983. L i m i t s o f a r t i f i c i a l se lec t i on under balanced mating systems w i t h f am i l y se lec t ion . S i l vae Genetica 32: 188-195. #

Kang, H. and G. Namkoong. 1979. L i m i t s o f a r t i f i c i a l se lec t i on under unba- 1 anced mat i ng systems. Si 1 vae Geneti ca 28: 53-60.

Kang, H. and G. Namkoong. 1980. L i m i t s o f a r t i f i c i a l se lec t i on under unba- 1 anced mat ing systems. Theoret ica l and Appl i ed Genetics 58: 181-191.

eth, C. C. 1980. Juvenile-mature c o r r e l a t i o n s i n Pinaceae and imp l i ca t i ons r e a r l y se lec t ion . Forest Science 26: 571-580.

en, D. and H e R. Gregarious. 1976. Inbreeding and coancestry. I n : eedi ngs o f J o i n t Meeti ng on Advanced Generat i on Breedi ng. BordeaK,

e. pp. 49-55.

. J. and J. P. van Bui j tenen. 1981. Tree improvement phi losophy and f o r t h e western g u l f f o r e s t t r e e improvement program. I n : Research Tree Breeding - Proceedings o f t h e 15th Nor th American F a n t i t a t i v e

Genetics Group Workshop. Coeur dlAlene, Idaho. August 6-8, 1981. of Forest Resources, North Ca ro l i na S ta te Un i ve rs i t y , Raleigh, North

1979. Genetic v a r i a t i o n and predi c t ed response t o i n a North-Central Minnesota popu la t ion o f jack p ine

, Lamb.). Ph.D. Thesis, U n i v e r s i t y o f Minnesota. 76 p.

-21-

Riemenschneider, D. E. 1981. The Lake States jack p ine breeding program. - In: Research Needs i n Tree Breeding - Proceedings o f the 15th North American Quanti t a t 4 ve Forest Genetics Group Workshop. Coeur dBAlene, Idaho. August 6-8, 1981. School o f Forest Resources, North Carol i na State Un ivers i ty , Raleigh, North Carolina. p. 110-114.

Riemenschneider, D o E. 1983. Adaptive v a r i a t i o n and seed zones i n the Lake States. I n : Progeny Testing, Proceedi ngs of Servi cewi de Genetics Workshop. December F 9 , 1983. U.S. Department o f Agr icu l ture, Forest Service, Washington, D O C . p. 68-88.

ods. S ix th Ed i t ion .

T a l l i s , G. M. 1959. Sampling e r ro rs o f genetic c o r r e l a t i o n c o e f f i c i e n t s ca lcu la ted from analys is o f variance and covariance. Aus t ra l i an Journal of S t a t i s t i c s . 1: 35-43.

Van Den Berg, D o A. and R. M. Lanner. 1971. Bud development i n lodgepole pine. Forest Sci ence 17 : 479-486.

Yeatman, C. W. 1974. A progeny t e s t o f Ottawa Val l e y jack p ine - 6-year resu l ts . I n : Proceedings o f the 9th Central States Forest Tree Improvement Conference, pp. 71-84.