helhaphl2010-02.wikispaces.comhelhaphl2010-02.wikispaces.com/file/view/temporary+r… · web...

26
PHL Bio Agro- and Biotechnologie HELHa Agronomie Biotechnologies Projectmanagement Temporary rapport The production of algae coupled to anaerobic digestion in a closed vessel system for bio-fuel production Group 2: Anke Hauben Marine D'Aulisa Dorien Janssens Jessica Leonard Bjorn Tordoor Aline Verbist Selien Sanchez

Upload: vukhue

Post on 01-Apr-2018

214 views

Category:

Documents


1 download

TRANSCRIPT

PHL Bio

Agro- and Biotechnologie

HELHa Agronomie

Biotechnologies

Projectmanagement

Temporary rapport

The production of algae coupled to anaerobic

digestion in a closed vessel system for bio-fuel

production

Group 2:

Anke Hauben Marine D'Aulisa

Dorien Janssens Jessica Leonard

Bjorn Tordoor Aline Verbist

Selien Sanchez

Projectleader: B. Cornelis

O. Janssens

Introduction

The 21st century is marked by one of its greatest challenges: environmental protection and energy production. Actually, during a lot of years, the relationship of ' environment' and ' energy' was not friendly co-existents. The environment had suffered of the huge production of energy in the context of our modern society. And the situation is going on! That is why the scientists have begun to think about a way to combine the protection of the environment and the production of energy. One of these ways is the biofuels.

What are bio fuels?

Biofuels are solid, liquid or gas fuel refined in whole or in part from biomass ( that means plant matter cultived or processed for use as biofuel). Unlike fossil fuel (from petroleum, coal...in summary, natural resources) which are of limited availability, bio fuels are not finite resources.We can also add that biofuels respect the climate much more than fossil fuel.(Indeed, a recent UK government publication declared that biofuels consumption has reduced emissions of carbon dioxide « by 50-60% compared to fossil fuels ».) That is an other significant reason to produce them.

There is a diverse and long list of biofuels, but in recent years the term « bio fuel » has come to mean: bio-ethanol: an alcohol usually mixed with petrol. bio-diesel: either used on its own or in a mixture.

For their production, the resources we can use are for example: corn, soys, beans, palm oil... (crops) but also wood chips, straw, sewage...and algae.

Bio fuel from first and second generation

We can divide the bio fuels between the ones from the first- generation and the ones from the second. These two dividings up are the well known because these bio fuels are put into practice.Meanwhile, there is an other generation, the third, that is at the experimental stage.What means « first generation »? this production is characterised by mature commercial markets and well understood technologies. But these bio fuels have many problems. Namely but not limited to: they contribute to higher food prices due to competition with food crops they are expensive to produce they are accelerating the deforestation they do not meet their claimed environmental benefits because the biomass feedstock may

not always be produced sustainably

There are others disadvantages but we are not explining all of them in this article.

The second generation of biofuel aims to resolve the problems associated to the « first generation ».It is derived from lignocellulosic crops.Actually,plants are made from lignin and cellulose and second generation technology allows these two components of a plant to be split.After that, the cellulose can be fermented into alcohol much in the same way as a first generation biofuel.But this generation has also has her disadvantages. To be completed

2

Bio fuel from the third- generation

The last generation of bio fuels is the third generation. It is this generation that interesses this article because it is the algae one. Has to be completed

What are the advantages of algae biofuel?

Unlike to the biofuel produced with soya, corn,palm ,..(products of agriculture), algae is not an aliment for humans, so its production does not deprive people of food. Moreover its not compete with agriculture food crops for land.

In the same way,algaes does not dependant on a particular landscape or soil type in order to grow ( we can even use abandoned land or land that is not suitable).

We do not need for huge land to cutlivate algae either. For instance: for the USA, only 3% of the cultivating land of the country would be necessary to produce all the biofuel for the transport.

Sea water can be used for the culture and only a small amount of it is required. Another one of the important advantage is the time needed to cultivate and harvest algae.

It is very quick.It is one of the fastest growing plant in the world. The yields in this production is much higher than other productions type like soya or corn.

Algae contain much more energy per unit of weight than other crops About its impact in the environment, biofuel from algae is non-toxic, highly biodegradable

and contains no sulfur. Moreover,algae plants could sequester the CO2 and use it for their growth. It is a very

important point for the environment. Finally,the production of microalgae generates by-products that can be used for a lot of

things like for example food for animals.

=From Marine (references?)

3

Algae in general (has to be finished)

There is two kind of algae on the earth: the macroalgae and the mircoalgae. We are only interested in the microalgae in this article.Indeed, it is the microalgae that are used for the production of biofuel. What are the caracteristics of these algae?

The microalgae

Microalgae are , as the word says it, microscopics (~ 1 to 50 µm). A big majority of microalgae produces unique molecules like enzymes, antioxidants, fatty acids,....They are vegetable so they are able to perform photosynthesis. That is why they are essential for the life on the earth.They account for approximately half of the production of the atmospheric oxygen and they grow using the greenhouse gas carbon dioxide . Finally, microalgae are the basis of the food chain.All this shows the important role of microalgae.

Species use for the production

There is a lot of microalgae species. Their exact number is unknown because there is so much of them. It is said that only 10 percent of the species are identified.For the moment, the registered species varies between 25 and 40 thousands.All the different species are grouped in classes. Among all these species, only somes of them, for the moment, are used for the microalgal biotechnology. The three mean ones are spirulina, chlorella, Dunaliella . The chlorella and the dunaliella are members of the chlorophyceae class and the spirulina is a member of the cyanophyceae class.

A huge part of the algea are still untapped. That means that microalgae have an enormous potential.

=from Aline (references ?)

4

Methane produced by anaerobic digestion of algal biomass.

What is anaerobic digestion?

(copy from http://www.oilgae.com/ref/glos/anaerobic_digester.html)Anaerobic digestion is a process in which microorganisms break down biodegradable material in the absence of oxygen. The process is widely used to treat wastewater sludges and organic wastes because it provides volume and mass reduction of the input material. As part of an integrated waste management system, anaerobic digestion reduces the emission of landfill gas into the atmosphere. Has to be rewritten

What is biomass?

(Copy from http://www.oilgae.com/ref/glos/algal_biomass.html)Biomass, in ecology, is the mass of living biological organisms in a given area or ecosystem at a given time. It can include microorganisms, plants or animals. Algal biomass is the amount of algae in a water body at a given time. Has to be rewritten

What is methane?

(copy from http://www.oilgae.com/algae/pro/met/met.html)Methane is important for electrical generation by burning it as a fuel in a gas turbine or steam boiler. Compared to other hydrocarbon fuels, burning methane produces less carbon dioxide for each unit of heat released. At about 891 kJ/mol, methane's combustion heat is lower than any other hydrocarbon; but a ratio with the molecular mass (16.0 g/mol) divided by the heat of combustion (891 kJ/mol) shows that methane, being the simplest hydrocarbon, produces more heat per mass unit than other complex hydrocarbons. In many cities, methane is piped into homes for domestic heating and cooking purposes. In this context it is usually known as natural gas, and is considered to have an energy content of 39 megajoules per cubic meter, or 1,000 BTU per standard cubic foot.

Methane in the form of compressed natural gas is used as a vehicle fuel, and is claimed to be more environmentally friendly than fossil fuels such as gasoline/petrol and diesel. Has to be rewritten

The use of algal biomass

(copy from http://www.oilgae.com/algae/pro/met/met.html)Theoretically, methane can be produced from any of the three constituents of algae – carbohydrates, proteins and fats. Closed algal bioreactors offer a promising alternative route for biomass feedstock production for bio-methane. Using these systems, micro-algae can be grown in large amounts (150-300 tons per ha per year) using closed Bioreactor systems (lower yields are obtained with open pond systems). This quantity of biomass can theoretically yield 200,000-400,000 m of methane per ha per year. Has to be rewritten

5

How does the production process work?

(copy from http://www.oilgae.com/algae/pro/met/met.html)

Methane Production by Anaerobic Digestion

This appears to be the most straight-forward method of producing methane from algae.A process for obtaining methane from algae, involves the following successive stages: Pre-treatment of the algae, capable of producting a liquid suspension of fine solid particles,

said treatment being moreover capable of partially depolymerizing the solid algae matter, Running the suspension through a fluidized bed containing granules on which enzymes

are immobilized which are capable of transforming the particles into sugar, said liquid containing acidific bacteria capable of transforming said sugars into volatile fatty acids,

Decantation of the suspension, so as to remove any solid particles that may remain, and to extract a decanted liquid, and

Running the decanted liquid across a fixed bed containing methanogenic bacteria set onto a support so as to cause the liquid to release a gas mixture containing mainly methane.

Methane Production by Pyrolysis / Gasification

• One possibility for making methane from algae is the direct pyrolysis of microalgae. Wu et al. (1999) report the direct pyrolysis of marine nanoplankton as a source of methane and oils with Emiliania huxleyi, a widely distributed coccolithophorid species in world oceans with the authors suggesting this as one of the most promising candidates for the production of biofuel.• Methanation of syngas produced from gasification of Algal Biomass is another route to produce methane-rich syngas, sometimes also called synthetic natural gas. Has to be rewritten

=from Bjorn

6

Biodiesel from microalgae oil

It is generally known that the use of petroleum sourced fuels leads to the global warming of our planet and that they are limited available. Before the petroleum fuels are exhausted it is necessary to find solutions.Biodiesel derived from oil crops is a potential renewable and carbon neutral alternative to petroleum fuels. Unfortunately, they cannot realistically satisfy even a small fraction of the existing demand for transport fuels.The last few years there came a new course that can fix all that problems: the use of micro-algae. Some species of algae have been claimed to be up to 20 times more productive per unit area than oil palm, currently the most productive bio-fuel. (Chisti Y. 2007)Other advantages of algae are that they don’t require arable land. They can grow everywhere, even in the desert, so there is no competition with food crops for agricultural land. Many species tolerate high nutrient wastewater from industrial sources, which may already contain the right nutrients. These can be added to the algal growth media directly. This is cheaper and the wastewater become clear. Another option is salt water, so competition for water will be low.Furthermore, the CO2 released from industrial processes can be diverted through an algae cultivation facility, so they can be used to grow the algae, there is no emission.(Campbell N.M. 2008)The byproducts like fats, sugars and proteins could be recycled for animal feeds or even as replacements for other petroleum products like ethanol. (Alok J 2008)Species used for the production of biodiesel (has to be rewritten and completed)

Chlorophyceae, green algae, are the strain most favored by researchers. However, green algae tend to produce starches instead of lipids and require nitrogen to grow. They have the advantage that they have very high growth rates at 30°C and at high light levels in aqueous solution.Bacilliarophya, diatom algae, are also favored by researchers. One drawback is that the diatom algae require silicon to be present in the growth medium. When algae are grown under nutrient deficient conditions, the algae produce more oils per weight of algae, but the amount of algae produced was reduced. Most algae are tolerant to temperature fluctuations, but diatoms have a narrow temperature range. http://www.life.umd.edu/grad/mlfsc/Algae%20as%20a%20Source%20for%20Biofuel.pdf Botrycococcus brauniiCyanobacteria, also known as pond scum or blue-green algae.

Researchers identified the most dramatic increases in the lipid content of the cultures during N-deficient conditions. Biochemical studies have also suggested that acetyl-CoA carboxylase (ACCase), a biotin-containing enzyme that catalyzes an early step in fatty acid biosynthesis, may be involved in the control of this lipid accumulation process. Therefore, it may be possible to enhance lipid production rates by increasing the activity of this enzyme via genetic engineering. http://www.oilgae.com/algae/oil/yield/yield.html

7

Methods of growing algae for biodiesel

Open ponds

The most natural method of growing algae for biodiesel production is through open-pond growing. Using open ponds, algae can grow in hot, sunny areas so they get maximum production. This one is the least invasive of all the growing techniques, but it has some drawbacks. Bad weather can stunt algae growth, as can contamination from strains of bacteria or other outside organisms. The water in which the algae grow also has to be kept between 20 and 30 degrees, which can be difficult to maintain.(Newman S. 2010)

Vertical growth/closed loop production

Vertical growth or closed loop production has been developed to produce algae faster and more efficiently than open pond growth. With vertical growing, algae are placed in clear plastic bags, so they can be exposed to sunlight on two sides. The bags are protected from the rain by a cover. The extra sun exposure increases the productivity rate of the algae, which in turn increases oil production. The algae are also protected from contamination.(Newman S. 2010)

Closed-tank bioreactor

Other companies are constructing closed-tank bioreactors to help increase oil rates even further. Instead of growing algae outside, indoor plants are built with large, round drums that grow algae under ideal conditions. The algae are manipulated into growing at maximum levels and can be harvested every day.(Newman S. 2010) Solar collectors, solar concentrators, or fibre optics allow the sunlight to reach algal cells in the thin, horizontal tubes or by directing light, through a fibre optic matrix.(Campbell N.M. 2008) Closed bioreactor plants can also be strategically placed near energy plants to capture excess carbon dioxide that would otherwise pollute the air.(Newman S. 2010)

8

Figure 3 (Oilgae 2010a)

Figure 1: an open pond in Israel (LaMonica M. 2008)

Figure 2: vertical system of polyethylene sleeves in greenhouses.(Steger C. 2009)

Fermentation

Researchers are testing another variation of the closed-container or closed-pond process: fermentation. Algae are cultivated in stainless steel tanks, similar to what you see in a brew pub, and fed sugar to promote growth. The benefit of this process is that it allows the algae biodiesel to be produced anywhere in the world. Therefore fermentation offers the most control of all the methods. Each fermentation vat contains a single species. Temperature, pressure, and other environmental conditions can be minutely controlled.(Michael K. 2008) The big advantage is that it cost more and researchers are still trying to figure out where to get enough sugar without creating problems.(Newman S. 2010)

Ways to extract algae-oil (has to be rewritten)

Oil press

The oil press is the simplest and most popular method. This one is similar to the concept of the olive press. They just let the algae dry out and then extract the oil by pressing. It can extract up to 75 percent of the oil from the algae being pressed.

the hexane solvent method

With the hexane solvent method you can extract up to 95 percent of oil from algae. This is a two-part process. First, the press squeezes out the oil. Then, leftover algae is mixed with hexane, filtered and cleaned through distillation so there's no chemical left in the oil.

the supercritical fluids method

The supercritical fluids method extracts up to 100 percent of the oil from algae. Carbon dioxide acts as the supercritical fluid, when a substance is pressurized and heated to change its composition into a liquid as well as a gas. At this point, carbon dioxide is mixed with the algae. When they're combined, the carbon dioxide turns the algae completely into oil. But the additional equipment and work make this method a less popular option.(Newman S. 2010)

The Ultrasonic-assisted extraction

In this process ultrasonic waves are being sent around the algae sending shock signals on to the organisms. As a reaction to the wave they release oil substances into a solvent that can be easily extracted.(Algae-oil 2010)

9

Figure 4 (Stephen G. 2010)

Transesterification

Once the oil is extracted, we can make biodiesel from it. This happens in a process called transesterification. The fat or oil react with an alcohol, usually methanol or ethanol in the presence of a catalyst such as potassium hydroxide or sodium hydroxide.(Hess Scott M. 2010) The end products of this reaction are hence biodiesel, sodium ethanolate and glycerol. To separate this end-mixture ether and salt water are added en mixed well. After sometime, the entire mixture would have separated into two layers, with the bottom layer containing a mixture of ether and biodiesel. This layer can also be separated.(Oilgae 2010b)

Figure 5 (Chisti Y. 2007)

=from Dorien

10

Hydrogen

Hydrogen is one of the most promising fuels for the future. The main advantage of hydrogen fuel is that there is no emission of greenhousegases. The combustion of hydrogen gas produces only water vapor, unlike fossil fuels, there will be no release of carbon dioxide. Another advantage is that hydrogen is almost inexhaustible. New hydrogen can be made from water.

The viability and future of H2 depends entirely upon the development of efficient, large-scale and sustainable H2 production systems. Currently, hydrogen is produced using non renewable technologies such as steam reformation of natural gas, coal gasification and petroleum refining.

Process (has to be rewritten)

Photosystem II (PSII) drives the first stage of the process, by splitting H2O into protons (H2), electrons (e-), and O2. Normally, the photosynthetic light reactions and the Calvin cycle produce carbohydrates that fuel mitochondrial respiration and cell growth. However, under anaerobic conditions, mitochondrial oxidative phosphorylation is largely inhibited. Under these conditions, some organisms (e.g. Chlamydomonas reinhardtii) reroute the energy stored in carbohydrates to a chloroplast hydrogenase (HydA, likely using a NAD(P)H-PQ e- transfer mechanism 4, to facilitate ATP production via photophosphorylation. Thus, H2ase essentially acts as a H+/e- release valve by recombining H+ and e- to produce H2 gas that is excreted from the cell 4. C. reinhardtii therefore provides the basis for solar driven bio-hydrogen production. The combustion of the evolved H2 yields only H2O and thereby completes the clean energy cycle defined by the equations below

H2 Production H2O → 2H+ + 2e- + 1⁄2 O2

2H+ + 2e → H2

H2 Combustion H2 + 1⁄2 O2 → H2O. + E

Modifications (has to be rewritten)

“In a laboratory there are low-density cultures and thin bottles so that light penetrates from all sides. Because of this, the cells use all the light falling on them. But in a commercial bioreactor, where dense algae cultures would be spread out in open ponds under the sun, the top layers of algae absorb all the sunlight but can only use a fraction of it.” Says Anastasios Melis, a plant- and microbial-biology professor at the University of California, Berkeley. The researcher have manipulated the genes that control the amount of chlorophyll in the algae’s chloroplasts. So far, they have reduced this amount by half.

While regular green algae absorb most of the light falling on them (right), algae engineered to have less chlorophyll let some light through (left). When grown in large, open bioreactors in dense cultures, the chlorophyll-deficient algae will let sunlight penetrate to the deeper algae layers and thereby utilize sunlight more efficiently.

11

Project (has to be rewritten)

Energy companies of course think of significant algae plantations, but a group of Philadelphia-based (USA) creatives known as the 20/2 Collaborative have designed a unique concept that is based on small-scale production of hydrogen. This plan mixes algae ponds with floating balloons to integrate fuel production and distribution into the local landscape and allows the renewable fuel to be created and distributed from the same place.

12

http://www.technologyreview.com/read_article.aspx?

ch=specialsections&sc=biofuels&id=19438

http://www.solarbiofuels.org/biohydrogen.php

http://eco-cool.blogspot.com/2007/11/waterstof-met-algen-opwekken-sur-place.html

www.wikipedia.be

=from Anke

13

The disadvantages and possible solutions. The future prospects and

companies involved in this evolution.

Disadvantages of bio-fuels produced by algae and possible solutions

As expected there are also disadvantages about bio-fuels produced by algae. The first and obvious reason is that it is very expensive, because it’s a very new technology. There has to be a lot of money for research and trying out different methods. Another reason that makes the harvest of algal biomasses relatively costly is the low biomass concentration in the microalgal culture due to the limit of light penetration in combination with the small size of algal cells. Also because it is very new it’s required to develop standardized protocols for cultivation and bio-fuel production.

Yusuf Christi, an New-Zeeland researcher, pointed out that to compete with other energy sources the cost of growing microalgae for bio-fuel production must be drastically reduced. A solution could be a high volume co-product strategy, this contains the extracting of bioreactive products from harvested algal biomass. Examples are carotenoïden, vitamins, polyunsaturated fatty acids, … These can be used in pharmaceutical compounds, health food and natural pigments. A solution for the limit of light penetration has been found by Anastasios Melis, a plant- and microbial-biology professor at the University of California. She produced a mutant algae that makes a better use of sunlight than the normal algae. This is important for the maximization of the production. The algae have less chlorophyll than others wherefore they absorb less sunlight and more sunlight can reach other algae. This process is still in progress and so the new formed algae are not yet being used.

Another drawback is that the bio-fuel produced by algae is very unstable, not only does it contain unstable chemical products also it has many polyunsaturated fatty acids which isn’t that profitable. The produced bio-fuel has a lower performance also than the bio-fuels produced by for example rapeseed or soybean. Also there will have to be economically viable harvesting technologies found for large scale algae production. Because now the focus lays with the improvement of the algae itself and creating innovative harvesting technologies and not so much with the economic side. This can be solved with genetic engineering, and several techniques are currently being tested.

http://www.buzzle.com/articles/algae-as-biofuel.htmlhttp://onlinelibrary.wiley.com/doi/10.1021/bp070371k/fullhttp://www.technologyreview.com/read_article.aspx?ch=specialsections&sc=biofuels&id=19438http://www.environblog.com/2008/06/algae-oil-production-disadvatages-benefits.htmlhttp://algaeforbiofuels.com/blog/

14

Companies involved (has to be rewritten)

Two examples to discuss: SGI and EMRE Toyota, Chuo University and Japan’s Agriculture Ministry-the algaeus

SGI en EMRE

Synthetic Genomics Inc. (SGI), a privately held company applying genomic-driven commercial solutions to address a variety of global challenges including energy and the environment, announced today a multi-year research and development agreement with ExxonMobil Research and Engineering Company (EMRE) to develop next generation biofuels using photosynthetic algae.

However, naturally-occurring algae do not carry out this process at the efficiencies or rates necessary for commercial-scale production of biofuels.

Using SGI's scientific expertise and proprietary tools and technologies in genomics, metagenomics, synthetic genomics, and genome engineering as a platform, SGI and EMRE believe that biology can now be harnessed to produce sufficient quantities of biofuels.

Under the terms of the agreement, SGI will work in a systematic approach to find, optimize, and/or engineer superior strains of algae, and to define and develop the best systems for large-scale cultivation of algae and conversion of their products into useful biofuels. ExxonMobil's engineering and scientific expertise will be utilized throughout the program, from the development of systems to increase the scale of algae production through to the manufacturing of finished fuels.

About ExxonMobil

ExxonMobil, the largest publicly traded international oil and gas company, uses technology and innovation to help meet the world's growing energy needs.

About Synthetic Genomics Inc.

SGI, a privately held company founded in 2005, is dedicated to developing and commercializing genomic-driven solutions to address global energy and environment challenges. Advances in synthetic genomics present limitless applications in a variety of product areas, including: energy, chemicals and pharmaceuticals. The company's main research and business programs are currently focused on the following major bioenergy areas

http://www.syntheticgenomics.com/media/press/71409.html

Toyota

Toyota has made sustainable mobility and environmental leadership core principles of its business strategy for future growth. As a fundamental part of this strategy, Toyota is pursuing a broad range of technologies, each representing a step forward in improving the environmental impact of automobiles. http://www.toyota.eu/internal_pages/Pages/biofuels.aspx

15

They now plan to team up with Chuo University and Japan’s Agriculture Ministry to produce algae biofuels from Pseudochoricystis. It’s been several years now since Denso, one of Toyota’s suppliers, had been working on algae biofuels, hoping to sell their fuel as a substitute for gasoline and diesel by 2020. Not totally, of course – only 10 to 20 percent over the next 10 years.

Mitsubishi Chemical Corporation, the Microalgae Corporation and Kyoto Corporation had previously been approached by the Agriculture Ministry about the project. By following several pathways, Toyota is ensuring that it would spread as many tentacles as possible in the unstable times the car industry is living.http://www.greenoptimistic.com/2010/05/25/toyota-algae-biofuel/

The algaeus

Fuel director Josh Tickell of the converted to plug-in Prius hybrid that he drove on a mix of battery power and algae fuel blended with conventional gasoline. The Algaeus did less well on the highway: 52 mpg, because of the lack of regenerative braking that recharges the battery, among other things.

The algae came from 22 acres of special ponds at Sapphire Energy's research and development facility in New Mexico, where local strains of the microscopic plant grow in vats of saltwater while being fed CO2 that would otherwise go into Coca-Cola and other fizzy drinks, according to Tim Zenk, a spokesman for Sapphire.

The company claims that its algae produce at least 30 percent by weight of oil and they delivered approximately five gallons of gasoline derived from their algal oil to prove it. Refined by Syntroleum in Louisiana, the algae gasoline behaved no differently in the car, according to the driving crew.

Of course, that's because the mix in the cylinder was roughly five percent algae-derived gasoline and 95 percent 91-octane premium gasoline. And with the addition of a second battery pack in the trunk, courtesy of Plug-In Conversions, the Algaeus could travel 25 miles on electricity alone (after six hours of charging).

In the 10-day journey, the crew did not manage to get rid of the new car smell, but they did manage to get some thumbs up—and break some speed limits—on the long trek. They also proved that algae fuel doesn't smell too much like a neglected swimming pool, although some of the unrefined oil can be redolent of the ocean, Zenk says.http://www.scientificamerican.com/blog/post.cfm?id=algaeus-lives-a-modified-prius-goes-2009-09-18

Sapphire Energy was founded with one mission in mind: to change the world by developing a domestic, renewable source of energy that benefits the environment.

Sapphire Energy founders are led by entrepreneur and scientist Jason Pyle, and bioengineer Mike Mendez, backed by a team of the nation's leading researchers, scientists, and blue-ribbon investors in early-stage companies. Sapphire has already developed breakthrough technology to produce fungible, drop-in transportation fuels—including 91 octane gasoline, 89 cetane diesel, and jet fuel—all out of algae, sunlight, and carbon dioxide (CO2). Or, what we like to call Green Crude.

After two years of dedicated research and development, we developed an algae-based fuel that is renewable, is produced in the United States, has a low carbon footprint, is price-competitive, and fits seamlessly into our existing energy infrastructure.

16

In 2009, we participated in a test flight using algae-based jet fuel in a Boeing 737-800 twin-engine aircraft. That same year, we provided the fuel for the world’s first cross-country tour of a gasoline vehicle powered with a complete drop-in replacement fuel containing a mixture of hydrocarbons refined directly from algae-based Green Crude.http://www.sapphireenergy.com/sapphire-renewable-energy/http://veggievan.org/algaeus/

Conclusion (not finished)

A lot of scientists and other important people in this sector really believe that bio-fuel from microalgae is a renewable bio-fuel with the potential to replace the petroleum transport fuels without affecting the food supply.

=from Selien

17

References

Algae-oil. Algae Oil Extraction . 2010.

Ref Type: Online Source

Alok J. 'Oil from algae' promises climate friendly fuel. 31-7-2008.

Ref Type: Online Source

Campbell N.M. Biodiesel: Algae as a Renewable Source for Liquid Fuel. Guelph Engineering Journal . 2008.

Ref Type: Online Source

Chisti Y. Biodiesel from microalgae. ScienceDirect . 2007.

Ref Type: Online Source

Hess Scott M. Fats and Biodiesel. 2010.

Ref Type: Online Source

LaMonica M. Joint venture to use coal emissions to grow algae for biofuels. 20-6-2008.

Ref Type: Online Source

Michael K. Fermentation or photosynthesis: The debate in algae fuel. 28-1-2008.

Ref Type: Online Source

Newman S. Growing Algae for Biodiesel Use. 2010.

Ref Type: Online Source

Oilgae. Photobioreactor - Definition, Glossary, Details - Oilgae. 2010a.

Ref Type: Online Source

Oilgae. Transesterification . 2010b.

18

Ref Type: Online Source

Steger C. The Promise of Algae Biofuels - a new NRDC report. 6-10-2009.

Ref Type: Online Source

Stephen G. Solazyme developing cheaper algae biofuels, brings jobs to Pennsylvania. 6-8-2010.

Ref Type: Online Source

19