heavy-quark kinetics in the quark-gluon plasmahees/publ/rqw10.pdf · 2011. 7. 1. · heavy-quark...

18
Heavy-Quark Kinetics in the Quark-Gluon Plasma Hendrik van Hees Justus-Liebig Universit¨ at Gießen October 28, 2010 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 1 / 18

Upload: others

Post on 08-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Heavy-Quark Kineticsin the Quark-Gluon Plasma

    Hendrik van Hees

    Justus-Liebig Universität Gießen

    October 28, 2010

    Institut für

    Theoretische Physik

    JUSTUS-LIEBIG-

    UNIVERSITÄT

    GIESSEN

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 1 / 18

  • Outline

    1 Heavy-quark interactions in the sQGPHeavy quarks in heavy-ion collisionsHeavy-quark diffusion: The Langevin EquationElastic pQCD heavy-quark scatteringNon-perturbative interactions: Resonance Scattering

    2 Non-photonic electrons at RHIC

    3 Microscopic model for non-perturbative HQ interactionsStatic heavy-quark potentials from lattice QCDT-matrix approach

    4 Summary and Outlook

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 2 / 18

  • Heavy Quarks in Heavy-Ion collisions

    q

    K

    νe

    c,b quark

    cg

    sQGP

    c

    hard production of HQsdescribed by PDF’s + pQCD (PYTHIA)

    Hadronization to D,B mesons viaquark coalescence + fragmentationV. Greco, C. M. Ko, R. Rapp, PLB 595, 202 (2004)

    HQ rescattering in QGP: Langevin simulationdrag and diffusion coefficients frommicroscopic model for HQ interactions in the sQGP

    semileptonic decay ⇒“non-photonic” electron observablesRe

    +e−AA (pT ), v

    e+e−2 (pT )

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 3 / 18

  • Relativistic Langevin process

    Langevin process: friction force + Gaussian random forcein the (local) rest frame of the heat bath

    d~x =~p

    Epdt,

    d~p = −A~pdt+√

    2dt[√B0P⊥ +

    √B1P‖]~w

    ~w: normal-distributed random variableA: friction (drag) coefficientB0,1: diffusion coefficientsdependent on realization of stochastic processto guarantee correct equilibrium limit: Use Hänggi-Klimontovichcalculus, i.e., use B0/1(t, ~p+ d~p)Einstein dissipation-fluctuation relation B0 = B1 = EpTA.to implement flow of the medium

    use Lorentz boost to change into local “heat-bath frame”use update rule in heat-bath frameboost back into “lab frame”

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 4 / 18

  • Elastic pQCD processes

    Lowest-order matrix elements [Combridge 79]

    Debye-screening mass for t-channel gluon exch. µg = gT , αs = 0.4not sufficient to understand RHIC data on “non-photonic” electrons[Moore, Teaney 2005]Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 5 / 18

  • Non-perturbative interactions: Resonance Scattering

    General idea: Survival of D- and B-meson like resonances above Tcelastic heavy-light-(anti-)quark scattering

    c q̄

    c

    D,D′, Ds

    s

    cq

    qc

    u D,D′, Ds

    D- and B-meson like resonances in sQGP

    c

    q

    D,D′, Ds D,D′, Ds

    k k

    parametersmD = 2 GeV, ΓD = 0.4 . . . 0.75 GeVmB = 5 GeV, ΓB = 0.4 . . . 0.75 GeV

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 6 / 18

  • Cross sections

    1.5 2 2.5 3 3.5 4√s [GeV]

    0

    2

    4

    6

    8

    10

    12

    σ [

    mb

    ]

    Res. s-channelRes. u-channelpQCD qc scatt.

    pQCD gc scatt.

    total pQCD and resonance cross sections: comparable in size

    BUT pQCD forward peaked ↔ resonance isotropicresonance scattering more effective for friction and diffusion

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 7 / 18

  • Time evolution of the fire ball

    Elliptic fire-ball parameterizationfitted to hydrodynamical flow pattern [Kolb ’00]

    V (t) = π(z0 + vzt)a(t)b(t), a, b: semi-axes of ellipse,

    va,b = v∞[1− exp(−αt)]∓∆v[1− exp(−βt)]

    Isentropic expansion: S = const (fixed from Nch)

    QGP Equation of state:

    s =S

    V (t)=

    4π2

    90T 3(16 + 10.5n∗f ), n

    ∗f = 2.5

    obtain T (t) ⇒ A(t, p), B0(t, p) and B1 = TEAfor semicentral collisions (b = 7 fm): T0 = 340 MeV,QGP lifetime ' 5 fm/c.simulate FP equation as relativistic Langevin process

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 8 / 18

  • Initial conditions

    need initial pT -spectra of charm and bottom quarks

    (modified) PYTHIA to describe exp. D meson spectra, assumingδ-function fragmentationexp. non-photonic single-e± spectra: Fix bottom/charm ratio

    0 1 2 3 4 5 6 7 8p

    T[GeV]

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    1/(

    2 π

    pT)

    d2N

    /dp

    T d

    y [a

    .u.]

    STAR D0

    STAR prelim. D* (×2.5)

    c-quark (mod. PYTHIA)

    c-quark (CompHEP)

    d+Au √sNN

    =200 GeV

    0 1 2 3 4 5 6 7 8p

    T [GeV]

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    1/(

    pT)

    dN

    /dp

    T [

    a.u.]

    STAR (prel, pp)

    STAR (prel, d+Au/7.5)

    STAR (pp)

    D → e

    B → esum

    σbb

    /σcc

    = 4.9 x10-3

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 9 / 18

  • Spectra and elliptic flow for heavy quarks

    0 1 2 3 4 5p

    T [GeV]

    0

    0.5

    1

    1.5

    RA

    A

    c, reso (Γ=0.4-0.75 GeV) c, pQCD, α

    s=0.4

    b, reso (Γ=0.4-0.75 GeV)

    Au-Au √s=200 GeV (b=7 fm)

    0 1 2 3 4 5p

    T [GeV]

    0

    5

    10

    15

    20

    v2 [

    %]

    c, reso (Γ=0.4-0.75 GeV) c, pQCD, α

    s=0.4

    b, reso (Γ=0.4-0.75 GeV)

    Au-Au √s=200 GeV (b=7 fm)

    µD = gT , αs = g2/(4π) = 0.4

    resonances ⇒ c-quark thermalizationwithout upscaling of cross sections

    Fireball parametrization consistent with hydro

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 10 / 18

  • Comparison to single-electron spectra @ RHIC

    AA

    R

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    = 200 GeVNNsAu+Au @

    0−10% central(a)

    Moore &

    Teaney (III)T)π3/(2

    T)π12/(2

    van Hees et al. (II)

    Armesto et al. (I)

    [GeV/c]T

    p0 1 2 3 4 5 6 7 8 9

    HF

    2v

    0

    0.05

    0.1

    0.15

    0.2

    PRLPHENIX Collaboration

    98 172301 (2007)

    (b)

    minimum bias

    > 4 GeV/cT

    , pAA R0π

    T, p2 v

    HF2

    v±, eAA

    R±e

    > 2 GeV/c

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 11 / 18

  • Microscopic model: Static potentials from lattice QCD

    V

    Kaczmarek et al

    lQCD

    color-singlet free energy from latticeuse internal energy

    U1(r, T ) = F1(r, T )− T∂F1(r, T )

    ∂T,

    V1(r, T ) = U1(r, T )− U1(r →∞, T )Casimir scaling for other color channels [Nakamura et al 05; Döring et al 07]

    V3̄ =1

    2V1, V6 = −

    1

    4V1, V8 = −

    1

    8V1

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 12 / 18

  • T-matrix

    Brueckner many-body approach for elastic Qq, Qq̄ scattering

    T= + VTc

    q, q̄V

    = Σglu + TΣ

    reduction scheme: 4D Bethe-Salpeter → 3D Lipmann-SchwingerS- and P waves

    same scheme for light quarks (self consistent!)

    Relation to invariant matrix elements∑|M(s)|2 ∝

    ∑q

    da(|Ta,l=0(s)|2 + 3|Ta,l=1(s)|2 cos θcm

    )Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 13 / 18

  • Microscopic justification for resonances: T-matrixcalculation

    0

    2

    4

    6

    8

    10

    12

    0 1 2 3 4

    -Im

    T (

    GeV

    -2)

    Ecm (GeV)

    s wave

    color singlet

    T=1.1 TcT=1.2 TcT=1.3 TcT=1.4 TcT=1.5 TcT=1.6 TcT=1.7 TcT=1.8 Tc

    0

    1

    2

    3

    0 1 2 3 4

    -Im

    T (

    GeV

    -2)

    Ecm (GeV)

    s wave

    color triplet

    T=1.1 TcT=1.2 TcT=1.3 TcT=1.4 TcT=1.5 TcT=1.6 TcT=1.7 TcT=1.8 Tc

    use static heavy-quark potentials from lQCD

    resonance formation at lower temperatures T ' Tcmelting of resonances at higher T ! ⇒ sQGPmodel-independent assessment of elastic Qq, Qq̄ scattering

    problems: uncertainties in extracting potential from lQCDin-medium potential V vs. F?

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 14 / 18

  • Transport coefficients

    0

    0.05

    0.1

    0.15

    0 1 2 3 4 5

    Α (

    1/f

    m)

    p (GeV)

    T-matrix: 1.1 TcT-matrix: 1.4 TcT-matrix: 1.8 Tc

    pQCD: 1.1 TcpQCD: 1.4 TcpQCD: 1.8 Tc

    0

    10

    20

    30

    40

    0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

    T D

    s

    T (GeV)

    pQCD+T-matpQCD

    from non-pert. interactions reach Anon−pert ' 1/(7 fm/c) ' 4ApQCDA decreases with higher temperature

    higher density (over)compensated by melting of resonances!

    spatial diffusion coefficient

    Ds =T

    mA

    increases with temperatureHendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 15 / 18

  • Non-photonic electrons at RHICsame model for bottomquark coalescence+fragmentation → D/B → e+X

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    0 1 2 3 4 5

    RA

    A

    pT (GeV)

    Au-Au √s=200 GeV (central)

    pQCD, αs=0.4T-matrix

    0

    5

    10

    15

    0 1 2 3 4 5

    v2 (

    %)

    pT (GeV)

    Au-Au √s=200 GeV

    b=7 fm

    pQCD, αs=0.4T-matrix 0

    0.5

    1

    1.5

    RA

    A

    theory [Wo]

    frag. only [Wo]

    theory [SZ]

    PHENIX

    STAR

    0 1 2 3 4 5p

    T [GeV]

    0

    0.05

    0.1

    0.15

    v2

    PHENIXPHENIX QM08

    0-10% central

    minimum bias

    Au+Au √s=200 AGeV

    coalescence crucial for description of dataincreases both, RAA and v2 ⇔ “momentum kick” from light quarks!“resonance formation” towards Tc ⇒ coalescence natural [Ravagli, Rapp 07]

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 16 / 18

  • Transport properties of the sQGP

    spatial diffusion coefficient: Fokker-Planck ⇒ Ds = TmA = T2

    Dmeasure for coupling strength in plasma: η/s

    η

    s' 1

    2TDs (AdS/CFT),

    η

    s' 1

    5TDs (wQGP)

    -0.5

    0

    0.5

    1

    1.5

    2

    0.2 0.25 0.3 0.35 0.4

    η/s

    T (GeV)

    charm quarks

    T-mat + pQCDreso + pQCDpQCDpQCD run. αsKSS bound

    [Lacey, Taranenko (2006)]

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 17 / 18

  • Summary and Outlook

    Summary

    Heavy quarks in the sQGPnon-perturbative interactions

    mechanism for strong coupling: resonance formation at T & TclQCD potentials parameter freeres. melt at higher temperatures ⇔ consistency betw. RAA and v2!

    also provides “natural” mechanism for quark coalescenceresonance-recombination model [L. Ravagli, HvH, R. Rapp, Phys. Rev. C 79, 064902 (2009)]problems

    potential approach at finite T : F , V or combination?

    Outlook

    use more realistic bulk-medium description (real hydro)include inelastic heavy-quark processes (gluo-radiative processes)take into account D/B-meson rescattering in the hadronic phaseother heavy-quark observables like charmoniumsuppression/regeneration

    Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics October 28, 2010 18 / 18

    Heavy-quark interactions in the sQGPHeavy quarks in heavy-ion collisionsHeavy-quark diffusion: The Langevin EquationElastic pQCD heavy-quark scatteringNon-perturbative interactions: Resonance Scattering

    Non-photonic electrons at RHICMicroscopic model for non-perturbative HQ interactionsStatic heavy-quark potentials from lattice QCDT-matrix approach

    Summary and Outlook