heat treatment steel

Upload: tushar-srivastava

Post on 14-Apr-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Heat Treatment Steel

    1/48

    UNITEDSTATESDEPA RTMENTOFCOMMERCE JohnT.Connor,SecretaryNATIONALBURE AUOFTANDARDS A .V.stin,Director

    r

    HeatTreatmentandPropertiesofIronandSteel

    ThomasG .Digges,Samuel.Rosenberg,ndGlennW .Geil

    DISTRIBUTION STATEMENT A Approved fo r Public ReleaseDistributionUnlimited

    NationalBureauofStandardsMonograph8IssuedNovember,96 6

    SupersedesCircular95ndMonograph8 ForaleyheuperintendentofDocuments, .S .overnmentPrintingOffice,Washington, .C .0402 rice5ents

    "7 ""s,

  • 7/29/2019 Heat Treatment Steel

    2/48

    Contents

    !'!

    1 .ntroduction g. 2.ropertiesofro n2.1.ransformationemperatures2.2.Mechanical roperties3 .lloysofro nndarbon3 . 1 .ron-carbon hasediagram3 .2Correlat ion of mechanical properties withmicrostructuresoflowlyooled.carbonteels4.ecomposit ionofaustenite4.1.sothermalransformationa.Topearliteb.Toainite 1 0. c.Tomartensite4.2.Continuousooling5.eatreatmentofteels5.1.Annealing 0a.ullannealing__0b.rocessannealing0c.pheroidizing05.2.ormalizing 05.3 . ardeninga .Effectofmass__1 5.4.Tempering5.5.Caseardening4a.Carburizing 4 n,b.yanidingc.arbonitriding6d.Nitriding Q 5.6.urfaceardening7 a .nductionhardening7 b.l ameardening7 5.7.pecialtreatments7 a.Austempering7 b.Martempering8 c.Coldtreatment8 d.Ausforming 8 6.ardenabil ity g7 .ea ttreatmentofcastirons07 . 1 .Relievinges idualtressesaging)07.2.Annealing 0a.Malleabil iz ing 27.3 .ormalizing,quenching,and tempering-27.4.pecialheatreatments2 1 2. Practicalonsiderations8 . 1 .urnacesan dsaltbathsa.rotective tmospheresb.emperature measurement an dcontrol8.2. uenchingmediand ccessories8.3 .elationofdesigntoheattreatmentNomenclature an d chemical composit ions ofsteels9.1.tructuralteels9.2.Toolteels9.3.tainlessan dheatresistingsteelsRecommendedheattreatments10 . 1 .tructuralteels10.2.oo lteels10 . 3 .tainlessndheatesistingteelsa.roup IHardenable chromiumsteelsmartensiticndag- netic)b.Group IINonhardenable chro-miumteelsferriticndma g -netic)c.Group IIINonhardenable chro-mium-nickelndhromium-nickel-manganese steels (aus-teniticndnonmagnet ic)Propertiesnd se softeels1 1 . 1 .tructuralteelsa .Plainarbontructuralteelsb.Alloystructuralteels11 .2 .oo lteels11 . 3 .tainlessnd ea tesistingteelsa.roup IHardenable chromiumsteelsmartensiticndag- netic)b.roup IINonhardenable chro-miumteelsferriticndmag-netic)c.roup IIINonhardenable chro-mium-nickelndhromium-nickel-manganeseteelsaus-steniticnd onmagnet ic)d.recipitation-hardenable stainlesssteels11.4. ickelmaragingsteelsSelectedeferencesLibraryofCongressatalogardo .6-61523

  • 7/29/2019 Heat Treatment Steel

    3/48

    HeatTreatmentndropertiesfronndteelThomas .Digges,1amuel.osenberg,1nd lennW .Geil

    ThisMonographisarevisionof th epreviousNB SMonograph18.tspurposeis to rovidennderstanding fth e ea treatment fronndteels, rincipallyothoseunacquaintedwiththissubject.hebasicprinciplesinvolvedinth eheattreat-mentfhesematerialsreresentednimplifiedorm.eneralea treatment proceduresaregivenfo rannealing,normalizing,hardening,tempering,casehardening,surfaceardening,ndpecialreatmentsuc hsustempenng,usforming,mar-temperingndoldreatment.hemicalompositions,ea treatments,ndomepropertiesndusesar epresentedorstructuralteels,toolteels,tainlessan dheat-resistingteels,recipitation-hardenabletainlessteelsndickel-maragingteels.1 . Introduction

    TheNationalBureauofStandardseceivesmanyequestsoreneralnformationon -cerningheheatreatment fro nndteelan dordirectionsndxplanationsfuch processes.hi sMonographhas beenpreparedto answersuchinquiriesandto giveinsimpli-fiedorm workingknowledge fhebasictheoreticalan dpracticalprinciplesinvolvedin th eeatreatmentfro nndteel.he effectsofvarioustreatmentsonthestructuresan dmechanicalproperties fhesematerialsareescribed.an yheoreticalspectsrediscussednlybrieflyoromittedentirely,ndinomenstances,echnicaldetailshavebeenneglectedorimplicity.hepresentMono-graphsupersedesCircular495,whichwaspub-lishedn950,ndMonograph81960) .Heattreatmentmaybedefinedasanopera- tionorcombinationofoperationsthatinvolvesth eheatingan dcoolingofasolidmetaloralloyforthepurpose fobtainingcertaindesirableconditionsorproperties.tisusuallydesiredto reserve,s earlysossible,heorm,dimensions,ndurfacefheieceeingtreated.Steelsan dcastironsareessentiallyalloysofironndarbon,modifiedbyhepresence f

    otherlements.teelay eefinedsnalloyofironan dcarbonwithorwithoutotheralloyinglements)ontaininglesshanbout2.0ercentfarbon,sefullymalleablerforgeablesnitiallyast.as tro nmaybe definedasan alloyofironan dcarbonwithorwithouttherlloyinglements)ontaining morehan .0percentofarbon,not suallymalleable rorgeablesnitiallyast.orreasonsthatwillbeapparentlater,thedivid-in glinebetweensteelsan dcastironsistaken at .0percentofarbon,venthoughcertain specialteelsontainarboninxcess fthisamount.ndditionoarbon,ourtherelements renormallypresentinsteelsan din castrons.hesereanganese,ilicon,phosphorus,ndulfur.Steelsayeroadlylassifiedntowotypes,1 )carbonan d2 )lloy.arbonsteelsow eheirropertieshieflyohearbon.Theyrerequentlyalledtraightorplaincarbonsteels.lloysteelsarethosetowhichoneormorealloyingelementsareaddedin suf-ficientmountsomodifyertainproperties.Thepropertiesofcastironalsom aybemodi-fiedbyth epresenceofalloyingelementssuchirons arecalledalloycastirons.2 . Propertiesofron

    Sincero nshe asic lement fteel,knowledge fsomeoftspropertiessapre-requisiteonnderstanding fheunda-mentalprinciplesunderlying theheattreatmentofsteels.2.1 . TransformationTemperatures

    Ifamoltensampleofpureironwereallowedtocoolslowlyandth etemperatureoftheironweremeasuredategularntervals,ndeal- 1Retired.

    izedequilibrium)ime-temperature plotofth e datawouldappearasshowninfigure1 .hediscontinuitiestemperaturerrests)nhiscurveareausedyhysicalhangesnheiron.Thefirstarrestat2,800Fmarksth etem-peratureatwhichtheironfreezes.he otherarrestsknownsransformationempera- turesorcriticalpoints)marktemperaturesatwhichertainnternalhangesak e lacen th eolidron.om efheseemperaturesare erymportantnheheatreatment fsteel.

  • 7/29/2019 Heat Treatment Steel

    4/48

    28002550

    Id < r (E UI Q.5

    1 6 7 0 1420

    VLIQUID -'r .MELTINGOINT

    r \_ _\X 2a ^v

    TIME

    FIGURE. Idealizedcoolingcurvefor pureiron.Theatomsinal lsolidmetalsarearrangedinsomedefinitegeometricorcrystallographic)pattern.heatomsiniron,immediately afterfreezing,arearrangednwhatsermedhebody-centeredubicystem.nhisrystalstructuretheunitcellconsistsofaubewithanronatomateachoftheeightcornersandanotherinthecenterfig.2,a).achofthemanyndividualrainscrystals)fwhichtheolidmetalsomposedsbuiltupofaveryargenumberofheseunitells, llori-entedalikeinthesamegrain.hishigh-tem-peratureormofronsknownasdelta8)iron.At2,550FtheApoint),ronundergoes|anallotropicransformationfig.1);hats,* therrangementofheatomsnhecrystal;changes.heewrystaltructuresace-icenteredcubic,andtheunitcellagainconsists;

    ofaubewithanronatomateachofhe;eightcorners,butwithanironatominthecen-jterofeachofthesixfacesinsteadofonein the,'centerofheubefig. ,b).hisorms; knownasgammay)ron.t1,670Fthe;A 3oint) ironndergoesnotherllotropic*!

    FIGURE. Crystalstructureofiron.(a)Body-centeredcubic(alphaan ddeltaIron);b)Face-centeredcubic (gammaIron).transformationndevertsoheody-centeredubicsystemfig. ,a).hisstruc-ture,whichiscrystallographicallythesameasdeltaron,stableat llemperatures elow theA 3pointandsknownasalphaa)ron(fig.,A).hearrestat ,420Fknown astheA 2point)snotcausedbyanallotropicchange,hats,achangencrystaltructure.Itmarksheemperaturetwhichrone- comeserromagneticandshereforeermedthemagnetictransition.bovethistempera-tureironisnonmagnetic.Thesevarioustemperaturearrestsoncoolingarecausedbyevolutionsofheat.nheating,therrestsccurneverserderndrecausedybsorptionfeat.heriticalpointsmaybedetectedalsobysuddenchangesinotherphysicalproperties,ornstance,x- pansivityorelectricalconductivity.

    2.2. MechanicalPropertiesIronselativelyoft,eak* ,nductile andannot eppreciablyhardenedbyheattreatment.tstensilestrengthat,room temper-

    aturesabout40 , 000lb/in.2 ,tsyieldstrengthisabout20 , 000lb/in.2 ,anditsBrinellhardnessisabout80 .hemodulusofelasticityisabout29 , 000 , 000lb/in.2 .hestrengthandhardnesscanbencreased,withcorrespondingdecreaseinductility,bycoldworking.3 . AlloysofronandCarbon

    Theropertiesfronreffected.verymarkedlyydditionsfarbon.thouldbeealizedhatndiscussingron-carbcn l- loys,weactuallyaredealingwithplaincarbonsteelsandcastirons.3.1 . Iron-CarbonPhaseDiagram

    Theompleteron-carbonphaseorconsti-tutional)iagramepresentsheelationshipbetweentemperatures,compositions,andstruc-turesofal lphasesthatmaybeformedbyiron

    andarbonnderonditionsfquilibrium(verylo wooling).portionfhisia -gramor lloysangingupo .7percent fcarbonseproducednigure;hepperlimitofcarbonncastronsusuallynotnexcessof5percent.helefthandboundaryoftheiagramepresentsureron,ndhe right-handboundaryepresentsheompoundironcarbide,Fe3C,commonlycalledcementite.* Ironrownsingle-crystalwhiskersmayexhibitastoundinglyhightrengths.

    J-

  • 7/29/2019 Heat Treatment Steel

    5/48

    3200

    6.7% C STEELSAS T IRONS

    C ARB O N , BYWEIGHTFIGURE. Iron-carbonphasediagram.

    Theeginningfreezingfheariousiron-carbonalloysisgivenbythecurveABCD,termedheiquidusurve.hendingffreezingsivenyheurveHJECF,termedheoliduscurve.hereezingpointofronsoweredbyheadditionofcarbon(upo4.3%)ndheesultant l loysreezeoveraangenemperaturensteadofataconstantemperatureasoeshepuremetaliron.healloycontaining4 .3percentofcar-bon,calledtheeutecticalloyofironandcemen-tite,freezesataconstanttemperatureasindi-catedyheoint.hisemperatures2,065F,considerablybelowthefreezingpointofpureiron.Carbonasnmportantffectponhetransformationemperaturescriticalpoints)ofiron.traisestheA 4temperatureandlow-erstheA 3.hiseffectontheA 3temperatureiserymportantnheeatreatmentfcarbonandalloystructuralsteels,whilethatontheA 4smportantnheheatreatmentofcertainighlloyteels,articularlyfhestainlesstypes.Itispossibleforsolidirontoabsorbordis- solvecarbon,theamountbeingdependentuponthecrystalstructureoftheronandhetem-

    perature.hebody-centeredalphaordelta)ironcan dissolvebutlittlecarbon,whereastheface-centeredgamma)roncandissolveacon-siderablemount,hemaximumeingabout2 .0ercentat ,065Ffig.).hisolid solutionfarbonnammaronsermedaustenite.hesolidsolutionofcarbonindeltaironistermeddeltaferrite,andthesolidsolu-tionofcarbonnalpharonsermedalphaferrite,or,moresimply,ferrite.Theechanismfolidificationfron-carbon lloys,especiallyhosecontainingessthanabout0 .6percentofcarbon,israther com-plicatedandsofnomportancenheheattreatmentofcarbonsteelsandcastirons.tis sufficientonowhatallron-carbonlloyscontaininglessthan2 .0 percentofcarbonthatis ,steel)will,immediatelyorsoonaftersolidi- ficationiscomplete,consistofthesinglephaseaustenite.astironswillconsistoftwophasesimmediatelyafterolidificationausteniteandcementiteFe3C).ndersomeconditionsthiscementiteormedonoolingthroughthetem-peraturehorizontalECFwilldecomposepartlyorompletelyntoustenitendraphite(carbon).

  • 7/29/2019 Heat Treatment Steel

    6/48

    2200

    2000

    1800

    160 0-UJ 'r- 1200a:U)2UJ

    1000

    600

    400-

    Austenite2065"F___

    5^670F &cj!AusteniteA.*?._" T__o\|420F A, ~_^ CementiteF 1 1 1 1 _ Peorlite with l1 1 1 Peorliteith Excess Ferrit

    1 1 1 1 1 >

    1 ITISa O

    i-Excessementite

    111 1 1 1 1 1 0.2 0.6.8.0.2 CARBON.%

    FIGURE. Phasediagram forcarbonsteels.1 .6

    Thepartoftheiron-carbondiagramthatis concernedwithheheatreatmentofteelsreproducednanexpandedcalenigure .Regardlessofhecarboncontent,teelexistsasusteniteboveheineOSE.teelfcompositionS0 .80%ofcarbon)sdesignatedas"eutectoid"teel,ndhosewithowerorhighercarbonas"hypoeutectoid"andhyper-,eutectoid,"respectively.Aeutectoidteel,whenooledatverylow!ratesromtemperatureswithinheausteniticfield,undergoes ochangeuntilheempera-turehorizontalPSKseached.tthisem-peratureknownasheA !emperature),heausteniteransformsompletelyoanaggre-gateofferriteandcementitehavingatypicallamellartructurefig., nd).hisaggregatesnownsearlitendhextemperatures,herefore,requentlyeferredtoshepearlitepoint.inceheA xrans-formationnvolvesheransformationofus- tenitetopearlitewhichcontainscementiteFe3C),pureirondoesnotpossessanA xtrans-formationfig.).heoretically,ronmustbe lloyedwithaminimumof0.03percentofcarbonbeforethefirstminutetracesofpearlitecanbeformedoncoolingpointP,fig.4).fthesteelisheldatatemperature justbelowA 1 ((eitherduringcoolingorheating),thecarbideinhepearliteendsooalescentoglobulesorpheroids.hishenomenon,nownsspheroidization,willbediscussedsubsequently.Hypoeutectoidsteelslessthan0 .80%ofcar-bon),whenlowlyooledromemperatures

    abovetheA 3,begintoprecipitateferritewhen theA 3in eGOSfig. )seached.sthetemperaturedropsfromtheA 3toA x,thepre- cipitationofferriteincreasesprogressivelyandthemountfheemainingustenitee-creasesprogressively,tscarboncontentbeingincreased.ttheA xtemperaturetheremain-ingusteniteeachesutectoidomposition(0 .80%ofcarbonpointS,ig .4)nd, po nfurtherooling,ransformsompletelyntopearlite.hemicrostructuresofslowlycooledhypoeutectoidsteelsthusconsistofmixturesofferritendearlitefig., nd).helowerthecarboncontent,thehigheristhetem-peratureatwhichferritebeginstoprecipitateandhereatershemountnheinalstructure.Hypereutectoid,teelsmorehan .80% fcarbon)whenslowlycooledfromtemperaturesaboveheA cm ,beginoprecipitatecementitewhentheA cmlineSEfig.4)sreached.sthetemperaturedropsfromtheA cmtoA x,theprecipitationfementitencreasesrogres-sivelyandheamountofheemainingus-tenitedecreasesprogressively,tscarbonon -tenteingepleted.the xemperaturetheremainingaustenitereacheseutectoidcom-position0.80%ofcarbon)nd,uponfurthercooling,ransformsompletelyntoearliteThemicrostructuresofslowlycooledhypereu-tectoidteelshusonsistfixturesfcementiteandpearlitefig.5,F).hehigherthecarboncontent,hehighersheemper-atureatwhichcementitebeginsoprecipitate

    L j-

  • 7/29/2019 Heat Treatment Steel

    7/48

    A ,Ferrite(airon). A ll grainsar eof thesamecomposition. X 100 .B,0.25%carbon. Lightareasar eferritegrains. Darkareasare pearlite. X 1 0 0 .C,0.5%carbon. SameasBbuthighercarboncontentresultsinmorepearliteandlessferrite. X 100 .D,0.8%carbon. A llpearlite. X 100 .E,SameasD. Athighermagnificationthelamellarstructureof pearliteisreadilyobserved. X 500 .F, .3 %carbon. Pearliteplusexcesscementiteas network. X 100 .A lletchedwitheitherpicralor nital.andhereatershemountnheinalstructure.TheemperatureangebetweenheA ,andA 3pointssalledhecriticalorransforma-tionange.heoretically,heriticalointsinnyteelhouldccurtboutheametemperaturesoneitherheatingorcoolingveryslowly.ractically,however,theydonotsince theA ,andA ,points,affectedbutlightlyby theate fheating,areaffectedremendouslybytherateofcooling.apidratesofheatingraisethesepointsonlyslightly,butrapidatesofoolingowerhetemperaturesoftransfor-

    mationconsiderably.odifferentiatebetweenthecriticalpoints nheatingandooling,hesmallettersc"forchauffage"romheFrench,eaningeating)ndr"for"refroidissement"romherench,meaningcooling)redded.heerminologyfhecriticalpointsthusbecomesA c 3,Ar3,Ac,,Aretc.heettere"sse doesignateheoccurrencefheointsnderonditionsfextremelyslowoolingonheassumptionhatthisrepresentsequilibriumconditions"e"orequilibrium);ornstance,hee3,e! ,ndAe([1 |.L

  • 7/29/2019 Heat Treatment Steel

    8/48

    3 . 2 . Correlation of echanicalropertiesWithMicrostructuresofSlowlyCooledCarbonSteelsSomeechanicalropertiesfearliteformeduringlowoolingf utectoid(0.80% fcarbon)teelare approximatelyas follows:Tensiles trength115,000b/in*.Yieldstrength60,000lb/in1 .Brindellhardnessnumber200.Theamountofpearlitepresentin slowlycooledhypoeutectoidsteelsainearfunction ofth ecarboncontent,varyingfrom no pearlite,whenoarbonsresentth e erylightamountofcarbonsolublein alphaironmay be neglected),oll earliteat .80 ercent fcarbon.he balanceofth estructureofhypo-eutectoidsteelsiscomposedofferrite,th eme -chanicalproperties fwhichweregivennaprecedingsection.inceth emechanicalprop-ertiesofaggregatesofferritean dpearliteare functionsofth erelativeamountsofthesetw o constituents,heechanicalropertiesfslowlycooledhypoeutectoidsteelsarealsolin-earunctions fhearbonontent, arying

    betweenthoseofironatnocarbonto thoseofpearliteat0.80percentofcarbonfig.6).4 . Decomposit ionofAustenite

    Inlloys fro nndarbon,ustenites^ioL noSlyatemperaturesbovehee x (1,330F).elowthistemperatureitdecom-posesntomixtures ferritendementite(ironcarbide).heen dproductorfinalstruc- tureisgreatlyinfluencedbyth etemperatureatwhichhetransformation ccurs,ndthisnturn,snfluencedyheatefooling,mceth emechanicalpropertiesmay be variedoverawiderange,depending on th e decomposi- tionproductsofth eparentaustenite,aknowl-edgeofho waustenitedecomposesan dth efac- torsnfluencingtsecessaryor learunderstandingofth eheatt reatmentofsteel,inerogressiveransformationfustenite underonditionsfquilibriumextremelyslowcooling)hasbeendescribed.ractically however,teelisnotcooledunderequilibriumconditions,an dconsequentlyth ecriticalpointsoncoolingalwaysoccuratlowertemperaturesthanindicatedmfigure 4.Ifamples fsteel,ayofeutectoidarboncontentorheake fimplicity, reooledfromboveheext raduallyncreasing rates, th eorrespondingArransformationcur!L -owerandoweremperaturesfig.7).histransformation isdistinguished from that ccurringunderxtremelylowates fcoolingAr,)yth edesignationAr\sth eraj.o,0?lmSofhisteelsncreased,n additionalransformationtermedtheAr"or

    izo

    100

    ._0 aooo 6040

    20

    UJ 160 zoK< X

    120 tuza: m80100

    u 725j

    0.2.4.6CARBON,ERCENT 0.8

    00

    FIOURE. Relationofmechanicalpropertiesandstructuretocarboncontentofslowlycoo ledcarbonsteels.

    1330

    uig ua. 2a

    AUSTENITE

    PEARLITEPEARLITE

    + MARTENSITE MARTENSITEINCREASEDRATEOFCOOLING-

    FIGURE.chematicllustrationhowingheffectofrateofoolingnheransformationemperaturesnde- compositionroductsfustenitefutectoidarbonsteel.L

  • 7/29/2019 Heat Treatment Steel

    9/48

    r M .)ppearstelativelyowemperatures(about4 30F).ftherateofcoolingisstillfurtherncreased,heAr'ransformationssuppressedntirelyndnlyheAr"rans-formationsevident.tshouldbenotedhattheemperatureoftheAr"snotaffectedbytherateofcooling,whereasthetemperatureoftheAr'maybedepressedoasowasabout1 ,050Finthisparticularsteel.Theproductof theAr'transformationisfine pearlite.sheemperaturefheAr'sgraduallyowered,heamellartructureftheresultingpearlitebecomescorrespondinglyfinerandthesteelbecomesharderandstronger.TheproductoftheAr"transformationismar-tensitefig.,,nd5 ,A),whichshehardestandmostbrittleofthetransformationproductsofausteniteandischaracterizedbyatypicalacicularstructure.ThephenomenonofheoccurrenceofboththeAr'andAr"ransformationssknownasthesplittransformation.heresultantmicro-structuresofteelsooledatuchatesastoundergoasplittransformationconsistofvary-ingmountsfineearlitendmartensite(fig. ,C).heactualamountsofthesetwoconstituentsarefunctionsoftheratesofcool-ing,theslowerratesresultinginmorepearliteandlessmartensite,andthefasterratesresult-inginmoremartensiteandlesspearlite.

    4.1. IsothermalTransformation Theoursefransformationfustenitewhenthesteelisquenchedtoandheldatvari-ousconstantelevatedemperatureevelsiso-thermaltransformation)sconvenientlyshownby iagramnownshe-curvealsotermedheTTdiagramforime,emper-ature,andransformation).uchadiagramforeutectoidcarbonsteelshownnfigure8andhediscussionofhisigurewillbeon-finedtosteelofthisparticularcomposition.

    a.oPearliteAustenitecontaining0.80percentofcarbon,cooled uicklyoandheldat , 300F,oesnotbegintodecomposetransform)untilafterabout5min,anddoesnotcompletelydecom-poseuntilafterabout5hrfig.8).hus,attemperaturesustbelowheAd,austenitesstableforaconsiderableengthoftime.heproductofhedecompositionofusteniteatthistemperatureiscoarsepearliteofrelativelylo wardness.fheustenitesuicklycooledoandheldataomewhatowerem-perature,ay , 200F,ecompositionbeginsinabout5se candiscompletedafterabout3 0 sec,heesultantearliteeinginerndharderhanhatormedt , 300F.tatemperatureofabout , 050F,heaustenitedecomposesextremelyrapidly,onlyabout1se celapsingbeforethetransformationstartsand5

    os T IME ,SECONDSFIGURE. Isothermalransformationiagram (S-curve) fo reutectoidcarbon steel.

    (Metals Handbook,1948 edit ion, page 08.) Thehardness of th e structures formedat th evarioustemperaturesis Rivenbyth escaleon th eright.se cbeforeitiscompleted.heresultantpear-litesextremelyfineandtshardnesssela-tivelyhigh.hisregionoftheS-curvewheredecompositionfusteniteoin eearliteproceedssorapidlyistermedthe"nose"ofthecurve.

    b. ToBainiteIftheausteniteisooledunchangedtotem-peratureselowheosefhe-curve (1 ,050F),heimeortsecompositionbeginstoincreasefig.8).hefinalproductofdecompositionnowisnotpearlite,butanew acicularconstituentcalledbainitefig.5,E)possessingnusualoughnesswithardnessevengreaterthanthatofveryfinepearlite.Depending nheemperature,hen,aer- tainfinitentervaloftimesnecessarybeforeaustenitestartstotransformintoeitherpear-liteorbainite.dditionalimesnecessarybeforeheransformationsareompleted.c.oMartensite If theausteniteiscooledunchangedtoarel- ativelyowemperaturebelowabout4 30Ffortheeutectoidcarbonsteelunderconsidera-tion),artialransformationakeslacen-stantaneously;theproductoftransformationis martensite.usteniteransformsntomar-tensiteveremperatureangendheamounthatransformss unction fhetemperature.nlyminutemountsil lotransformatabout 3 0F;ractically ll ftheustenitewilleransformedtbout1 75F.heeginningfhisransforma-tionangesermedhemartensitestart)ndheendoftherangestermedheM tmartensitefinish).slongasthetem-peratureseldconstantwithinheM s M rrange,hatportionofheaustenitehatdoesnotransformnstantaneouslyomartensite

    J

  • 7/29/2019 Heat Treatment Steel

    10/48

    remainsntransformedoronsiderablelengthfime,ventuallyransformingobainite.Inordinaryheattreatmentoftheplaincar-bonteels,ustenitedoesotransformnto bainite.ransformationoftheaustenitetakesplaceeitheraboveoratthenoseoftheS-curve,formingearlite,rnassinghroughheM s M frange,formingmartensiteorboth.tisvidenthatnrderorusteniteoetransformedentirelyntomartensite,tmustbeooledufficientlyapidlyohatheem -peratureofthesteelisloweredpastthenoseoftheS-curvenes simehansnecessaryortransformationotartthisemperature.Ifhissnotccomplished,artofheteeltransformsntoearliteathehighemper-atureAr'),ndheemainderransformsintomartensiteatheowemperatureAr"orM,Fftemperaturerange).hisexplainsthehenomenonfheplitransformationdescribedpreviously.4.2. ContinuousCooling

    Figure9epresentsatheoreticalS-curveonwhicharesuperimposedfivetheoreticalcooling curves.urvesAoEepresentsuccessivelysloweratesofooling,aswouldbeobtained,forinstance,bycoolinginicedbrine,water,oil,air,andinthefurnace,respectively.ThesteelcooledaccordingtocurveEbeginstoransformattemperaturetandompletestransformationatt2;thefinalproductiscoarsepearlitewithelativelyowhardness.hen cooledccordingourve,ransformationbeginsat3andsompletedatt;heinalproductsin eearlitendtsardnesssgreaterthanthesteelcooledaccordingtocurveE.henooledaccordingtocurveC,rans-formationeginst ndsnlyartiallycompletewhenemperature6seached;heproductofthispartialransformationsveryfinepearlite.heemainderofheaustenitedoesnotdecomposeuntilheM ,emperatureiseached,whenteginsoransformomartensite,completinghisransformationatthe femperature.heinaltructuresthenamixtureoffinepearliteandmartensite(typicalfncompletelyhardenedteel-f-fre-quentlytermed"slackquenched"steel)withahigherardnesshanwasbtainedwithhesteelcooledaccordingtocurveD.herate ofcoolingepresentedyurve sustuffi-cienttontersectthenoseoftheS-curve,on- sequentlyonly aminuteamountof theaustenitedecomposesintofinepearliteattemperaturet7;theemainderfheustenitesnchangeduntilhemartensiteransformationangesreached.fheteelsooledtalightlyfasterate,ohatoransformationakesplaceathe oseofhe-curve,heteelscompletelyhardened. Thisparticularates

    FIGURE.chematicdiagramllustratingheelatione- tweenheS-curve,continuousoolingurves,ndesult-ingmicrostructuresofeutectoidcarbonsteel.Microstructures:A,martensite;B,martensitewith traceof veryfine pearlitedark):C ,martensitean der yfinepearlite;D,(ineearlite;,coarsepearlite. Alletched with nital. X 500 .

    termedhecriticaloolingateandsdefinedashelowestateatwhichheteelan ecooledandyetbecompletelyhardened.incethisateannoteirectlyetermined,heratendicatedycurveB,roducing nlyatraceofin epearlitefig. ,B),srequently8

  • 7/29/2019 Heat Treatment Steel

    11/48

    usedas th ecriticalcoolingrate. The hardness cST5"V*btained-ampleiJL\fe?rate'

  • 7/29/2019 Heat Treatment Steel

    12/48

    5.1. AnnealingAnnealingisaprocessinvolvingheatingandcooling,suallyappliedo roduceoftening.Thetermalsorefersto treatmentsintendedtoaltermechanicalrhysicalroperties,ro-duceadefinitemicrostructure,orremovegases.Thetemperatureoftheoperationandtherateofcoolingdependuponthematerialbeingan-nealedandthepurposeofthetreatment.

    a. FoilAnnealingFullnnealings ofteningrocessnwhichasteelisheatedtoatemperatureabove theransformationangeA cs)nd,fterbeingheldforasufficienttimeatthistemper-ature,scooledslowlytoatemperaturebelowthetransformationangeArt).hesteelisordinarilyallowedtocoolslowlyinthefurnace,althoughitmayberemovedandcooledinsomemediumuchasmica,ime,orashes,hatn-suresaslowrateofcooling.Sinceheransformationemperaturesareaffectedbythecarboncontent,tsapparentthatthehighercarbonteelscanbeullyan-nealedatoweremperatureshanheowercarbonsteels.ntermsofthediagramshowninfigure4 ,teelsmustbeheatedtoabovethelineGOSK.hetemperatureangenormallyusedforfullannealingis25to50degFabove thisinethepperritical),shownnfigure1 1 .Themicrostructuresfheypoeutectoidsteel -> thatresultafterfullannealingarequitesimilartothoseshownfortheequilibriumcon-ditionsfig., nd).utectoidndhypereutectoidteelsrequentlypheroidizepartiallyorompletely nullannealingse elaterectionandig .2 ,D).b. ProcessAnnealing Processannealing,requentlytermedstress-reliefnnealing,ssuallyppliedoold-workedowcarbonteelsupoabout .25% ofarbon)ooftenheteelufficientlyoallowurtherold-working.heteelsusuallyheatedcloseto ,butbelow,theA citem-peraturefig.1).fheteelsnoto efurtherold-worked,utelieffnternalstressessdesired,aowerangeoftempera-ture il lufficeabout,000F).atefcoolingisimmaterial.Thisypeofannealwillauseecrystalliza-

    tionandofteningofheold-workederritegrains,butusuallywillnotaffecttherelativelysmallamountsofcold-workedpearlite.ypi-calstructuresofcold-worked,process-annealed,andfullyannealedow-carbonteelareshowninfigure 2,A ,B,andC,espectively.

    O < X 2 0 0.40 O) 0.80 UX > 1.20 1.40 1 . 6 0 C A R B O N%

    FIQUBE 1 1 . Recommended temperatureangesor heattreating plain carbonsteels.c Spheroidizing

    Spheroidizings rocessfheatingndcoolingsteelthatproducesaroundedorglobu-larformofcarbideinamatrixofferrite.tisusuallyccomplishedbyprolongedheatingatemperaturesust elowheA cjfig.11),butmaybefacilitatedbyalternatelyheatingto temperaturesustboveheA c!andooling tojustbelowtheArt.hefinalstep,however ,shouldconsistofholdingatatemperaturejustbelowhecriticalArx).herateofcooling ismmaterialfterlowlyoolingobout1 , 000F.Therateofspheroidizationisaffectedbytheinitialtructure.heinerheearlite,hemoreeadilypheroidizationsccomplished. Amartensitictructureserymenableo spheroidization.Thistreatmentisusuallyappliedto thehigh carbonteels0 .60%fcarbonandhigher).Theurposefhereatmentsomprove machinabilityandtsalso se doondition high-carbonteelorcold-drawingntowire.Aypicalmicrostructureofpheroidizedhigh carbonsteelsshownnfigure1 2,D.

    5.2. Normalizing Normalizingisaprocessinwhichasteelis heatedoatemperatureboveheA c3ortheA cmfig. 1 )ndthencooledinstillair.hepurposeofhereatmentsoobliterateheeffectsofanypreviousheattreatmentinclud-ing the coarse-grained structure sometimes

    1 0 i J

  • 7/29/2019 Heat Treatment Steel

    13/48

    FIGURE2. Representativemicrostructuresofcarbonsteels.taffectedby this treatment. X100.T Vm>,ii.SiS.T.x:r#";'"tSr?r" V'?? V VS ! " " " "'w'" "" ' " " ? Breeliminated,an dther e r r i t egrainsa r e largerthanin(B). X I O O .' ferrite >foSspheroidlMd- Autne< r t x > n ispresent In thef o r m of spheroidsorslightlyelongatedparticles of cementitein a matriiof'f mJiifa3j5!SMl?i??eIi(Wci,fSn?rmJ 11"d 'J. 0FinM - l n .round(centerarea). Becauseof the rapidrateof air coolingsucha smallsection,the Ielativelylittlef r e eferriteisformed. X100I Ir e e f e r r i t e " 6XU""(E)* " " normaUiedin2M" ln-rund(centcrarea> - Theslowerrateof > " B : du etothe largersection results incoarserDearliteand moreAll etched inpicral.resultingromhighorgingemperatures)rcold-workingndonsureomogeneous austeniteneheatingorardeningorullannealing.heresultantstructuresarepearl-

    iteorpearlitewithexcessferriteorcementite,dependinguponhecompositionofheteel.Theyaredifferentromhestructuresesult-ingafterannealingnhat,orteelsofhesamecarboncontentnhehypo-orhypereu-tectoidanges,heresessxcesserriteor

    cementiteandthepearliteisfiner. Thesearetheresultsofthemorerapidcooling.Sinceheypeoftructure,and,herefore,themechanicalproperties,are ffectedbyheratefooling,onsiderableariationsmayoccurnormalizedteelsecausefiffer-encesnectionhicknessofthehapesbeingnormalized.heeffectofsectionthicknesson thetructuref ormalized.5-percent-carbonsteelshowninfigure2,EandF.

    11 L

  • 7/29/2019 Heat Treatment Steel

    14/48

    5.3. Hardening Steelscanbehardenedby th esimpleexpedi-entofheating to abovetheAc 3transformation,holdingongnoughonsurehe ttainment ofuniformtemperatureandsolutionofcarboninheustenite,ndhenoolingapidly (quenching).ompletehardeningdependson coolingoapidlyfig.,AndB)hatth eaustenite,whichotherwisewoulddecomposeon coolingthroughtheArlfismaintainedtorela-

    tivelylo wtemperatures.henthisisaccom-plished,th eaustenitetransformsto martensiteonoolingthroughtheM,M fange.apid coolingisnecessary only to th eextentoflower-ingth etemperatureofthesteeltowellbelowth e oseofhe -curve.nc ehis asbeenaccomplished,slowcoolingfrom thenon ,eitherin oilorin air ,isbeneficialinavoidingdistor-tionandcracking.pecialtreatments,such ast imeuenchingndartempering,ree- signedoringboutheseonditions.smartensiteisquitebrittle,teelsarelyusedinhes-quenchedondition,hats,withouttempering.Themaximum hardnessthatca nbeobtainedin completely hardenedlow-alloy andplaincar-bonstructuralsteelsdepends rimarilyonth ecarboncontent.herelationshipofma x imumhardnessoarbonontentshownn figure3 .o0_i_iU J J0ooITV> bJ |'30< X|0sXio

    00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.60 0.90 1 . 0 0 C A R B O N , % FIGURE3. Relationfmaximumttainableardnessfquenchedsteelsocarboncontent.(Burns,Moore,andArcher,Trans.Am .So cMetals2 6 ,1 4(1938)).

    a . EffectofMassPreviousdiscussionoftheformation ofmar-tensiteaseglectedhenfluencefmass.Itmustberealizedthatevenwithasampleof

    relatively smalldimensions,th erateofabstrac-tionofheatsnotniform.ea ts lways abstractedfromheurfaceayersatafasterratethanromth enterior.na ivenool-ingmediumth ecoolingrateofbothth esurfaceandnteriordecreasesshedimensionsof

    samplencreasendhe ossibility fxceedingth ecriticalcooling ratefig.9,B )becomeless.overcomehis,heteelayquenchedinamediumhavingaveryhighratofea tbstraction,uchsce drine,utevenso ,many steelshaveaphysica lrestrictiononhe ax imumiz emenableoomplethardeningregardlessofth equenchingmediumThemarkedffecthatmass asponhhardnessofquenchedteelm a ybellustrateby measuringth ehardnessdistributionofdifferentiz eoundsofth eam eteelquencheinth esamemedium.urvesshowingth edistributionofhardnessinaseriesofroundbarofdifferentsizesof0.5-percent-carbon steelarshownnigure4.heuenchingmediumusedasater;heuenchingemperaturwas , 530F.heateofooling ecreaseashe iametersofth ebarsncreased.nlth e%-in.ound ardenedompletelyhrougth ecrosssection,whereaswithth e4-in.rounth ecriticaloolingratewasnotattainedeveatthesurface.

    5.4.emperingTemperingsometimesalledrawing)th e processofreheating hardenedmartensit icor normalized steelstosometemperaturebeloth eowerrit icalAd). Thea teofcoolin70

    60

    so

    40c< X

    3/4"Dl/2"0 \ l"0

    r i1 ! IT n% L 3020202RADIUS, I N C H E S FIGURE4. Variationnhardnessndifferentsizeounof0.5-percent-carbon steelssuenchedrom,530"inwater.(Jomlny,Hardenablllty of alloysteels,Am.Soc.Metals,D .75,1939.)1 2

  • 7/29/2019 Heat Treatment Steel

    15/48

    r

    \v.$>:. . :

    >*. .*..

    P^^^S^ii^

    'mIGURE5. Microsiruduresandcorrespondinghardnessofheat-treatedhighcarbonteel.A ,As quenchedInbrine;martensite,RockwellChardness=67. X 5 00 .B,SameasAaftertemperingat400F;temperedmartensite,RockwellChardness=61. X 5 00 .C,Sameas(A )attcrtemperingat800F;temperedmartensite,RockwellChardness=45. X 5 00 .D, am easA )afteremperingat ,200F;emperedmartensite,RockwellChardness=25. X 5 00 .E,Quenchednea dat650F;bainite,ockwellChardncss=49. X 5 00 .F,Heat-treatedsteelshowingdecarburizedsurfacelayer(lightarea)hatdidnotrespondtohardening. X 100 .A ll etchedin1% nltal.ismmaterialexceptorometeelshataresusceptibleoemperrittleness.2A sheemperingemperaturesncreased,themartensitefig.5 ,A)fhardenedteelpasseshroughtagesofemperedmartensite(fig.5, and) andsraduallychanged

    2Temperrittlenesssmanifesteds os sfoughnessob-servednlyympactestsfotchedars)fterlo woolingfromemperingemperaturesf. 100Forigher,rfterem-?e.r nKheemPeratureangeetweenpproximately50 nd1 . 1 00F.tsostronouncednlloyteelshatontainmanganeserhromiumndsuallyanereventedyapidquenchingromheemperingemperature.hepresenceofmolyb- denumseneficialnounteractingheendencyowardemperbrittleness.

    into tructureonsistingfpheroidsfcementiten matrixferrite,ormerlytermedorbitefig.5,D).hesehangesareaccompaniedbyadecreasinghardnessandincreasingtoughness.heemperingtemper-aturedependsuponthedesiredpropertiesandthepurposeorwhichheteelso e sed.Ifconsiderablehardnesssnecessary,hetem-peringemperaturehouldeow;fonsid- erableoughnesssequired,heemperingtemperaturehouldeigh.heffectftemperingnheardnessfullyardenedcarbonteelsshownnigure6.

    13

  • 7/29/2019 Heat Treatment Steel

    16/48

    40 0 60 0 80 0 1000TEMPERING TEMPERATURE , * F 1400

    FISURE16.Effectoftemperingtemperatureon thehard-nessofcarbon steelsofdifferentarboncontent.Specimenswereem per edor hr.Bain,Functionsofthealloy-ingelementn tel,Am. oc .Metals,p.S8 ,US9.)Properemperingf ardenedteele-quiresertainmountfime.tnyselectedemperingemperature,hehardnessdropsapidlytirst,raduallyecreasingmorelowlysheimesrolonged.heeffectofimeatdifferentemperingemper-aturesupontheresultanthardnessofaeutec-toidcarbonsteelisshowninfigure7.horttemperingeriodsreenerallyndesirableandshouldbeavoided.oodpracticerequiresateast%hror,preferably, o hr)ttemperingtemperatureforanyhardenedsteel.Thenecessityfortemperingasteelpromptlyafterhardeningcannotbeoveremphasized.ffullyhardenedteelis l lowedtocooltoroomtemperatureduringhardeningthereisdangerthatheteelmaycrack.arbonteelsandmostofthelo w alloysteelsshouldbetemperedasoonasheyareoo lenoughoeelom-fortable1 0 0o40F)ohebarehands.Steelsshouldnotbetemperedbeforetheycooltohisemperatureangeecausenom esteelstheM ttemperatureisquitelo wandun-transformedustenitemaybepresent.artorllfhisesidualusteniteil lrans-formomartensite noolingromheem-peringtemperatureohatthefinalstructurewillconsistofbothtemperedanduntemperedmartensite.herittlentemperedmarten-

    site,togetherwiththeinternalstressescausedbyitsformation,caneasilycausefailureoftheheat-treatedart.hentsossiblehatsuch onditionxists, econdemperingtreatmentdoubletempering)houldbegiventotemperthefreshmartensiteformedoncool-ingaftertheinitialtemperingtreatment.1 4

    70

    60

    30 Id40

    30

    ":; __400*F\

    600* F - 800*F

    ^JO00*F .

    10 SECOND 10 I*MMUTES 2 5HOURS 25

    TM EX TTEMPERM6TEMPERATURE FIGURE7 .ffectfimetemperingemperaturen th eardnessf.8-percent~carbonteel.Logarithmictimescale.)(Bain.Function of the allojlnc elements I n steel,Am .S o n ,Mttalt,p.2 3 3 ,MM.)

    Ifstructuralsteelsaretobeusedinthenor-malizedcondition,thenormalizingoperationis frequentlyollowedbyheatingoaempera-tureofabout1 ,200to ,300F.hepurpose ofthisreatment,whichs ls odesignatedastempering,rtress-reliefnnealing,sorelieventernaltressesesultingnoolingfromhenormalizingemperatureandom-provetheductility.

    5.5. CaseHardening Casehardeningisaprocessofhardeningaferrousalloyso thatthesurfacelayerorcaseis madesubstantiallyharderthantheinteriororcore.hechemicalcompositionofthesurfacelayerisalteredduringthetreatmentbythead-ditionofcarbon,nitrogen,orboth.hemost

    frequentlysedase-hardeningprocessesrecarburizing,yaniding,arbonitriding,ndnitriding.a. Carburizing

    Carburizingisaprocessthatintroducescar-bonntoaoliderrous l loybyheatinghemetalncontactwithacarbonaceousmaterialtoatemperatureabovetheA c 3ofthesteelandholdingthatemperature.heepthfpenetrationofcarbonisdependentontemper-ature,imeatemperature,andheomposi-tionfhearburizinggent.s oughindication, carburizeddepthofabout .030to .050n.canbeobtainedn.about hrat1 ,700F,dependinguponthetypeofcarburiz-ingagent,whichmaybeasolid,liquid,orgas.Sincetheprimaryobjectofcarburizingistosecureahardcaseandarelativelysoft,toughcore,onlylow-carbonsteelsuptoamaximumof about0 .25%ofcarbon)itherwithorwith-outalloyingelementsnickel,chromium,man-

  • 7/29/2019 Heat Treatment Steel

    17/48

    SURFACEjFIGURE8. Structureofacarburizedsteel.

    Thespecimenwa scooledslowlyfrom thecarburizingtemperature. Etchedwithnital. X75.ganese,olybdenum),reormallysed.Aftercarburizing,heteelwillhave high-carbonas eraduatingntoheow-carboncorefig.18).Avariety fheatreatmentsmay e se dsubsequentocarburizing,but llofhemn-volvequenchingthesteeltohardenthecarbur-izedsurfacelayer.hemostsimpletreatmentconsistsfuenchingheteelirectlyromthearburizingemperature;hisreatmenthardensboththecaseandcoreinsofarasthecoresapableofbeinghardened).nothersimplereatment,nderhapshenemostfrequentlyused,consistsofslowlycoolingfromthearburizingemperature,eheatingoaboveheA c3fhecaseabout425F)andquenching;thistreatmenthardensthecaseonly.moreomplexreatmentsodoublequenchfirstromboveheA c 3 fhecore(about 1,650 F forow-carbon steel) and

    MO,fo r i-ovehec3fhecaseabouti ,4Z5);hisreatmentefinestheoreandhardenshease.heplaincarbonsteelsareamostalwaysquenchednwaterorbrine;heflutelsresuallyuenchednil.l- thoughemperingollowinghardeningofcar-burizedteelsometimesomitted, ow-tem-peratureemperingtreatmentatabout30 0Fisgoodpractice.Itsometimesesirableocarburize nly certainartsfheurface.hisaneaccomplishedyoveringheurfaceoeprotectedgainstarburizingwithom ema-terialhatreventsheassagefhear-burizingagent.hemostwidelyusedmethodisopperlatingfheurfacesoeprotectedeveralroprietaryolutionsrpastes,whicharequite ffectivenpreventingcarbunzation,are ls oavailable.Theommercialompoundsommonlyse dtorpacksolid)arburizingcontainmixturesofcarbonateusuallybariumcarbonate),oke (diluent),andhardwoodcharcoal,withoilar

    ormolassessabinder.ixturesofcharredleather, one,andcharcoalarealso sed.Thecarburizingactionofheseompoundsisdiminishedduringuseandtisnecessarytoaddewaterialeforeheompoundsreused.dditionfneartfnusedothreeoiv eparts f se dompoundsom-monpractice.hepartso ecarburizedarepackednboxesorothersuitablecontainers)madeofheat-resistantlloys,lthougholled orcastteelmay e se dwhereongifeofthe oxsnotmportant.heidofthe oxshould eealedwithire la yoromeotherrefractoryohelppreventscape fhecar-burizinggasgeneratedatthecarburizingtem-perature.hedepthanduniformityofcaseis affectedbyhemethodofpackinganddesignofthecontainer.Liquidarburizingconsistsfas eharden-ingteelrronnoltenaltathshatcontainmixturesprincipally fcyanidespoi- sonous),hlorides,ndarbonates.hease prod"eHhyhismethodcontainsbothcarbonandnitrogen,butprincipallytheformer.he temperatures se dangeromabout ,550o1,650Forhigher,depending ponheom-positionsofthebathandhedesireddepth fcase.t1,650Facasedepthofabout0 .01 0 to.015n.anebtainedn r;bout0.020o.030n.anebtainedn r.Considerablydeeperasesaneobtainedathigheremperatureswithongereriodsftime.fterarburizing,heartsmustequenchedustasnolidcarburizing,butitsusualodothisdirectlyfromthemoltenbath.In llpresent-daycommercialgascarburiz-ing,wororeydrocarbonsrese dncombinationorupplyinghearbonohesteel.heydrocarbonsse dremethane,ethane,ropane,ndilapors.heteelpartsare lacednealedcontainershroughwhichthecarburizinggasesarecirculated;hetemperatures se darenheneighborhood f

    15

    J

  • 7/29/2019 Heat Treatment Steel

    18/48

    0.140

    0.120

    /

    24 28 260C A R 8 U R I Z C N G TIME HOURSRelationfimendemperatureoarbonpenetrationingascarburizing.(MetalsHandbook,1 9 3 edition,p.1 0 4 1 . )

    FIGURE9. 1,700F.verageexpectationordepthofcaseingas-carburizedsteelisillustratedinfig-ure9.ftercarburizing,thepartsmustbe quenchhardened.

    b.yanidingAard,uperficialaseanebtainedrapidlynow-carbonteelsyyaniding.Thisprocessnvolveshentroductionofbothcarbonandnitrogenintothesurfacelayersoftheteel .teelsobecyanidednormallyareheatednamoltenbathofcyanide-carbonate-chloridealtsusuallycontaining 0o95%oisodium cyanide)andthenquenchedinbrine,water,ormineraloil;thetemperatureofoper-ationsenerallywithinheangef,550 to ,600F.hedepthofcaseisaunctionofime,emperature,andcompositionofhecyanidebath;heimeofmmersionsquiteshortsomparedwitharburizing,suallyvaryingfromabout1 5minto2hr.hemax-imumas eepthsarelymorehanbout0.020in .andtheaveragedepthisconsiderablyless.Steelsaneyanidedlsoyeatingothepropertemperatureanddippinginapow-deredcyanidemixtureorsprinklingthepow-der nheteel,ollowedbyquenching.hecasethusformedisextremelythin.Cyanidingsaltsareviolentpoisonsifallowedtoomencontactwithcratchesorwounds;

    theyareatallypoisonousftakennternally.Fatallyoisonousumesrevolvedhencyanidesarebroughtntocontactwithcids.Cyanidingathshouldequippedwithhoodforventingthegasesevolvedduringheat-ingandheworkoomhouldbewellventi-16

    lated.oltenyanidehouldevereer-mittedoomenontactwithodiumrorpotassiumnitratescommonlyusedforbathsforemperingashemixturesarexplosive.Furthermore,aresecessarynreparingasaltbathandtheworkpiecesshouldbecom-pletelydrybeforeplacingnhemoltenbath.Thedvicefaltmanufacturershouldeobtainedndollowednheperationndmaintenanceofsaltbaths.carbooitr iding Carbonitriding,ls oermedasyaniding,drycyaniding,andnitrocarburizing,isaproc-essorasehardeningateelpartnagas-carburizingatmospherethatcontainsammoniainontrolledercentages.arbonitridingsusedmainlyasa low-costsubstituteforcyanid-ingand,asincyaniding,both carbonandnitro-genreddedoheteel.herocessscarriednboveheA c xemperatureofhesteel,andispracticalupto1,700F.uench- inginoilissufficientlyfasttoattainmaximumsurfacehardness;thismoderaterateofcooling tendsominimizeistortion.heepthowhicharbonnditrogenenetratearieswithemperatureandime.hepenetrationofcarbonsapproximatelyheameashatobtainednasarburizingfig.9).d. Nitriding

    Thenitridingprocessconsistsnubjectingmachinedandheat-treatedsteel,freefromsur-faceecarburization,ohectionfnitrogenousmedium,usuallyammoniagas,ataemperaturefbout5 0o,050F,wherebyaveryhardsurfaceisobtained.hesurface-hardeningffectsdu eoheabsorp-tionofnitrogenandsubsequentheattreatmentofthesteelisunnecessary.hetimerequirediselativelylong,normallybeing or2days.Thecase,evenafter2daysofnitriding,isgen-erallylessthan0 .020in.andthehighesthard-nessexistsnthesurfacelayersto adepthofonlyafewthousandthsofaninch.Liquidnitridingnitridinginamoltensaltbath,enerallyomposedf mixturefsodiumandpotassiumsalts)mploysthesame temperaturerangeasgasnitriding.Specialow-alloyteelshavebeendevelopedforitriding.heseteelsontainlementsthateadilyombinewithitrogenoormnitrides,hemostavorablebeingaluminum,chromium,ndanadium.olybdenumndnickelareusednthesesteelstoaddstrengthandtoughness.hecarboncontentusuallyis about .2 0o .5 0percent,lthoughnomesteels,wherehighcorehardnessisessential,itmaybeashighas1 .3percent.tainlesssteelsalsocanbenitrided.Becausenitridingsarriedoutataela-tivelyowemperature,tsadvantageouso y

  • 7/29/2019 Heat Treatment Steel

    19/48

    use uenchedandemperedteelashe as e material.hisgivesastrong,toughcorewithanntenselyardwear-resistingasemuchharder,ndeed,thancan beobtainedby quenchhardeningeithercarburizedoryanidedteel.Althoughwarpagesnota roblemduringnitriding,steelsincreaseslightlyinsizeduringthisreatment.l lowanceaneadeorthisgrowthnthefinishedarticle.rotectionagainstnitridingcan be effectedbytin,copper,orbronzeplating,orbytheapplicationofcer- tainpaints.5.6. SurfaceHardening

    Itsrequentlydesirabletoharden nlythesurfaceofsteelswithoutalteringthechemicalcompositionofheurfaceayers.fateelcontainssufficientcarbonto respondto harden-ing,tspossibletohardenthesurfaceayersonlybyveryapidheatingforashortperiod,thusonditioningheurfaceorardeningbyquenching.a. Inductionardening

    Innductionardening, igh-frequencycurrentsassedhroughaoi lurroundingthesteel,thesurfacelayersofwhichareheatedbylectro-magneticnduction.heeptho whichheheatedoneextendsdependsnhefrequencyofthecurrentthelowerfrequenciesgivingthegreaterdepths)andonthedurationofheeatingycle.heimeequiredoheatheurfaceayersobovehec3ssurprisinglybrief,frequentlybeingamatterofonly eweconds.electiveeatingandthereforehardening)sccomplished vuit-abledesignofthecoilsorinductorblocks.ttheendoftheheatingcycle,thesteelisusuallyquenchedywateretsassinghroughheinductoroils.recisemethodsorontroll-in gtheoperation,thatis ,rateofenergyinput,durationfheating,andateofooling,renecessary.hesefeaturesareincorporatedin inductionhardeningequipment,whichs su - allyntirelyutomaticnperation.igure20showsthehardenedlayerininductionhard-enedteel.b. FlameHardening

    Flamehardeningisaprocessofheatingthesurfaceayersofteelboveheransforma-tionemperaturebymeansofahigh-tempera-tureflameandthenquenching.nthisprocess theaslamesmpingeirectlynheteelsurfaceo ehardened.heateofheatingisveryapid,althoughnotso fastaswithn-ductioneating.lainarbonteelsreusuallyquenchedbyawaterspray,whereastherateofoolingof lloyteelsmay evariedfromaapidwaterquencho lo wairool dependingnheomposition.

    FIGURE20 .Macrographofinductionhardenedgearteeth.Originalize,-in. iameterOsborn).A nyypefhardenableteelan elamehardened.orestesults,hearbonon-tenthould eateast .3 5percent,he sualrangebeing0.40to 0.50percent.

    5.7. SpecialTreatmentsa. Austempering

    Austemperingisatradenameforapatentedheat-treating rocess.ssentially,tonsistsofheatingteeloboveheA c3ransformartiontemperatureandthenquenchingintoahotbathheldatatemperaturebelowthatatwhichfineearliteouldormtheosefheS-curve,ig.8),butabovetheM stemperature(fig.0 ).heproductfsothermalecom-positionofausteniteinthistemperatureregionisainite.hisonstituentombinesela- tivelyhightoughnessandhardness.typicalmicrostructureofaustemperedteelshown infigure1 5,E.Theaustemperingprocesshascertainimi- tationsthatmakeitimpracticableforusewithmanyteels.nrderossure niformstructureandenceniformroperties),tisessentialhattheentirecrossection fthesteel ecooledapidlyenoughsothateventhecenterscapesransformationtheoseftheS-curve.ncarbonsteelsthetimerequiredtotartransformationtheosefheS-curvesextremelyhort,ohat nlyela-tivelymallectionsabout%-in.maximumthickness)aneuccessfullyotuenched inaustemperingbaths.hetimerequiredortransformationofheaustenite f lloyteels

    1 7

    :u

  • 7/29/2019 Heat Treatment Steel

    20/48

    toin eearlitessuallyonger,ndencelarger sectionsca nbesuccessful ly austempered(about n.maximum) .owever,heim erequiredorransformat ionoainitere-quentlybecomesnordinatelyongwithmany alloyteelsndhe rocessofustempering,therefore,seneral lympracticableforthesesteels.b. Martempering

    Martemperingonsistsofheatingateelto aboveitsAcstransformation andthenquench-ingintoabathheldatatemperatureapprox i -matelyqualohatoftsM..heteelsmaintainednhehotbathuntiltsempera-turesssentiallyuniformndhensooledinair.Severe internal stressesdevelop in steelduring hardening.teelcontractsduringcoolingbutundergoes arkedxpansionhenheausteniteransformsomartensite.incequenchedteelustoolromheurfaceinward,arious ortionsransformat iffer-entimes.heteelshusubjectedovarietyofdifferentialexpansionsandcontrac-tions,esultinginconsiderableinternalstress.B yequalizingth eemperaturethroughoutth esectionbeforetransformation takes lace,and thenoolinglowlyhroughhe artensite(M,M f)ange ,th einternalstressesa recon-siderablyeduced.hissherimebjec-tiveofmartempering.Modifiedmartempering iffersromtand-ardartemperingnlynhathea th temperatureislower,rangingfromjustbelowth eM,pointtoabout200F .ithth efastercoolingattheselowerbathtemperatures,steels oflowerhardenabil itycanbehardenedtosuffi-cientepth.owever,reateristortionfsensitiveartssikelyit hheodified process.

    c. ColdTreatment TheMftemperatureof many alloy steels isso lo wthatcompleteransformat ionofaustenite tomartensiteoes otccurnquenchingoroomtemperaturernoolingafteremper-ing.hisetainedustenitemaybepartial ly orompletelyransformedyoolingelowatmosphericemperaturesnduchreatmentisalledcoldreatment."heeneficialeffectsofol dreatment a ve otbeenullyexplored.tsnownhatheetainedausteniteofhighly alloyedteelssrequently difficultoransform.oolingtheseteelsolo wtemperaturestoth etemperatureofsolidCO*rve nower)mmediatelyfterhequenchssometimesffectivenransformingtheetainedustenite,butwithheoncomi-tantdangerofcracking.henth ecoldtreat-mentsppliedafterempering,heetained austenite is considerably more resistanto1 8

    transformation. Ifcoldtreatmentisused,th esteelshouldalwaysbetemperedafterwards.Repeatedalternateheatingtoatemperatureslightlybelowthatusedintempering andcool-in gtoasubzerotemperatureinarefrigeratedicedbrine,arbondioxide,liquidair,rliquidnitrogensommonlyse dorransformingth eetainedustenitedimensionaltabiliza-t ion)ofsteelgages,especial lythoseof th eball-bearingtypecompositionAISI52100).d. Ausforming

    Inhisrocess,medium-carbonlloyteelsa reirstustenitizedndhenooledapidlyto th etemperature rangeaboveM.in th e"bay"ofth eS-curve,betweenth epearl iteandbainitetransformation ands.hile eldat em -peraturewithinthisbayth esteelsa replastic-allydeformedandsubsequentlytransformedatloweremperaturesomartensiter ainite.Thesteelsa rethentempered.his"ausform-ing"rhot-working"echniquea seenemployedorovide igher ieldndensilestrengthvaluesthanthoseobtainableforthesesteelsyheormaluenchndempertreatments.6. Hardenability

    Hardenabil itysheropertyhateter-mineshe epthnd istributionofhardnessinducedinsteelbyquenching.tisincreasedby increasingcarbonandbyth eadditionofallth ecommonalloyingelementsexceptcobalt),providedha theselementsreompletelydissolvednheustenitetuenchingem -peratures.heelementsmostfrequentlyusedforthispurposeare manganese ,chromium,andmolybdenum.ardenabilitys ls onhancedbyncreasedrainize'nd omogeneity ftheustenite.owever,oarse-grainedaustenitencreasesheendencyof teelo' Thegrainliehatnfluenceshardenabilityshatgrainizeoftheaustenitethatexistsatthequenchingtemperature.tis suallymeasurednderhemicroscopenermsfheumberofgrainsperquarencht magnificationf100.heom m onangeofgrainize umberssasollowsnotehatheargerhe um -ber,heinershegrainixe;.e..hem or egrainsherere ersquarench):

    AmericanSocietyorTestingndMateria lsGrainizeno .

    00. 5 1 .0 1 .5 2. 0 2.5 8. 0 8 .5 4. 0 4.55.05.5 6.06.57 .0

    Grains/in'at X 1 0 0 .5 0.707 .0 .4 1 .0 .8S .0 .66 .0 1 .3 6.0 2.6 2.0 5 .8 4. 0

    G rainize7 .68.08. 59.09.5

    10.010.511 . 020 .11 . 550.12.050 .12.500 .13 .000 .13 . 600 .14.000 .Grains/inaat X 1 0 0 _0. 5 .-28 ..-81 .-56 ..-62 ..-1 2. 72 4.J

  • 7/29/2019 Heat Treatment Steel

    21/48

    distortndrackuringeatreatment.Coarse-grainedteels ls oarees soughhanfine-grainedsteels.Acleardistinctionmustbedrawnbetweenthemaximumhardnessbtainablen teelanditshardenability.nstraightcarbonandlow-alloyteels,hemaximumardnesssfunctionfarbonontentnlyfig.3),whereasardenabilitysoncernedprimarilywiththedepthofhardening.Numerousmethodshavebeenproposedandusedfordeterminingthehardenabilityofsteel.Theselectionofamethoddependslargelyupon theinformationdesiredandtherangeinhard-enabilityofthesteels.For undamentaltudy,ardenabilitysoftenmeasuredintermsofthecriticalcoolingratefig. ,B),buthestandardend-quench(Jominy)estsidelyse dommercially.Inhend-quenchestabarofteel n.ndiameterby n.ong,previouslynormalizedandmachinedtoremovethedecarburizedsur-face,sheatedohehardeningemperaturefor3 0min.tisthenquicklytransferredtoafixturethatholdsthebarinaverticalpositionandajetofwaterundercontrolledconditionsimmediatelyisdirectedagainstthebottomendonly.heendofthebarshusooledveryquicklywhile rossectionsemoteromheendarecooledmoreslowly,therateofcoolingbeingependentponheistanceromhequenchedend.ftercoolingiscompleted,twodiametricallyoppositelatsabout4n-widearegroundthelengthofthebarandRockwellhardnessmeasurementsaremadeatntervalsofy16in .ononeorbothoftheflatsurfacesso prepared.herelationshipofhardnesstodis- tancefromthequenchedendisanindicationoftheardenability (fig.1).Theconditionsofheend-quenchesthavebeentandardizedandheatesofoolingatvariousdistancesromthequenchedendhavebeendeterminedandarehownattheopoffigure21 .tisthuspossibletocorrelatehard-nesswithoolingate,whichsaunctionofthedistanceromhewater-coolednd.hecoolingratesatvariouspositionsnthecross-sectionsofdifferentsizerounds,whenquenchedintillilandntillwater ls ohavebeendetermined.orrelationscanbemade,here-fore,betweenthehardnessobtainedatvariouspositions nhend-quenchbarandpositionsofequivalenthardnessofroundbarsquenchedintill ilorwaterassuminghatpointsofequalardnessaveheameoolingate).Figure22howsthisrelationshipbetweenthedistancesontheend-quenchedbarandvariouslocationsorquivalentardnessesnoundbarsquenchednstill il ;igure23howscor-respondingrelationsorbarsquenchedntillwater.Ifhehardenabilityend-quench)urveofateelsnown,tsossibleoscertain

    COOLINGRATEA T1300'F,"F /SEC 31025 32 1 6 10.2 7 :0 4, 8 3.9 34 32 3JO 4901195 55 |2212.4 8.4 5. 6 4.3 3.6 3.3 31511 1 TIT I 1 1 1 1 C

    1 1 1 1 60j50u* 40fit

    \\B

    J 30z1 |20A

    0 -LLL , I .,..1 1 1 -..!.__1_8 12 1 6 20 24 28 32 DISTANCEFROMQUENCHEDEN D 1/16 IN. 3 6 40 FIGURE1. Hardenabilityurvesorifferentteelsithth esamecarboncontent.

    A,hallowardoning;B ,ntermediate ardening;C, ee p ardening.Th ecoolingratesshownIn thisfigurear eaccordingtoth eresultsofBoege-holdan dWeinman,N.D.B.C.ReportOSRDNo .3743,p. 42 (June1 ,IM4).4.0

    //3.553.0M

    SURFACE// 3'4// RADIUS//ta .< CD /' ,/CENTERu .2.0oa . /

    ' V//K ^1/2 A D I U S 5 '"u /0.51

    4 6 8 10 1 2 14 16 1 8 20DISTANCE RO MWATERQUENCHEDEN D,1/16IN. 22 24

    FIGURE22.elationbetweendistancesontheend-quenchbarandvariousocationsorequivalenthardnessorcoolingatesinoundbarsquenchednstilloil.(MetalsHandbook,94 8edition, .92.)

    fromthiscurveandthecurvesgiveninfigures2 2and23whetherornotaselectedsizeroundmaderomthesteelwillhaveadesiredhard-nessttsurface,%adius,2adius,rcenter,whenuencheditherntillilrwater.onversely,heardnessaluessdeterminedatvariouspositionsinroundsafterquenchinginoilorwatercan beusedtoadvan-tagenapproximatinghedegreeofharden-abilityofateeluitableoreplacement fsimilarparts.Thestandardnd-quenchtestismostusefulforteelsfmoderateardenability,hats,theow-alloyteels.orhallowardeningsteels,uchasplaincarbon,amodificationofthistestthe -typebar)sused.1 9

  • 7/29/2019 Heat Treatment Steel

    22/48

    ill

    4.03.5

    at.0u

    1 e20B 1 .5 < 5 |.o 05

    / S U R F A C E/J //2 /RADIUS

    ///CENTER/'//f2 4 6 8 10 1 2 14 16 S

    DISTANCEFROMWATERQUENCHEDEND .1/16N. 20FIGURE3 .elationetween istancesnhend-quenchba rndariousocationsorquivalentardnessesrcoolingralesinroundbarsquenchedin stillwater.(MetalsHandbook,1 9 4 8 edition,p .4 M . )

    7. HeatTreatmentofCastronsCastironsareofthreegeneralypes,gray,white,andnodular.hetermsgrayandwhiteareescriptivefheharacteristicppear-ancesoftheracturesandnodularsdescrip-tiveoftheshapeofthegraphiteparticles.Ingrayironalargeproportionofthecarbonispresentasgraphiticoruncombinedcarbonintheformofflakes.hesmallproportionofcarbonhatspresentasombinedcarbonorcementiteisintheformofpearlitejustasinasteel.epending nheamountofombinedcarbon,thematrixofcastironmaybesimilartoahypoeutectoidteelwithvaryingamountsofreeerritendraphitelakesispersedthroughoutfig.4 ,,,nd).fheamountofombinedcarbonsabout .8per-cent,thematrixwillbeentirelypearlitic;iftheamountisgreater,thematrixwillbesimilartoahypereutectoidsteel.Inwhiteironmost,fnotall,ofthecarbonisresentsementitefig.4 ,).hedividinglinebetweenwhiteandgraycastironisnotclearlydefinedandironpossessingchar-acteristicsofbotharecalledmottledcastiron.Whetheracastronwill egrayorwhitedependsontwofactorscompositionandateofooling.ertainelementsendopromotetheormationfgraphiticarbon;hemostimportantfhesereilicon,ickel,ndsulfur.therstendtopromotetheformationofombinedarbon;hemostmportantf

    theserehromium, olybdenum,anadium,andmanganese.apidsolidificationandcool-ing,uchasesultromhinectionscastnsandorlargersectionscastagainstchills,pro-moteheormationfwhiteron.rono produced is frequently termed chilled iron.

    Becauseofvariationsntheateofsolidifica- tionandcooling,castingsmaybewhiteatthesurfacelayers,mottledimmediatelybelow,andgrayintheinterior.Innodularcastiron,alsoknownas"ductileiron,"nodularraphiteron,"spheruliticiron,"and"spheroidalgraphiteiron,"thegra-phitesresentnheormfodulesrspheroidsfig.2 4 ,EandF)bestowingconsid- erableductilityohecastron.hese od- ulesformduringsolidificationdu etothetreat-mentofthemolteniron,justpriortocasting,withafewhundredthspercentusuallyof eithermagnesiumorcerium;thesulfurcontentmustbebelowabout0 .01 5percentforthetreatmentto e ffectivewithhese lements.odularironandgrayironhavethesametotalcarboncontent.hemechanicalpropertiesof nodularironcanbevariedbyalloying.Castronsmay egivenavarietyofheattreatments,dependingonthecompositionsanddesiredproperties.heprinciplesoftheheattreatmentsappliedocastronareimilartothosealreadydiscussedforsteels.

    7.1.elievingResidualStressesAging)Theeatreatmenthatelievesesidualstressesiscommonlycalled"aging,""normaliz-ing,"or"mildannealing;"theterm"stressre -lieving"smoreaccuratelydescriptive.his treatmentcanbeaccomplishedbyheatingthecastirontobetween80 0and1 , 100F.,holdingattemperaturefrom3 0min.o hr,thetimedependingnheiz endemperature,ndcoolingslowlyinthefurnace.uchtreatmentwillcause nlyalightdecreasenhardness,verylittledecompositionofcementite,andonlyaslightchangeinthestrengthofthemetal.

    7.2. Annealing Sometimes,tsdesirabletooftencastingsinordertofacilitatemachining.hetemper-atureangemostcommonlyusedforthispur-poses, 400o,500F,lthoughemper-aturesaslo was ,200o1 ,250Fhavebeenusedatisfactorily.ighly lloyedronsaresometimesannealedattemperaturesashighas1 ,800F.nllnnealing,arehouldetakenopreventoxidationofthecastingandcoolingshouldbeslow.Ineneral,ofteningormachinabilitysaccompaniedbyadecreasenstrengthandntheamountofcombinedcarbon,andbyanin -creaseingraphitecontent.ronsthatcontain

    carbide-formingelementssuchashromium,molybdenum,anadium,ndmanganese)remoreesistantoofteningthanheordinarygrayronand,herefore,must eannealedatconsiderablyhighertemperatures.ompletelyannealedordinarygraycastironhasaBrinell20

    I T

  • 7/29/2019 Heat Treatment Steel

    23/48

    1 ^ - ^ " Y /^*

    warn*?*y.*S a f e "

    T4** . ..JT -A.;:\,V

    FIGURE4. Microstructureofcastirons.A .,Orayiron. Thedarkflakesaregraphite. Unetched. X 1 0 0 .B, am esA ). Etchedwithicral. X 1 0 0 .C, am e as(B). Thematrixconsistsof pearlitewithasmallamountof freeferrite(white)andissimilartoahypoeutectoidsteel. Theappearanceof thegraphitelakessnotffectedyheetchant. X 500 .D, Whitei ron. Thewhiteneedlesarecementite;thedarkareasarepearlite;thedarkspheroidalareasare the eutectic(Ledeburlte). Etchedwithpicral.X 5 00 .E,Nodulariron. Thedarknodulesaregraphite;thewhitematrixisferrite. Etchedwithpicral. X 100 .F,earliticnodularron. Nodulargraphitedark)napearliticmatrix. Etchedwith icral. X 100 .G,Malleableiron. Thedarknodulesaregraphite;hewhitematrixisferrite. Etchedwith icral. X 100 .H,Pearliticmalleableiron. Nodulargraphitedark)n pearliticmatrix. Etchedwith icral. X 100 .

    21

  • 7/29/2019 Heat Treatment Steel

    24/48

    /

    hardnessf20o3 0 ,ndompletelyn-nealedalloyironsmayhaveaBrinellhardnessof30o80 ,depending nheomposition.Thematrixfodularronanemadecompletelyferriticbyheating at1 ,300Ffor1 to5hr,dependingoncomposition,sizeofcast-ing,andamount ofpearlitein theas-caststruc-ture;oolingromheannealingemperaturecanbeatanyconvenientate.fmassiveorprimaryarbidesreresentnhes-caststructure,theymaybeconvertedtospheroidalgraphitebyheatingat ,600o ,700For1o hr.lowlycoolingfromhistempera-turerangeto about1 ,275Fandholdingfrom3o hrwillconverthematrixoerrite.Nodularronwith erriticmatrixhashedesirableombinationfmaximummachin-ability,oughness,nductility.heard-nessferriticnodularronvarieswithhealloycontentromaowofabout 3 0Brinelltoahigh of about21 0Brinell.

    a.MalleabilizingMalleabilizingalsotermedgraphitizing)saprocessofannealingwhitecastironinsuchawayhatheombinedcarbonswhollyorpartlytransformedographitenhenodular

    formfig.4 ,GandH)nsteadofthelakyformthatexistsingraycastiron.henodu-larormfcarbonsalledemperorreecarbon.nsomeinstances,partofthecarbonislostinthemalleabilizingprocess.Whiteironthatistobemalleabilizedshouldcontain lltscarbonnheombinedorm.Anycarbonpresentasgraphiticcarbonandhencein theformofflakes)willnotbeaffectedbyhegraphitizingreatmentandsundesir-ablein thefinalstructure.Theemperaturessednalleabilizingusuallyangeromabout,500o,650F.Timeatemperaturesquiteong,requentlybeingasmuchastwotohreedays.oldingathisemperaturecauseshedecompositionofheementitentoustenitelusatherroundedformsofgraphite.ftheironisthencooledverylowlyhroughhecriticalange(lesshan0F/hr),heesultantstructurewillonsistferritelusemperarbon.Coolinglessslowlythroughthetransformationrange,orusinganironcontaininganalloyingelementthatetardsgraphitization,esultsnainalproductcontainingvariousamountsofpearlitelu serritewith,fourse,empercarbon.ronsaving earlitictructureplusemperarbonrenownsearliticmalleableironsfig. 4 ,H).smightbeex- pected,pearliticmalleableironsaresusceptibletoheattreatmentinthesamemannerassteels.

    7.3. Normalizing,Quenching,ndTemperingWhenheatedoabovehecriticalempera-turelineSK,fig.3),castironconsistsofaus-

    teniteplusexcesscementiteorgraphiteandtheaustenite.canbetransformedin thesameman-nerasin steel.lthoughironsthatarealmostcompletelyraphitictheommonoftrayirons)canbehardened,thisisnotcustomary.Suchronsmustbeheldatemperatureswellabovehecriticalorongperiodsofimenorderoassureheolutionofcarbonnheaustenite.Forptimumesults,heraphitelakesshouldbesmallanduniformlydistributedandthematrixhouldeearliticwithotoo muchfreeferritecombinedcarbonfromabout0.50 to0.80%).astingsshouldbeheateduni-formlyoheuenchingemperature,hich usuallyangesrom,500o ,600F.hequenchingmediumcommonlyusedisoil;waterisse do imitedxtentndomelloycastingsmaybequenchedinair.heironsquenched,generallyhasalowerstrengththanascast,butthestrengthsncreasedbytem- peringintherange of 350 to1 ,200F.often-ingproceedsuniformlyasthetemperingtem-peraturesncreasedbovebout50o1 ,200F.Apearliticmatrixcanbeproducedinnodu-larronsastryormalizing.he normalizingreatmentonsistsfeatingo 1 ,600o ,650F,holdingattemperatureforsolutionofcarbon,ollowedbycoolingnair.Themechanicalropertiesfheormalized ironsvarywithheomposition,ineness,andamountsofpearlite;heavyectionsareowerinhardnessandhighernductilitythanightsections.heBrinellhardnessnumbersrangefromabout200 to275.Martensiticrainitictructuresrero - ducedinnodularironbyquenchingfrom1,600 to,700Fnilrwater.heronssquenchedhavehighstrengthsbutlo wductility.However ,heductilityoftheas-quenchedroncanemateriallyncreasedstrengthndhardnessecreased)yemperingtbout1 , 000to ,300F.7.4. SpecialHeatTreatments

    Subjecttothesamelimitationsassteels,castironsanelame-hardened,nduction-hard-ened,ustempered,martempered,rnitrided.8 . Practicalonsiderations

    Satisfactoryeatreatmentfteelan diron)equiresfurnacesthathaveuniformcon-trolledemperatures,meansoraccuratetem-peraturemeasurement,andorprotectingthesurfaceofthematerialfromcalingordecar-burizing.roperuenchingquipmentsneededalso.

    22

  • 7/29/2019 Heat Treatment Steel

    25/48

    8.1.urnacesan dSaltBathsTherearemanydifferenttypesandsizesoffurnacesse dnheatreatment.sa en- eralule,urnacesaredesignedooperatencertainpecificemperatureangesndt-tempteduseinotherrangesfrequentlyresultsinworkofinferiorquality.naddition,usingaurnacebeyondtsatedmaximumemper-aturehortenstsifendmayecessitate

    costlyandime-consumingepairs.Fuel-firedurnacesgasor il )equireairforpropercombustionandanaircompressororlowersherefore ecessaryjwunctTheseurnacesareusuallyofthemuffletype,thatis ,hecombustionofthefueltakesplaceoutsideofandaroundhechambermwhichtheworkisplaced. Ifanopenmuffleisused,thefurnaceshouldbedesignedsoastopreventthedirectmpingementofflame nthework.Infurnacesheatedbyelectricitytheheatingelementsaregenerallyntheformofwireorribbon. Gooddesignrequiresincorporationofadditionalheatingelementsatlocationswheremaximumeatossmayexpected. Suchfurnacesommonlyoperateuptoamaximumtemperature of about 2 , 000 F. Furnacesoperating at temperaturesuptoabout2,500 Fusually employ resistor bars of sinteredcarbides.Furnacesntendedprimarilyoremperingmaybeheatedbygasorelectricityandarefrequentlyequippedwithafanforcirculatingthehotair.Saltathsrevailableorperatingteitheremperingorardeningemperatures.Dependingonthecompositionofthesaltbath,heatingcanbeonductedatemperaturesaslo was 25Foashighas , 450F.eadbathscanbeusedinthetemperaturerangeof65 0 to1 ,700F.he rate ofheatinginleadorsaltbathssmuchfasterthaninfurnaces.

    a. ProtectiveAtmospheres Itsoftennecessaryordesirabletoprotectsteelorcastironfromsurfaceoxidationscal-ing)andlossofcarbonfromthesurfacelayers(decarburization,fig.1 5 ,F). Commercialfur-

    naces,herefore,aregenerallyequippedwithsomemeansofatmospherecontrol. Thisusu-allysnheormofaburnerorburningcontrolledamountsofgasandairanddirectingtheroductsfombustionntoheurnacemuffle. Watervapor,aproductofhisom-bustion,sdetrimentalandmanyfurnacesareequippedwithameansfor eliminatingit. Forfurnacesnotequippedwithatmospherecontrol,aarietyfxternaltmosphereeneratorsareavailable. Thegasogeneratedspipedintothefurnaceandonegeneratormaysupplyseveralfurnaces. Ifnomethodofatmospherecontrolsavailable,om edegreeofprotection

    maybesecuredbycoveringtheworkwithcastironboringsorchips.Sincetheworknsaltoreadbathssur-roundedyheiquideatingedium,heproblemofpreventingcalingordecarburiza-tionissimplified.Vacuumfurnacesalsoareusedforannealingsteels,speciallywhen righton-oxidized surfaceisaprimeconsideration.b.emperatureMeasurementndControl

    Accuratetemperaturemeasurementisessen- tialogoodheattreating.heusualmethodisbymeansofhermocouples ;hemostom-monbase-metalouplesarecopper-Constantan(uptoabout70 0F),ron-Constantanuptoabout ,400F),andChromel-Alumelupo about, 200F).hemostommonoble- metaloupleswhichcanbeuseduptoabout2,800F)areplatinumcoupledwitheitherthealloy87percentplatinum13percentrhodiumorhe lloy 0percentplatinum10percentrhodium.heemperaturesuotedreorcontinuousoperation.Thelifeofthermocoupless ffectedbythemaximumtemperaturewhichmayfrequentlyexceedhosegivenabove)ndbythefurnaceatmosphere. Iron-Constantansmoreuitedforseneducingndhromel-Alumeln oxidizing atmospheres. Thermocouples areusuallyncasednmetallicreramicubesclosedatthehotendtoprotectthemfromthefurnace gases. A necessary adjunct is aninstrument,uchasamillivoltmeterorpoten-tiometer, for measuring the electromotiveforcegeneratedbyhehermocouple. Inheinterestofaccuratecontrol,thehotjunctionofthehermocouplehouldbeplacedas loseo theworkaspossible. Theuse ofanautomaticcontrollerisvaluableincontrollingthetemper-atureatthedesiredvalue.ifemperature-measuringequipmentsnotavailable,tecomesecessaryostimatetemperaturesbysomeothermeans.nnex-pensive,yetfairlyaccuratemethodinvolvestheuseofommercia lcrayons,ellets,orpaintsthatmeltatvariousemperatureswithinherange25o,600F.heeastccuratemethodoftemperatureestimationisbyobser-vationofthecolorofthehothearthofthefur-naceorofthework.heheatcolorsobserved areaffectedbymanyfactors,uchasthecon-ditionsofartificialornaturalight,hechar-acterofthescaleonthework,etc.Steeleginsoppearulledtbout

    1 , 000F,andasthetemperatureincreasesthecolorchangesgraduallythroughvariousshades ofredto orange,toyellow,andfinallytowhite.Aoughapproximationofthecorrespondencebetweenolorandemperaturesndicatednfigure25 .23

  • 7/29/2019 Heat Treatment Steel

    26/48

    _f15002700-z- C 2600~z .~ m 14002500_Zi

    2400^ 13002300~E Colorof

    Hotody 2200~E 1200~ Whit2100-E

    2000E1001900-E-I000Y,"0Wleoo E i1700- Orange- 9001600-E LightCherry 1800^- 8001400~E Fullherry1300E 7001200E Darkherry1100 600

    loooE Da rked 00900

    800^ _ _ 400700 -E TemperColors600-; ~:00 Blue

    800i Purple Brown40 0-E 00 Straw300 200-Eoo100--

    FIGURE5.emperaturehartndicatingonversionfCentrigradeoFahrenheitric eersa,oloremperaturescaleorardening-lemperalureange,ndempering-temperaturerange.

    Itisalsopossibletosecuresomeideaofthetemperatureofhe ieceofacarbonorow -alloyteelnheowemperatureange se dfortemperingfromthecolorofthethinoxidefilmhatorms nhe leanedurfaceofhesteelwhenheatedinthisrange.heapproxi-matetemperature-colorrelationshipforatimeattemperatureofaboutone-halfhoursndi-catednheowerortionfhe .calenfigure25 .8.2. QuenchingMediaan dAccessoriesQuenchingolutionsact nlyhroughheirabilityooo lheteeLheyhavenobene-ficialchemicalactiononthequenchedsteelan dinhemselvesmpartonusualroperties.Mo stequirementsoruenchingmediaremetatisfactorilybywaterrqueousolu-tionsofnorganicaltsuchasablealt rcausticsoda,orbysometypeofoil.herateofcoolingisrelativelyrapidduringquenchinginrine,omewhatessapidnwater,ndslowinoil.Brineusuallysmadeofa -o 0-percensolutionfaltsodiumhloride)nwater

    Inadditionotsgreateroolingpeed,brinehastheabilityto"throw"hescalefromsteeduringquenching.hecoolingabilityofbothwaterndrine,articularlywater,sonsiderablyaffectedbytheirtemperature.othshouldbekeptcold.wellbelow60F.fthevolumeofteelbeingquenchedendsoaistheemperatureofhebathappreciably,hquenchingbathshouldbecooledbyaddingicorbysomemeansofrefrigeration.Therearemanypeciallyprepared uenching il s nhemarket;heiroolingatesdnotvarywidely.straightmineral ilwitaSayboltviscosityofabout 00at00Fgenerally sed.nlikebrinendwater,hoilsavehereatestoolingelocitytslightlylevatedemperatureabout001 40Fbecauseofheirecreased iscositattheseemperatures.Whensteelisquenched,theliquidinimmedatecontactwiththehotsurfacevaporizes;thvaporeducesheatefeatbstractiomarkedly.igorousagitationofheteeltheuseofapressuresprayquenchisnecessatodislodgehesevaporfilmsandhuspermthedesiredrate ofcooling.Shallowhardeningteels,uchasplaincabonandcertainvarieties f lloyteels,havsuchahighcriticalcoolingratethattheymubequenchedinbrineorwatertoeffecthardeing.neneral,ntricatelyhapedectioshouldnotbemadeofshallowhardeningsteebecauseofthetendencyofthesesteelstowaandrackuringardening.uchtemshouldbemadeofdeeperhardeningsteelscpableofbeinghardenedbyquenchinginoilair.24

  • 7/29/2019 Heat Treatment Steel

    27/48

    Avariety fdifferenthapesndizes ftongsforhandlinghotsteelsisnecessary.tshouldberememberedthatcoolingofth eareacontactedyheongssetardedndhatsuchareasmay notharden,particularlyifth esteelbeingtreatedisveryshallowhardening.Smallpartsm ay be wiredtogetherorquenchedin baskets made ofwire mesh.Specialuenchingjigsan dfixturesar efre-quently sedooldteelsduringuenching in amanner to restraindistortion.Whenselectivehardening isdesired,portionsofth esteelmay be protectedbycoveringwith alundumcementorsomeotherinsulatingma- terial.electiveardeningayeccom-plishedlsoyhe se fwater r iletsdesigned todirectthequenching medium ontheareasoeardened.hislsosccom-plishedbythenductionndlame-hardening proceduresreviouslyescribed,articularlyon largeproduction jobs.

    8.3.elationofDesignto HeatTreatmentInternalstrainsarisefrommanycauses,butth emosteriousarehosedevelopedduring

    quenchingbyreasonofdifferentialcoolingan dfromth eincreaseinvolumethataccompaniesth e martensitictransformation.hesestressesare frequentlysufficienttodistortorcrackth e hardenedteel.inceemperaturegradientsarelargelyafunctionofthesizean dshapeofth epiecebeingquenched,th ebasicprincipleofgooddesignsoplanhapeshatwillkeepth etemperaturegradientthroughout apieceataminimumduringquenching.Becauseoftheabruptnessinthechangeofsection,someshapesareimpracticalto harden,withoutcrackingordistortion,byquenchingin water,butacertainlatitudeindesignisper-missiblewhen singan il-hardening r ir -hardeningteel.therhingseingqual,temperatureradientsreuchowernshapesquenchedinoilthaninwater,an darestilles snair.hu saertaindesignmay beperfectlysafeforonetypeofsteel,oron etypeofcoolant,an dunsafeforanother.Errorsindesignreachfartherthanmerelyaffectingtheinternalstrainsduringhardening.Asharpangleornotchservestogreatlycon-centratehetressespplieduringervice,an dthedesignofthepartmaybeentirelyre -sponsibleforconcentratingtheservicestressesat apointalreadyweakenedbyinternalstrainsproducedduringhardening.oncentrationofservicestressesfrequentlyparallelsconcentra-tionofheat-treatingstrainsan disfrequentlycausedan dcuredbyth eam ecombinationofcircumstances.Apartsproperlydesigned,ro matand-pointofheattreatment,ifth eentirepiececan beeatedndooledtpproximatelyhe samerateduringth eheat-treatingoperations.

    Z3 o 3

    FIGURE26. Examplesofgoodandbaddesigns fromland-?oint ofhardeningbyheattreatment(Palmer andLuerssen,Wsteelsimplified,p.392,1948).

    A ,E nd view of an undercutt ingformtoolincorrectly designed.B ,T he sametoolbetterdesignedrom th e iewpointofheatreatment.Heavysectionshavebeenl ightenedbydrillingholes,hu sinsuringmoreuniform cooling.he filletat (a)minimizesdanger of cracking at th e sharpre-entrantngle.here illetisnot llowable,reatmentshownt(b)ishelpful.C,Crackingwilltendto occuratth esharprootsof th ekeyways. D,illetsat th eootsof th e eyw a yswilleduceheendencyowardcracking.he incorporation of th etw oaddit ional ey way s ,ve nhoughunnecessary inactualservice,helpsbalanceth esectionan davoidwarping.E, A blanking di ewithth ecenter ri bheavierthanth esurrounding areas.Thismaycausewarpingon quenching.F,Th esamedi ewithholesdrilled in th ecenterribto equalize th e amount of met a lthroughoutth edie,hu seliminatingwarpagedifficulties. Q,A stem pinionwithakeywayaboutone-half th ediameterof th estem.Thebase of th ekeyway is extremely sharp, an dth epiece is further weakenedbyaholedrilledthroughth ecenter of th estem nearth ekeyw a y .he baseofth e eyw a yshould efilletedan dholere-located.H,A dangerous designconsisting of athincollaradjoiningathick section.W henhardeningsuchpieces,hethinsectionoftenwarpsorcracksatth eJunctionwith th e hub.xtremely generous filletsan ddrilling holesthrough th ehu btol ightenitsmasswillbe elpful.J,W henhardening,th econcentrat ionof strainsatth eJunction of the two holesInth ecenterar eap ttocausefailure.uc hholesshouldbepluggedbeforehardening.K .Ablankingdi epoorlydesigned.rackwilloccurfrom ointofforkprongto setscrew hole.he posit ionof th esetscrewholeshouldbe changedto eliminate cracking.

    25

  • 7/29/2019 Heat Treatment Steel

    28/48

    1 h

    Perfectionnhisegards nattainablee- cause,evenm asphere,th esurfacecoolsmorerapidlythan th e interior.he designer should,however, t tempttohapepartsohathey willeatndoo lsniformlysossible.Th ereaterheemperatureifferencee- tweennywopointsn givenpartduring quenching,an dth ecloserthesetw opointsaretogether,th egreaterwillbe th einternalstrainand,therefore,th epoorerth edesign.Whenargean dsmallectionsareunavoid-able in thesamepiece,the thickpart frequentlyca nbeightenedydrillingholeshrought.Wherehangesnectionrencountered,angleshouldeillettedenerously.om eexamplesofpoorndooddesignarehowninfigure26.

    9. NomenclaturendChemicalCompositionsofSteels9.1.tructuralSteels

    Inorderto facilitate th ediscussionofsteels,someamiliarity ithheiromenclaturesdesirable.Anumericalindex,sponsoredby th eSocietyofutomotivengineersSAE )ndhe Americanro nndSteelnstituteAISI)susedodentifyth ehemicalompositionsofth etructuralteels.nhisystem, our-numeraleriess sedodesignateth eplaincarbonan dalloysteels;fivenumeralsareusedtodesignatecertaintypesofalloysteels.he firsttw odigitsndicateheypeofteel,he seconddigitlsogenerallybutnot lways)giveshepproximatemount fhemajoralloyinglementndheastwoorhree)K?ar?mtende toindicateth eapproximatemiddleofth ecarbonrange.owever,adevi-ationro mheule fndicatinghearbon rangeissometimesnecessary.Theeriesdesignationndypesareum -marizedasfollows: Serie*denotation

    lOxx llxx ___.1 2 x x1 3 x x 2 3 x x 2 5 x x31xx33xx40xx41xx43xx44xx45xx46xx

    26

    Type*NonsulphurizedarbonteelsResulphurizedarbonteelsfreea-chining)Rephosphorizedndesulphurizedarbonsteelsfreemachining)Manganese.75% Nickel .50% Nickel.00% Nickel . 25%,chromium .65% Nickel3 . 5 0 % ,hromium .55% Molybdenum0.20or0.25% Ch0 ri2io 02 % 0r '95%' molybdenumNickel 1 . 80 % , chromium.5 0r 0.80%,molybdenum .25% Molybdenum .40% Molybdenum .52% Nickel. 80%,molybdenum .25%

    4 7 x x ckel.05%,hromium . 45%,molybdnu m0.20or0.35% 48xxckel .50%,molybdenum .25% 60xxromium0.25,0.40or0.50% 50xxxarbon.00%,hromium .50% 5 1 x x romium0.80,0.90,0.95,or1.00% Blxxxarbon.00%,hromium.05% 52xxxarbon.00%,hromium.45% 6 1 x xromium .60, .8 0r .95%,anadium0 .12%,0.10%min.,or0.15%min.81xxckel 0.30%,hromium 0.40%, molybdenum. 12% 86xxckel 0 .55%, chromium 0.50%, molybdenum .20% 87xxckel 0.55%, chromium 0.05%, molybdenum .25% 88xxckel 0.55%,hromium 0.50%,olybdenum . 35% 92xxanganese 0 .85%, silicon 2.00%, chromium or0.35% 93ckel 3 .25%,hromium 1 .20%,olybdenum .12% 94xxckel 0.45%, chromium 0.40%, molybdenum. 12% 98xxckel 1 .00%,hromium 0.80%,olybdenum.25%

    * Notncludednheurrentistoftandardteels.Listingsofth eAISItypenumbersan dchemicalompositionimits fhetandardtructuralsteelscompleteasofJanuary1966) rgivenin table1 .he SA Etypenumbersnoshowninth etable) re th esameasth eAISnumbers,exceptthatth elattermay be givenletterprefixondicatehemethod fmanufacture.heserefixesndheireaningareas follows:Bdenotesacidbessemercarbonsteel, enotesasicpe nearthrasielectricurnacearbonteels,Edenoteslectricurnacelloyteels.ew fth eAISsteelsarenotincludedinSA Elistings.Smalluantitiesfertainlementsrepresentinalloysteelsthatarenotspecifiedarequired.heselementsreonsideredincidentalan dmay be presentto themaximum

    amountssollows:opper,.3 5ercentnickel, .2 5 ercent;hromium, .2 0 ercentmolybdenum,0.06percent.Theis t ftandardteelss lteredro mtimeotimetoccommodateteelsofprovenmeritan dto provideforchangesin th emetallurgicalndngineeringequirementsindustry.Manyofthealloystructuralsteelsaremanufacturedoeetertainpecifiedimitsnhardenabilitysdeterminedyhetandardend-quenchtest.uchsteels,table2,aredesignatedbyheetter"H"ollowingheAISnumber.hehemicalompositionimitsthesesteelshavebeenmodifiedsomewhatfromth eangesrimitspplicableoheam egradeswhenspecifiedbychemicalcompositiononly.heardenabilityfanH"teelguaranteedbythemanufacturertofallwithinaardenabilityan davingaximumndminimumlimitsasshown bytw olimiting hardenabilityurvesorhatparticularteel.

    ~T

  • 7/29/2019 Heat Treatment Steel

    29/48

    TABLE. CompositionlimitsofstandardsteelsNONRESULPHURIZEDCARBONSTEELS

    Designat ion Designation number Chemicalcomposit ionlimits,percent number Chemicalcompositon limits,percentAISI C Mn P(max) S ( max) AISI C Mn P(max) S ( max)

    C00 6 0.06ma x 0.36ma x 0.040 0.050 C04 2 0.40/0.47 0.60/0.90 0.040 0.050C00 6 .08ma x 0.25/0.40 .040 .050 C04 3 .40/0.47 .70/1.00 .040 .050 C00 8 .10ma x .25/0.50 .040 .050 C04 4 .43/0.50 .30/0.60 .040 .050 C01 0 0.08/0.18 .30/0.60 .040 .060 C04 5 .43/0.50 .60/0.90 .040 .050 C01 1 .08/0.18 .60/0.90 .040 .050 C04 6 .43/0.50 .70/1.00 .040 .050 C01 2 .10/0.15 .30/0.60 .040 .050 C04 8 .44/0.62 1.10/1.40 .040 .050 C01 3 .11/0.16 .60/0.80 .040 .050 C04 9 .46/0.63 .60/0.90 .040 .050 C01 6 .13/0.18 .30/0.60 .040 .050 C05 0 .48/0.55 .60/0.90 .040 .050 C01 6 .18/0.18 .60/0.90 .040 .060 C05 1 .45/0.66 .86/1.15 .040 .050C01 7 .16/0.20 .30/0.60 .040 .050 C05 2 .47/0.66 1.20/1.50 .040 .050 C01 8 .16/0.20 .60/0.90 .040 .060 C05 3 .48/0.55 .70/1.00 .040 .050 C01 9 .16/0.20 .70/1.00 .040 .060 C05 6 .60/0.60 .60/0.90 .040 .050C02 0 .18/0.23 .30/0.60 .040 .050 C05 9 .56/0.65 .60/0.80 .040 .050 C02 1 .18/0.23 .60/0.90 .040 .050 C06 0 .66/0.65 .60/0.90 .040 .060C02 2 .18/0.28 .70/1.00 .040 .050 C06 1 .56/0.65 .76/1.05 .040 .060C02 8 .20/0.26 .30/0.60 .040 .050 C06 4 .60/0.70 .50/0.80 .040 .050 C02 4 .19/0.25 1.36/1.66 .040 .050 C06 5 .60/0.70 .60/0.90 .040 .050 C02 6 .22/0.28 0.30/0.60 .040 .060 C06 6 .60/0.70 .85/1.15 .040 .060 C02 6 .22/0.28 .60/0.90 .040 .050 C06 9 .65/0.75 .40/0.70 .040 .050 C02 7 .22/0.29 1.20/1.60 .040 .060 C07 0 .66/0.76 .60/0.90 .040 .050 C02 9 .26/0.31 0.60/0.90 .040 .050 C07 2 .66/0.76 1.00/1.30 .040 .050 C03 0 .28/0.34 .60/0.90 .040 .060 C07 4 .70/0.80 .50/0.80 .040 .060 C03 4 .32/0.38 .60/0.80 .040 .050 C07 5 .70/0.80 .40/0.70 .040 .050C03 6 .32/0.88 .60/0.90 .040 .050 C07 8 .72/0.86 .30/0.60 .040 .050 C08 6 .30/0.37 1.20/1.60 .040 .050 C08 0 .76/0.88 .60/0.90 .040 .050 C03 7 .32/0.38 0.70/1.00 .040 .050 C08 4 .80/0.93 .60/0.90 .040 .050 C03 8 .86/0.42 .60/0.90 .040 .060 C08 6 .80/0.98 .30/0.60 .040 .050 C08 9 .37/0.44 .70/1.00 .040 .050 C09 0 .86/0.98 .60/0.90 .040 .050C04 0 .37/0.44 .60/0.90 .040 .050 C09 6 .90/1.03 .30/0.50 .040 .050 C04 1 .36/0.44 1.85/1.65 .040 .050 1

    RESULPHURIZEDC A R B O NSTEELSDesignation number Chemicalcomposit ionlimits,percent Designationnumber Chemicalcomposit ionlimits,percent

    AISI C Mn P(max) S AISI C Mn P(max) SC1 08 C1 09 C1 1 0 C1 1 6C1 1 7 C1 1 8 C1 1 9C1 82

    0.08/0.13.08/0.13.08/0.13.14/0.20.14/0.20.14/0.20.14/0.20.27/0.84

    0.60/0.80.60/0.90.30/0.601.10/1.401.00/1.301.30/1.601.00/1.301.35/1.65

    0.040.040.040.040.040.040 .040 .040

    0.08/0.13.08/0.13.08/0.13.16/0.23.08/0.13.08/0.13.24/0.33.08/0.13

    C1 3 7 C1 89 C1 40 C1 41 C1 44 C1 45 C1 46 C1 61

    0.32/0.39.35/0.43.37/0.44.87/0.46.40/0.48.42/0.49.42/0.49.48/0.65

    1.85/1.651.35/1.66.70/1.001.35/1.651.35/1.66.70/1.00.70/1.00.70/1.00

    0.040.040 .040 .040 .040 .040 .040 .040

    0.08/0.13.12/0.20.08/0.13.08/0.13.24/0.33.04/0.07.08/0.13.08/0.13

    ACIDBESSEMERRESULPHURIZEDC A R B O NSTEELS REPHOSPHORIZEDANDRESULPHURIZEDCARBONTEELS Designationnumber Chemicalcomposit ionlimits,percent Designation number Chemicalcomposit ionlimits,percentAISI C Mn P S AISI C Mn P S

    B1 1 1 B1 1 2 B1 1 3 0.13ma x .1 3ma x .13ma x 0.60/0.90.70/1.00.70/1.00 0.07/0.12.07/0.12.07/0.12 0.08/0.16.16/0.23.24/0.33 C21 1 C21 2 C21 3 C21 6JC2L 140.13ma x .18m ax .13m ax .09 ma x .15ma x

    0.60/0.90.70/1.00.70/1.00.76/1.05.80/1.20

    0.07/0.12.07/0.12.07/0.12.04/0.09.04/0.09

    0.08/0.15.16/0.23.24/0.33.26/0.35.25/0.35tLead=0.16/0.36percent. Seeootnotesaten doftable.

    27

  • 7/29/2019 Heat Treatment Steel

    30/48

    TABLE. Compositionlimitsof standardsteelsContinued OPENHEARTHANDELECTRICFURNACEA LLOYTEELS

    Dodcnation number Chemicalcomposit ionlimits,percent AISI C Mn P(nutt) S(maz) Si Ni Cr Mo V

    1 8 3 0 0.28/0.33.33/0.38.38/0.43.43/0.48.38/0.43.08/0.13.09/0.14.20/0.26.20/0.26.26/0.80.26/0.80.86/0.40.40/0.46.45/0.50.60/0.67.18/0.23.28/0.88.88/0.38.86/0.40.88/0.43.40/0.45.48/0.48.45/0.60.48/0.68.66/0.64.17/0.22.35/0.40.86/0.40.88/0.43.88/0.43.18/0.23.20/0.25.24/0.29.13/0.18.16/0.20.17/0.22.18/0.28.24/0.29.16/0.21.17/0.22.13/0.18.15/0.20.18/0.23.12/0.17.43/0.50.18/0.18.17/0.22.28/0.33.30/0.85.83/0.38.38/0.43.48/0.48.45/0.52.48/0.53.60/0.60.55/0.650.95/1.10.95/1.10.95/1.10.16/0.21.17/0.22.48/0.63.13/0.18.13/0.18.15/0.20.18/0.23.20/0.25.23/0.28.25/0.30.28/0.33.35/0.40.38/0.43.40/0.45.43/0.48.48/0.53.50/0.60.55/0.65

    1.60/1.901.60/1.901.60/1.901.60/1.900.70/0.90.45/0.60.75/1.00.70/0.90.70/0.90.70/0.90.70/0.90.70/0.90.70/0.90.70/0.90.76/1.00.70/0.90.40/0.60.70/0.90.70/0.90.75/1.00.75/1.00.76/1.00.75/1.00.75/1.00.76/1.00.46/0.65.60/0.80.65/0.85.60/0.80.66/0.85.45/0.65.70/0.90.70/0.90.45/0.65.46/0.66.46/0.65.70/0.90.46/0.65.70/0.90.60/0.70.40/0.60.40/0.60.50/0.70.30/0.60.76/1.00.70/0.90.70/0.90.70/0.90.60/0.80.60/0.80.70/0.90.70/0.90.70/0.90.70/0.90.70/0.90.76/1.000.25/0.45.25/0.45.25/0.45.50/0.70.70/0.90.70/0.90.70/0.90.70/0.90.70/0.90.70/0.90.70/0.90.70/0.90.70/0.90.70/0.90.75/1.00.76/1.00.75/1.00.75/1.00.75/1.00.75/1.00.75/1.00

    0.035. 0 36.035 . 0 36. 0 36.026.085.036.086.085.085 .085 . 0 35.085.085 .086. 0 35. 0 35. 0 35. 0 36.085 .085 .086 .085 .086 .085 .036 .025. 0 35 .025 . 0 35 .085 .086.035. 0 36. 0 35 . 0 35 . 0 35 . 0 35 . 0 35 . 0 36. 0 35 . 0 35 .035.036. 0 35. 0 36. 0 35. 0 36.036.035.035.035.035.035.0350.025-.025.025 .035.035. 0 35. 0 35. 0 35.035. 0 35.035. 0 35 . 0 35 .035.035. 0 35 . 0 35 . 0 35 .035 . 0 35.035

    0.040.040.040.040 .040 .025.040.0400.085/0.060.040.035/0.060.040 .040.040.040.040 .040.040 .040.040.040.040.040.040 .040.040.040.026.040 .026.040 .040.040 .040.040 .040.040 .040.040.040.040.040.040.040 .040.040 .040.040.040.040.040 .040 .040 .040.040.040 0.040.025.025

    .040 .040.040

    .040

    .040 .040 .040 .040 .040.040

    .040.040 .040 .040.040.040 .040 .040

    0.20/0.35.20/0.85.20/0.85.20/0.85.20/0.85.20/0.86.20/0.86.20/0.85.20/0.26.20/0.86.20/0.86.20/0.86.20/0.86.20/0.86.20/0.35.20/0.85.20/0.85.20/0.85.20/0.86.20/0.86.20/0.85.20/0.86.20/0.80.20/0.85.20/0.85.20/0.35.20/0.35.20/0.86.20/0.26.20/0.86.20/0.85.20/0.36.20/0.86.20/0.35.20/0.85.20/0.85.20/0.86.20/0.85.20/0.86.20/0.35.20/0.85.20/0.36.20/0.36.20/0.35.20/0.35.20/0.35.20/0.86.20/0.85.20/0.86.20/0.85.20/0.35.20/0.35.20/0.85.20/0.85.20/0.85.20/0.860.20/0.35.20/0.85.20/0.36.20/0.85.20/0.85.20/0.35.20/0.85.20/0.35.20/0.85.20/0.85.20/0.35.20/0.35.20/0.35.20/0.35.20/0.35.20/0.35.20/0.35.20/0.35.20/0.35.20/0.36.20/0.36

    1 8 8 51 840 1 846 8140 1.10/1.40

    8.26/8.750.66/0.751.40/1.763 1 0 401 2 0.16/0.25.20/0.30.20/0.80.20/0.30.20/0.80.20/0.80.20/0.30.20/0.30.20/0.30

    .08/0.15.15/0.25.15/0.25.16/0.25.15/0.25.15/0.25.15/0.25.15/0.25.15/0.25.26/0.35.20/0.30.20/0.30.20/0.30.20/0.30.20/0.30.45/0.60.35/0.45.35/0.45.20/0.30.20/0.30.20/0.80.20/0.30.15/0.25.30/0.40.15/0.25.20/0.30.20/0.30.20/0.30

    4023 40244027 4028 4087 40424047 4068 4 1 1 8 4 1 8 0 41 864 1 8 7 41 40 41 42 41 4641 47

    1.65/2.001.65/2.001.65/2.001.65/2.001.66/2.00

    0.40/0.60.80/1.10.80/1.10.80/1.10.80/1.10.80/1.10.80/1.10.80/1.10.80/1.10.70/0.90.40/0.60.70/0.90.70/0.90.70/0.90.70/0.90

    :::::....::::

    41 6041 61 4820 4337 E3 3 7 4340 E84 04 4 1 9

    : : : : : : : : : : : : :4422 4427 461 6 1.65/2.001.66/2.001.66/2.001.66/2.00.70/1.00

    .90/1.20.90/1.208.25/3.753.25/8.768.26/2.75

    4617 46204621 4626 4 7 1 8 47204 8 1 64 8 1 7

    .36/0.55.35/0.65 ::::::::::.:4820501 5 .30/0.40.20/0.35

    .70/0.90.70/0.90

    .80/1.10.75/1.00.80/1.06.70/0.90.70/0.90.85/1.16.70/0.90.70/0.90.70/0.900.40/0.60.90/1.161.30/1.60.60/0.70.70/0.90.80/1.10.30/0.60.40/0.60.40/0.60.40/0.60.40/0.60.40/0.60.40/0.60.40/0.60.40/0.60.40/0.60.40/0.60.40/0.60.40/0.60.40/0.60.40/0.60

    6046 611561 206 1 3 061 826 1 3 561 4061 45 61 47 61 606165 6160

    E01 00E1 1 0 0E21 00 6 1 1 8 6120 61 50

    8 1 1 5861 6861 7 8620

    0.20/0.40.40/0.70.40/0.70.40/0.70.40/0.70.40/0.70.40/0.70.40/0.70.40/0.70.40/0.70.40/0.70.40/0.70.40/0.70.40/0.70.40/0.70

    0.08/0.15.15/0.25.15/0.25.15/0.25.16/0.25.15/0.25.15/0.25.15/0.25.15/0.25.15/0.25.15/0.25.15/0.25.15/0.25.15/0.25.15/0.25

    0.10/0.1.1 0mi.1 5mi

    8622 86258627 8630 8637 8640

    - '86428645 8650 8655 8660

    28

  • 7/29/2019 Heat Treatment Steel

    31/48

    TABU. Composition,limitof tandardsteelsContinuedOPENHEARTHANDELECTRICFURNACEA LLOYTEELS'-(continued)

    Designat ionnumber Chemicalcompoeit ionlimit*,percentAISI C Mn P(nuut) S(msx) Si Ni Cr Mo V

    8720* 8 7 8 68 7 4 08742 8822 9266

    .18/0.23.88/0.88.88/0.43.40/0.46

    .20/0.26

    .60/0.60.66/0.66.66/0.66

    .08/0.18

    .38/0.48.48/0.68

    .70/0.90.76/1.00.76/1.00.76/1.00

    .76/1.00

    .70/0.96.70/1.00.76/1.00

    .46/0.66

    .70/0.90.70/0.90

    .036.036.036.036

    .036

    .086.086.086

    .026

    .086 .036

    .040.040.040.040

    .040

    .040.040.040

    .026

    .040.040

    .20/0.86.20/0.85.20/0.36.20/0.36

    .20/0.861.80/2.201.80/2.201.80/2.20.20/0.86.20/0.86.20/0.36

    .40/0.70.40/0.70.40/0.70.40/0.70

    .40/0.70

    .40/0.60.40/0.60.40/0.60.40/0.60

    .40/0.60

    .20/0.30.20/0.30.20/0.80.20/0.30

    .80/0.40:::::::::::::

    9260 9262 .25/0.401.00/1.40.70/0.90.70/0.90

    E8 1 0 9840 9860

    8.00/3.50.86/1.15.86/1.16

    .08/0.16

    .20/0.30.20/0.80 _._.BORONSTEELS

    Then steel ca nbe expected toha0.0006percentminimum boroncontent.Designationnumber Chemicalcomposit ionl imit,percentAISI M n P(maz) 8(m a x) Ni Cr Mo

    60B 4460B 4660B 6060B60 61B60 8 1 B 4 5 9 4 B 1 7 94BS0

    0.48/0.48.48/0.50.48/0.63.56/0.66.56/0.65.48/0.48.15/0.20.28/0.33

    0.76/1.00.76/1.00.76/1.00.76/1.00.76/1.00.76/1.00.76/1.00.76/1.00

    0.035.036.086.086.086 .086.036.036

    0.040.040.040.040.040.040.040.040

    0.20/0.36.20/0.36.20/0.86.20/0.85.20/0.36.20/0.86.20/0.85.20/0.35

    0.20/0.40.30/0.60.80/0.60

    0.40/0.60.20/0.35.40/0.60.40/0.60.70/0.90.36/0.55.30/0.50.80/0.60

    0.08/0.15.08/0.15.08/0.15

    NITRIDINGSTEELDesignationnumber C hemica lcomposit ionlimits,percent AISI C M n P(max) S(m a x) Si Al Cr Mo V

    0.88/0.48 0.50/0.70 0.036 0.040 0.20/0.40 0.95/1.30 1.40/1.80 0.30/0.40Standardsteel fo rwirerodson ly .Silicon: W h e niliconsequired,heollowing;rusesndimitsareom m only sed: Standardteel