heat part3 retrofit

20
Optimal Retrofit Optimal Grassroot Optimal Reuse of installed Heat Exchangers Requires accurate Modeling (“Rating”) Shorter Paybacks (especially Energy Projects) Phases are the same, but Content is different Data Extraction has been discussed already Targeting with focus on Optimal Value for ΔT min Process Modifications more difficult than in Grassroot Network Design is focused on reduced Heat Transfer across the Pinch point (Process and Utility Pinches) Optimization is used to maximize the Utilization of Existing Heat Exchangers through Loops and Paths What about Retrofit Design of Heat Exchanger Networks ? T. Gundersen Retro 1 Process, Energy and System Heat Integration Retrofit Design

Upload: rameshkarthik810

Post on 10-Feb-2016

220 views

Category:

Documents


0 download

DESCRIPTION

heater

TRANSCRIPT

Page 1: Heat Part3 Retrofit

•  Optimal Retrofit ≠ Optimal Grassroot §  Optimal Reuse of installed Heat Exchangers §  Requires accurate Modeling (“Rating”) §  Shorter Paybacks (especially Energy Projects)

•  Phases are the same, but Content is different §  Data Extraction has been discussed already §  Targeting with focus on Optimal Value for ΔTmin §  Process Modifications more difficult than in Grassroot §  Network Design is focused on reduced Heat Transfer

across the Pinch point (Process and Utility Pinches) §  Optimization is used to maximize the Utilization of

Existing Heat Exchangers through Loops and Paths

What about Retrofit Design of Heat Exchanger Networks ?

T. Gundersen Retro 1

Process, Energy and System

Heat Integration − Retrofit Design

Page 2: Heat Part3 Retrofit

Penalty Heat Flow Diagram

Pinch

T Hot Streams

Cold Streams

ST

Hot Streams

Cold Streams CW

QP = QPP + QPH + QPC Q: What Pinch ? Which ΔTmin ?

T. Gundersen Retro 2

Process, Energy and System

Heat Integration − Retrofit Design

QPC

QPPQPH

Page 3: Heat Part3 Retrofit

Energy Target Plot

HRAT

QH,min

QH,exist

QH,new

HRATnew HRATexist

ΔE a

b

c

HRAT = Heat Recovery Approach Temperature

T. Gundersen Retro 3

Process, Energy and System

Heat Integration − Retrofit Design

Page 4: Heat Part3 Retrofit

Savings vs. Investments

Investment (US$)

Savings (US$/yr)

Invmax

a

b d c

PB=1 PB=2

PB=3

min HRAT subject to Inv ≤ Invmax and PB ≤ PBmax

T. Gundersen Retro 4

Process, Energy and System

Heat Integration − Retrofit Design

Page 5: Heat Part3 Retrofit

Examples of Cross-Pinch Heat Transfer

T. Gundersen Retro 5

Process, Energy and System

Heat Integration − Retrofit Design

H

C

H

mCpH

mCpC

TH,in

TC,out TC,in

TH,out

TP,H

TP,C

, , , ,XP H H in P H C C out P CQ mCp T T mCp T T⎡ ⎤ ⎡ ⎤= ⋅ − − ⋅ −⎣ ⎦ ⎣ ⎦> = 0 <

Page 6: Heat Part3 Retrofit

”Shifting” in Retrofit Design

T. Gundersen Retro 6

Process, Energy and System

Heat Integration − Retrofit Design

LP

C

HP QXP

QC

QH

LP

C

HP QXP

QC − QXP

QH − QXP

H

C

H

C

QH

QC

Page 7: Heat Part3 Retrofit

Example of an Existing Network Pinch180°

C2210° 160°

C1210° 50°

H2220° 60°

H1270° 160°

160°

Ca

2

2

H

1

1

1000 kW

2500 kW

Cb

980 kW

1320 kW

2200 kW

160°

214.4°

120°

mCp(kW/°C)

18.0

22.0

20.0

50.0

QPP = 22 • (220 - 180) = 880 kW QPC = 18 • (214.4 - 180) = 620 kW QP = 1500 kW = 2500 - 1000 QPH = 0 kW

T. Gundersen Retro 7

Process, Energy and System

Heat Integration − Retrofit Design

Page 8: Heat Part3 Retrofit

Changing Operating Conditions (“shifting”)

Pinch 180°

C2 210° 160°

C1 210° 50°

H2

220° 60°

H1

270° 160°

160°

Ca

2

2

H

1

1

1000 kW

2500 kW

Cb

360 kW

440 kW

2200 kW

160°

214.4°

80°

mCp (kW/°C)

18.0

22.0

20.0

50.0

180°

620 kW

880 kW

180°

“Releases” Heat above the Pinch by changing Operating Conditions (Temperatures) for Exchanger 2 and Cooler Ca

T. Gundersen Retro 8

Process, Energy and System

Heat Integration − Retrofit Design

Page 9: Heat Part3 Retrofit

Network After Modifications (Retrofit)

Pinch 180°

C2 210° 160°

C1 210° 50°

H2

220° 60°

H1 270° 160°

160°

Ca

2

2

H

1

1

1000 kW

1000 kW

Cb

360 kW

440 kW

2200 kW

160°

214.4°

80°

mCp (kW/°C)

18.0

22.0

20.0

50.0

180°

620 kW

880 kW

180° 4

3

4

3

190°

The Project requires Purchase of 2 new Units and additional Area (new shell ?) to Unit 2 (smaller ΔT )

T. Gundersen Retro 9

Process, Energy and System

Heat Integration − Retrofit Design

Page 10: Heat Part3 Retrofit

A simpler Retrofit Solution

The Project requires Purchase of only 1 new Unit, while the Energy Savings is 620 kW (versus 1500)

T. Gundersen

Pinch 180°

C2 210° 160°

C1 210° 50°

H2 220° 60°

H1 270° 160°

160°

Ca

2

2

H

1

1

1000 kW

1880 kW

Cb

360 kW

1320 kW

2200 kW

160°

214.4°

120°

mCp (kW/°C)

18.0

22.0

20.0

50.0 3

3

620 kW

180°

172.4°

Retro 10

Process, Energy and System

Heat Integration − Retrofit Design

Page 11: Heat Part3 Retrofit

WS-7: A simple Retrofit Problem

T. Gundersen Retro 11

Process, Energy and System

Heat Integration − Retrofit Design

H1

C1 220°C 70°C

50°C 250°C

120°C

4000 kW

H

C I

I

8000 kW

12000 kW

170°C

mCp (kW/ºC)

100

80

Given: ΔTmin = 5ºC U = 1.0 kW/(m2K) CST = 0.1 NOK/kWh CCW = 0 NOK/kWh

Further: Steam available at 250ºC, Cooling Water at 20ºC (constant) 8000 Operating Hours per Year Cost of new Exchanger: Chex = 0.5 + 0.01·A (m2 and MNOK) Cost of moving/repiping existing Exchanger: Chex = 0.5 MNOK Maximum Payback: PBmax = 3 years

Page 12: Heat Part3 Retrofit

Targeting by using Pro_Pi Software

T. Gundersen Retro 12

Process, Energy and System

Heat Integration − Retrofit Design

Result: For ΔTmin ≤ 30ºC: QH,min = 0 kW, QC,min = 8000 kW

Demand Curves

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 Global temperature difference (K)

Q (k

W)

Page 13: Heat Part3 Retrofit

WS-7 (cont.): Alternative Retrofit Projects

T. Gundersen

Process, Energy and System

Heat Integration − Retrofit Design

Retro 13

H1

C1220°C 70°C

50°C250°C

120°C

4000 kW

H

CI

I

8000 kW

12000 kW

170°C

mCp(kW/ºC)

100

80

Existing Design: PB = n.a.

I = 0 MNOK, ΔE = 0 MNOK/yr

H1

C1220°C 70°C

50°C250°C

922.9 kW

H

CI

I

11077.1 kW

8922.9 kW

139.23°C

mCp(kW/ºC)

100

80208.46°C

Project # 1: PB = 0.20 yr = 2.4 months

I = 0.5 MNOK, ΔE = 2.46 MNOK/yr

Project # 2: PB = 0.38 yr = 4.6 months

I = 1.23 MNOK, ΔE = 3.2 MNOK/yr

H1

C1220°C 70°C

50°C250°C

120°C

4000 kW

CI

I

8000 kW

8000 kW

170°C

mCp(kW/ºC)

100

80

II

II

130°C

Project # 3: PB = 0.46 yr = 5.5 months

I = 1.47 MNOK, ΔE = 3.2 MNOK/yr

H1

C1220°C 70°C

50°C250°C

120°C

4000 kW

CI

I

8000 kW

8000 kW

170°C

mCp(kW/ºC)

100

80

II

II

130°CH

H

Page 14: Heat Part3 Retrofit

WS-7 (cont.): Alternative Retrofit Projects

T. Gundersen

Process, Energy and System

Heat Integration − Retrofit Design

Savings MNOK/yr

Investment MNOK 0

1.0

2.0

3.0

0.5 1.0 1.5 0

PB = 2.4 months

PB = 4.6 months

ΔPB = 11.8 months

Retro 14

The Optimum

Page 15: Heat Part3 Retrofit

WS-10: Retrofit

Optimization with Loops and Paths

T. Gundersen Retro 15

Process, Energy and System

Heat Integration − Retrofit Design

Stream Ts Tt mCp ΔH °C °C kW/°C kW

H1 250 120 40 5200 H2 200 180 80 1600 C1 130 290 50 8000 C2 140 240 20 2000

Steam 320°C (condensing) Cooling Water 20°C à 30°C

ΔTmin = 10ºC QH,min = 4000 kW QC,min = 800 kW

Grand Composite Curve

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Q (kW)

T (°C) Grand Composite Curve

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Q (kW)

T (°C)

TPinch = 200ºC/190ºC and 140ºC/130ºC

Page 16: Heat Part3 Retrofit

WS-10: Existing Network

T. Gundersen Retro 16

Process, Energy and System

Heat Integration − Retrofit Design

mCp (kW/ºC)

[40]

[80]

[50]

[20]

H1

H2

C2

C1 Ha

C

200º

190º 130º

140º

130º

120º 165º 200º

200º 180º

158º 190º 290º

250º

240º 140º Q=5000

Q=2000

Q=1600 Q=1400

Q=1800

I

III

II

Targeting for ΔTmin = 10ºC: QH,min = 4000 kW , QC,min = 800 kW

Cross Pinch Heat Transfer: QXP,I = 1000 kW , QXP,C = 1000 kW

Page 17: Heat Part3 Retrofit

H1 C

WS-10: Retrofit Network

T. Gundersen Retro 17

Process, Energy and System

Heat Integration − Retrofit Design

mCp (kW/ºC)

[40]

[80]

[50]

[20]

H2

C2

C1 Ha

130º

120º 140º 175º

200º 180º

158º 190º 290º

250º

240º 140º Q=1600 Q=1400 [1400]

UA=106.1 [36.5]

Q=800 [1800]

I

III

II 200º

Q=1000 [2000] UA=50.1 [71.7]

Q=3000 [5000]

Q=2000 UA=138.6

Hb

Q=1000 UA=9.7

230º

190º

IV

Investments: New Exchangers IV and Hb and Additional Area for Existing Exch. II

Savings: 1000 kW Reduction in Steam and Cooling Water

Page 18: Heat Part3 Retrofit

WS-10: Summary

T. Gundersen Retro 18

Process, Energy and System

Heat Integration − Retrofit Design

a) Unchanged Energy Consumption Loop A: Ha (+x) → IV (-x) → I (+x) → Hb (-x) b) Better Use of Existing Ha and I

c) Reduces the Area for new Hb and IV

a) Unchanged Energy Consumption Loop B: IV (+y) → II (-y) b) Better Use of Existing I

c) Area increase in IV > Area saved in II

a) Increased Energy Consumption Path C: Ha (+z) → IV (-z) → C (+z) b) Reduces Area for Exchangers IV & II

c) Less (!!) Use of Existing I

a) Increased Energy Consumption Path D: Ha (+w) → II (-w) → C (+w) b) Reduces Area for Exchangers II & IV (This path is dependent – Combine B and C) c) Less (!!) Use of Existing III

a) Reduced (!!) Energy Consumption Path E: Hb (-v) → I (+v) → C (-v) b) Better Use of Existing I

c) Increased Additional Area for II

Loop A most promising, possibly combined with Path C if Existing Exchanger I becomes limiting

Optimization with 4 DOFs

Page 19: Heat Part3 Retrofit

T. Gundersen

Heat Recovery and Iterative Design

R S H U

R = Reactor System S = Separation System H = Heat Integration U = Utility System

Decomposition

R

S

H

U

Interactions

Proc. Mods. 1

Process, Energy and System

Process Modifications

Page 20: Heat Part3 Retrofit

Process Modifications

The “ Plus / Minus “ - Principle

T

Q QC,min

QH,min

T. Gundersen Proc. Mods. 2

Process, Energy and System

Process Modifications