heat integration

37
Pinch technology series 1 By: Anwaruddin Hisyam An Introduction to An Introduction to Heat Exchanger Network Heat Exchanger Network (HEN) Design (HEN) Design

Upload: mardi

Post on 10-Jan-2016

33 views

Category:

Documents


0 download

DESCRIPTION

Heat Integration. An Introduction to Heat Exchanger Network (HEN) Design. By: Anwaruddin Hisyam. In this lecture we will learn how to set energy recovery targets for a process. Pinch identification. 178 C. 880. 1620. 180 C. 160 C. 60 C. 2640. 130 C. 210 C. 270 C. Reactor. 160 C. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Heat Integration

Pinch technology series 1

By:

Anwaruddin Hisyam

An Introduction to An Introduction to

Heat Exchanger Network (HEN) Heat Exchanger Network (HEN) DesignDesign

Page 2: Heat Integration

Pinch technology series 2

In this lecture we will learn how to set energy recovery targets for a process.

Page 3: Heat Integration

Pinch technology series 3

Pinch identificationPinch identification

Page 4: Heat Integration

Pinch technology series 4

Base case

Reactor

50 C

160 C270 C210 C

210 C

220 C

180 C60 C

130 C

149 C

1620

2640

19801220

178 C

160 C

880

Page 5: Heat Integration

Pinch technology series 5

Data Extraction

Reactor

50 C

160 C270 C210 C

210 C

220 C

180 C60 C

130 C

149 C

1620

2640

19801220

178 C

160 C

880

Page 6: Heat Integration

Pinch technology series 6

…..from data extraction

Reactor

50 C

160 C270 C210 C

210 C

220 C 60 C

130 C

160 C

Page 7: Heat Integration

Pinch technology series 7

Stream Data (Problem Table)

NoT source,

CT target,

CHeat duty,

kWCP Type

1 220 60 3520 22 Hot

2 270 160 1980 18 Hot

3 50 210 3200 20 Cold

4 160 210 2500 50 Cold

CP = Heat duty/ABS(T source – T target)

Page 8: Heat Integration

Pinch technology series 8

Composite Curve

Composite Curve

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000 7000

Heat duty (kW)

Tem

p in

terv

al (

K) DT min

Page 9: Heat Integration

Pinch technology series 9

Set DTmin = 20 CSet DTmin = 20 C

Page 10: Heat Integration

Pinch technology series 10

Shifted Stream DataHot - ½DTmin; Cold + ½DTmin

NoT source,

CT target,

CHeat duty,

kWCP Type

1 210 50 3520 22 Hot

2 260 150 1980 18 Hot

3 60 220 3200 20 Cold

4 170 220 2500 50 Cold

Page 11: Heat Integration

Pinch technology series 11

Shifted Composite Curve

Shifted Composite Curve

050

100150200250300

0 1000 2000 3000 4000 5000 6000 7000

Heat Duty (kW)

Tem

p in

terv

al (

K)

Page 12: Heat Integration

Pinch technology series 12

Cascade Diagram

0 720 -720 SURPLUS

700 180 520 DEFICIT

2800 1600 1200 DEFICIT

400 800 -400 SURPLUS

1800 1980 -180 SURPLUS

0 220 -220 SURPLUS

22

18

20

50

260

220

210

170

150

60

50

Cold HotCold-HotStream population

Page 13: Heat Integration

Pinch technology series 13

Heat balance in the interval

260

220

210

170

150

60

50

0

720

200

- 1000

- 600

- 420

- 200

Hot utility

-720

520

1200

-400

-180

-220

Cold utility

Heat flow

Page 14: Heat Integration

Pinch technology series 14

The heat flow must NOT be negative

Page 15: Heat Integration

Pinch technology series 15

Normalization

260

220

210

170

150

60

50

0

720

200

- 1000

- 600

- 420

- 200

Hot utility

-720

520

1200

-400

-180

-220

Cold utility

Need additional

heat

Page 16: Heat Integration

Pinch technology series 16

Original Grand Composite Curve

0

50

100

150

200

250

300

-1200 -1000 -800 -600 -400 -200 0 200 400 600 800 1000

Unfeasible region

Feasible region

Page 17: Heat Integration

Pinch technology series 17

…finding pinch

260

220

210

170

150

60

50

1000

1720

1200

0

400

580

800

Hot utility

-720

520

1200

-400

-180

-220

Cold utility

No heat flow at this point

Page 18: Heat Integration

Pinch technology series 18

Grand Composite Curve

0

50

100

150

200

250

300

0 500 1000 1500 2000

Heat duty (kW)

Tem

p in

terv

al (K

)

Qh min

Qc min

Page 19: Heat Integration

Pinch technology series 19

finally….finally….The PINCH POINT = 170 CThe PINCH POINT = 170 C

which means thatwhich means that

Hot stream PINCH = 170+Hot stream PINCH = 170+½DTmin = 180½DTmin = 180

Cold stream PINCH = 170-Cold stream PINCH = 170-½DTmin = 160½DTmin = 160

Page 20: Heat Integration

Pinch technology series 20

Heat source and sink

Heat source this part releases heat

Heat sink this part requires heat

Composite Curve

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000 7000

Heat duty (kW)

Tem

p in

terv

al (K

)

PINCH

Heat Source Heat Sink

Page 21: Heat Integration

Pinch technology series 21

and, and, how can we design HEN how can we design HEN

based on the pinch?based on the pinch?

Page 22: Heat Integration

Pinch technology series 22

Base case….the existing network

Heat recovery = 1980 + 880 = 2860 kW

Cold utility = 2640 kW

Hot utility = 1220 + 1620 = 2840 kW

22060

270160

21050

160

210H

C

H H

2640

1620

880

1980

1220

Page 23: Heat Integration

Pinch technology series 23

Let’s start from Let’s start from the pinchthe pinch

Page 24: Heat Integration

Pinch technology series 24

22060

270160

21050

160

210

180

180

160

160

2200

PIN

CH

AT

170

0

360

2640

1000

2500

1640

880

20

50

18

22

CPBELOW ABOVE

Page 25: Heat Integration

Pinch technology series 25

Rules….

CP in ≤ CP out Start finding partners for streams OUT (with streams IN,

away from pinch, or utility)

N stream IN ≤ N stream out If Ns IN > Ns OUT, split stream(s) OUT

If CP in > CP out (no match), try to split stream(s) IN Set maximum heat recovery The remaining heat duty is covered by heater or

cooler

Page 26: Heat Integration

Pinch technology series 26

22060

270160

21050

160

210

1

180

2200

1

180

160

160

2200 √√

Step 1: Below the PINCH

Connect S1(22) and S3(20)

CP in < CP out

Page 27: Heat Integration

Pinch technology series 27

22060

270160

21050

160

210

1

180

2200

1

180

160

160

2200 √√

2

2

1620√√1620

Step 2: Above the PINCH

Connect S2(18) and S4(50)

CP in < CP out

Page 28: Heat Integration

Pinch technology series 28

22060

270160

21050

160

210

1

180

2200

1

180

160

160

2200 √√

2

2

1620√√1620

3

3

880

880

√√

2500√√

Step 3: Above the PINCH

Connect S1(22) and S4(50)

CP in < CP out

Page 29: Heat Integration

Pinch technology series 29

22060

270160

21050

160

210

1

180

2200

1

180

160

160

2200 √√

2

2

1620√√1620

3

3

880

880

√√

2500√√

H

1000

1000√√

Step 4: Above the PINCH

Install Heater at S3(20)

Page 30: Heat Integration

Pinch technology series 30

22060

270160

21050

160

210

1

180

2200

1

180

160

160

2200 √√

2

2

1620√√1620

3

3

880

880

√√

2500√√

H

1000

1000√√

C

C

360

360

2640

440

√√

√√

Step 5: Below the PINCH

Install Cooler at S1(22) and S2(18)

All heat requirements have been All heat requirements have been met !!!met !!!

Page 31: Heat Integration

Pinch technology series 31

22060

270160

21050

160

210

H

2200

440

1000

1620

880

C

360

C

…finally…Heat Exchanger Network (HEN)

Maximum Energy Recovery (MER) = 2200 + 880 + 1620 = 4700 kW

Minimum cooling heat duty (Qc min) = 440 + 360 = 800 kW

Minimum heating heat duty (Qh min) = 1000 kW

Page 32: Heat Integration

Pinch technology series 32

Then draw the flowsheet…

Reactor

50 C

160 C

270 C210 C

210 C220 C

60 C

130 C

160 C

880

1620

2200440

360

1000

177.6 C

180 C

180 C

80 C

160 C

Page 33: Heat Integration

Pinch technology series 33

Possible modifications

Page 34: Heat Integration

Pinch technology series 34

Grand Composite Curve

0

50

100

150

200

250

300

0 500 1000 1500 2000

Heat duty (kW)

Tem

p in

terv

al (K

)

Heat generation

Cooling water

MP steam

Page 35: Heat Integration

Pinch technology series 35

Page 36: Heat Integration

Pinch technology series 36

Working Session Working Session

Page 37: Heat Integration

Pinch technology series 37

Feed 2

Feed 1

H= 27 MW

H=32 MW

H= -31.5 MW

H=-30 MW

140 C

250 C

230 C

40 C

40 C

40 C

180 C

20 C

200 C

80 C

Product 2

Product 1

Reactor 1

Reactor 2

How will the HEN be….?