heat engines2

Upload: magdy-riad

Post on 06-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Heat Engines2

    1/21

    Heat EnginesEnergy Resources:

    Fossil fuels, biomass, nuclear, solar, wind, ocean ( waves, ocean temp.

    energy conversion OTEC)

    Thermodynamic relations:

    First Law:

    SystemSSSFdHdWdQ

    SystemCloseddUdWdQ

    .........................

    .......................

    =

    =

    Perfect Gas:

    )./...(8314

    ..........................1

    ................1

    ....................................

    ...............................

    KkgjG

    RTuhM

    GR

    k

    kRC

    k

    RC

    pvuhC

    Ck

    dTdhC

    dTduC

    RTpvmRTPV

    pv

    c

    ppv

    =

    +==

    =

    =

    +====

    ==

    p p

    2

    1 = pdVW = VdpW

    2 1

    V V

    Second Law: 2

    1

    Power Plant Generator

    Steam power

    plants

    Hydraulic

    power plants

    Gas power plants

    Gas turbinesReciprocating engines

    Petrol Diesel Stirling

  • 8/3/2019 Heat Engines2

    2/21

    TdSdQ = Q

    1

    2

    1

    2

    12 ln.lnV

    VR

    T

    TCSS v += .(1) 1

    1

    2

    1

    212 ln.ln

    ppR

    TTCSS p = ...(2)

    p V=Const

    pVn=Const

    P=Const (n=0)

    T=Const (n=1)

    PVk=Const (n=k)

    T

    PVk=C

    V=C

    P=C

    T=C

    S

    2

  • 8/3/2019 Heat Engines2

    3/21

    Const.

    Volume

    (Isochoric)

    Const.

    Pressure.

    (Isobaric)

    Const.

    Temp.

    (Isothermal)

    Adiabatic

    Reversible

    (Isentropic)

    Polytropic

    Relations V=const

    1

    2

    1

    2

    T

    T

    p

    p=

    2

    1

    2

    1

    .

    T

    T

    V

    V

    Constp

    =

    =

    constU

    VpVp

    ConstT

    =

    =

    =

    2211 .

    .

    k

    k

    k

    k

    p

    p

    V

    V

    T

    T

    ConstpV

    ConstS

    1

    1

    2

    1

    2

    1

    1

    2

    .....

    =

    =

    =

    = ConstVp n =.

    Work W= 0 Vp.

    1

    2ln.V

    VmR

    0

    ..

    =

    =

    Q

    UW

    TCm v

    n

    TTRm

    1

    .(. 12

    Heat Q= TCm v .. TCm p ..

    WQ

    U

    V

    VTRm

    =

    = 0

    ln...1

    2 0 WUQ +=

    Entropy=S

    1

    2ln..

    T

    TCm v

    1

    2ln..

    T

    TCm p

    1

    2ln..

    V

    VRm

    0 Relations

    (1)&(2)

    1

    2

    1

    212 ln.ln

    V

    VR

    T

    TCSS v += ...(1)

    1

    2

    1

    2

    12 ln.lnp

    pR

    T

    TCSS p = ..(2)

    Air Standard Cycles

    Assumptions:

    1-The working fluid is air (ideal gas PV=mRT) of fixed mass.

    2-Combustion is replaced by a process of heat addition.

    3-Cycle is completed by heat transfer to the surrounding.

    4-All processes are reversible.

    3

  • 8/3/2019 Heat Engines2

    4/21

    5-Constant specific heat.

    Important Parameters:

    1-Thermal efficiency:

    add

    netth

    QW= p Wnet

    2-Mean effective pressure:

    s

    mV

    CycleW

    VolumeStroke

    CycledoneWork

    p ==..

    ..

    V

    3-Work Ratio:

    WorkGross

    WorkNet

    W

    WWR

    positive

    net

    ...

    ...==

    4-Specific Work Transfer:

    plantofSizem

    WSW

    air

    net ................=

    5-Specific Consumption:

    WSW

    mCS

    net

    air

    .

    1. ==

    Carnot Cycle:

    4

    Source TH

    E

    Sink TL

    W=QH-QL

    14

    3

    2p

    32

    1

    T

    V S

    TH

    TL

    4QL

    QH

    Isothermal

    Isentropic

    1-2 Isentropic Compression

    2-3 Isothermal Heat addition

    3-4 Isentropic Expansion

    4-1 Isothermal Heat rejection

  • 8/3/2019 Heat Engines2

    5/21

    From p-V diagram:

    2

    3

    1

    4

    2

    3

    ln...

    ln...ln...

    V

    VTRm

    V

    VTRm

    V

    VTRm

    Q

    QQ

    Q

    W

    H

    LH

    H

    LH

    add

    net

    th

    =

    ==

    but1

    4

    2

    3

    V

    V

    V

    V=

    H

    LLHth

    TT

    TTT

    H

    == 1

    From T-S diagram:

    )(.

    ).(.)(.

    23

    1423

    SSTm

    SSTmSSTm

    Q

    QQ

    Q

    W

    H

    LH

    H

    LH

    add

    netth

    =

    ==

    but 1423 SSSS =

    H

    LLH

    th

    T

    T

    T

    TT

    H

    =

    = 1

    gross

    net

    W

    WWR =

    == ))(( 23 SSTTmQW LHnet

    isentropicisothermalgross WWW += U=0 Q=0

    W=Q W=U

    ))((

    )()(

    ))((

    )(.)(.

    23

    23

    23

    23

    SSTTSW

    TTCSST

    SSTTWR

    TTCmSSTmW

    LH

    LHvH

    LH

    LHvHgross

    =

    +

    =

    +=

    Reciprocating engines cycles:Stirling Cycle:

    5

    1

    S

    2

    3

    41

    43

    2

    V

    Tp V=Const

    Isothermal T=Const

    1-2 Isothermal Compression2-3 Const. Volume Heat addition

    3-4 Isothermal Expansion

    4-1 Const. Volume Heat rejection

  • 8/3/2019 Heat Engines2

    6/21

    1

    S

    2

    3

    4 1

    43

    2

    V

    Tp V=Const

    Isothermal T=Const

    1-2 Isothermal Compression

    2-3 Const. Volume Heat addition

    3-4 Isothermal Expansion4-1 Const. Volume Heat rejection

    4

    3

    1

    2

    1

    2

    12

    3

    434

    ...........ln..

    ln..

    V

    V

    V

    Vbut

    V

    VTRmQ

    V

    VTRmQ

    L

    H

    ==

    =

    6

  • 8/3/2019 Heat Engines2

    7/21

    ===

    =

    +=

    ==

    LimitsTempsamethebetweenWorking

    Carnot

    H

    L

    H

    LHth

    H

    HL

    H

    HL

    add

    th

    TT

    TTT

    V

    VTRm

    V

    VTRm

    V

    VTRm

    V

    VTRm

    V

    VTRm

    V

    VTRm

    Q

    WW

    Q

    dW

    ...................

    1

    2

    1

    2

    1

    2

    3

    4

    3

    4

    1

    2

    34

    3412

    1

    ln..

    ln..ln..

    ln..

    ln..ln..

    2

    1234

    34

    1234

    1ln)(

    1

    V

    VTTRWWSW

    T

    T

    W

    WW

    W

    WWR

    Lh

    H

    L

    gross

    net

    =+=

    =+

    ==

    Both WR & SW are greater than the values for Carnot cycle.

    +

    =+

    =

    H

    LHvH

    L

    LHvH

    LH

    T

    TT

    SS

    CTT

    TTCSSTSSTTWR

    )(.

    )(1

    1)1()()(

    ))((

    23

    23

    23

    .Carnot

    [ ] onethanloweris ................

    CarnotStirling WRWR >

    3-4ColdHot

    Regenerator CoolerHeater

    ?

    Expansion Compression

    7

    Stirling

    Engine

    0 90 180 270 360 Crank angle

    Total

    Volume

    4-1 1-2 2-3 3-4

    Compression Expansion

    4-1 Transfer of working fluid to the cold space..Const vol.heat rejection to

    the regenerator

    2-3 Transfer of working fluid to the hot space..Const vol. Heat addition

    from the regenerator

  • 8/3/2019 Heat Engines2

    8/21

    Otto Cycle:

    8

    p

    V S

    4

    3

    2

    4

    3

    2

    1

    T

    1

    V1

    V2

    Isentropic Const. Volume

    Wnet

    Qadd

    Qrej

  • 8/3/2019 Heat Engines2

    9/21

    Carnotk

    v

    th

    k

    v

    kk

    th

    v

    vv

    th

    vvnet

    vrej

    vadd

    rT

    T

    V

    V

    T

    T

    RationCompressior

    V

    V

    T

    T

    T

    T

    T

    T

    V

    V

    V

    V

    T

    Tbut

    T

    T

    T

    T

    T

    T

    TT

    TT

    TTCm

    TTCmTTCm

    TTCmTTCmW

    TTCmvolconstQQ

    TTCmvolconstQQ

  • 8/3/2019 Heat Engines2

    10/21

    Diesel Cycle:

    10

    1

    V S

    1

    2

    Tp

    4

    2 3

    3

    4

    P=Const

    V=Const

    Isentropic

    P=Const

    T=Const

  • 8/3/2019 Heat Engines2

    11/21

    )1(

    )1(1

    1).(.

    ).(.1

    ).(.

    ).(.)(.

    ).(.)(.

    ).(.

    ).(.

    2

    3

    2

    1

    4

    1

    23

    14

    23

    1423

    1423

    1414

    2332

    =

    =

    =

    =

    ==

    ==

    T

    TT

    T

    TT

    kTTCm

    TTCm

    TTCm

    TTCmTTCm

    TTCmTTCmW

    TTCmQQ

    TTCmQQ

    p

    v

    p

    vp

    th

    vpnet

    vrej

    padd

    ..........)1(

    1

    .

    11

    1

    1

    .

    11

    ...........

    .................

    2

    3

    1

    2

    3

    2

    3

    1

    2

    3

    1

    2

    3

    2

    31

    1

    2

    1

    4

    3

    2

    3

    1

    4

    1432

    1

    4

    3

    3

    4

    1

    1

    2

    2

    1

    ratiooffcutV

    Vwhere

    kr

    V

    V

    V

    V

    rk

    VV

    VV

    VV

    V

    VV

    V

    TT

    TT

    VVVV

    V

    V

    T

    Tand

    V

    V

    T

    Tbut

    k

    k

    k

    kth

    kk

    k

    k

    kk

    ==

    =

    =

    =

    =

    =

    =

    =

    =

    )..........(...................... smallisloadslowinhigherisloadondepends th

    [ ]

    ratiocomphighatoperateEnginesDieselBut

    rratiocompsametheforOttoDiesel

    Diesel

    unitythangreaterOtto

    kr

    thth

    k

    kth

    ....................

    ..............)....()(

    ..

    ....................................

    )1(

    1

    .

    11

    1

  • 8/3/2019 Heat Engines2

    12/21

    12

    3

    2

    1

    T

    V

    1

    5

    43p

    S

    5

    4V=Const

    Otto

    Diesel

    Isentropic

    P=Const

    ratiopressurep

    pLet

    TTkTT

    TT

    TTCmTTCm

    TTCmTTCmTTCm

    Q

    W

    TTCmVVpW

    QQW

    TTCmQQ

    TTCmTTCmQQQ

    th

    pv

    vpv

    add

    net

    th

    vpositive

    rejaddnet

    vrej

    pvadd

    .............

    )()(

    )(1

    )(.)(.

    )(.)(.)(.

    )(.)(

    )(.

    )(.)(.

    2

    3

    3423

    15

    3423

    153423

    5434

    1551

    34233423

    =

    +

    =

    +

    +

    ==

    +=

    =

    ==

    +=+=

    12

  • 8/3/2019 Heat Engines2

    13/21

    k

    k

    k

    k

    k

    k

    k

    kk

    k

    Tr

    rTT

    VVrVV

    VV

    VV

    VV

    V

    V

    V

    V

    V

    VrT

    V

    VTT

    rTV

    VTT

    rTp

    pTTrT

    V

    VTT

    ......

    ......................

    .

    .

    .

    ....

    ...

    ..,...........

    1

    1

    1

    15

    32

    13

    24

    13

    34

    1

    4

    5

    4

    1

    5

    41

    1

    1

    5

    4

    45

    1

    1

    3

    4

    34

    1

    1

    2

    3

    23

    1

    1

    1

    2

    1

    12

    =

    =

    =====

    =

    =

    =

    =

    ===

    =

    )(.)(

    )(.)(.)(.

    )(.)()(

    tan................

    ............1................................................................

    ............1.........)1.(.()1(

    1.11

    5434

    153423

    153423

    ...

    .

    .1

    TTCmVVp

    TTCmTTCmTTCmWR

    TTCTTCTTCSW

    timporrsamethefor

    rsamethefor

    rsametheforif

    kr

    v

    vpv

    vpv

    DieselthDualthOttoth

    Dieselth

    Ottoth

    k

    kth

    +

    +=

    +=

    >>

    =

    =

    +

    =

    Gas Turbine Cycles: (Brayton or Joule)

    13

    1

    2

    3

    2

    1

    T

    V

    1 4

    3p

    S

    4

    V=Const

    P=Const

    Isentropic

    P=Const

    44

    C T

    C.C

    Qrej

    Qadd

    14

    32

    Wnet

    Gas Turbine Cycle (Brayton cycle, or Joule cycle)

  • 8/3/2019 Heat Engines2

    14/21

    23

    14

    23

    1423

    1

    )(.

    )(.)(.

    TT

    TT

    TTCmQ

    TTCmTTCmW

    th

    padd

    ppnet

    =

    =

    =

    powerOutputpowerTurbinepowerCompressor

    powerTurbine

    powerOutput

    W

    WWRNB

    rT

    T

    TT

    TTTTWr

    r

    p

    p

    T

    T

    T

    TT

    T

    TT

    T

    T

    p

    p

    p

    p

    T

    Talso

    r

    rT

    Tr

    TT

    ratioessurep

    prand

    rationCompressioV

    VrLet

    ve

    net

    k

    k

    p

    k

    k

    p

    th

    k

    k

    th

    k

    k

    k

    k

    k

    v

    th

    k

    v

    k

    v

    p

    v

    .........

    ...

    ...........:

    .1)(

    )()(

    .............1

    1

    11

    )1(

    )1(

    1

    .....

    ................1

    1

    ........,

    ....Pr.......

    ............

    1

    2

    1

    43

    1243

    1

    1

    2

    1

    2

    1

    2

    3

    2

    1

    4

    1

    4

    3

    1

    4

    3

    1

    1

    2

    1

    2

    1

    12

    113

    4

    1

    2

    2

    1

    =

    ==

    =

    =

    =

    ==

    =

    =

    =

    =

    =

    ==

    =

    =

    +

    14

  • 8/3/2019 Heat Engines2

    15/21

    Report (M-1):

    Hold a comparison among Otto, Diesel and Dual cycles in the following

    conditions:

    1-Same compression ratio and same heat input.2-Same maximum pressure and same heat input

    3-Same maximum pressure and maximum temperature.

    Draw the 3 cycles on the same P-V and T-S diagrams, compare the net

    power and thermal efficiency.

    15

  • 8/3/2019 Heat Engines2

    16/21

    16

  • 8/3/2019 Heat Engines2

    17/21

    17

  • 8/3/2019 Heat Engines2

    18/21

    18

  • 8/3/2019 Heat Engines2

    19/21

    19

  • 8/3/2019 Heat Engines2

    20/21

    20

  • 8/3/2019 Heat Engines2

    21/21