hbr, v(m+8), one-color, vmi one-color: ker spectra vmi, v(m+8) vs...

28
HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4 Angular distributions………………………………………………………5-7 Two color; Br detection…………………………………………………………………...8-20 Br* detection………………………………………………………………….21-24 H det……………………………………………………………………………..25-28 Updated: 09.10.2014

Upload: jacob-wiggins

Post on 18-Jan-2018

218 views

Category:

Documents


0 download

DESCRIPTION

…PXP ,pxp; Lay:1; Gr:2; …….XLS xlsx I(H*+Br*)/I(H*+Br) J´ => Overall drop in ratio with J´ V(m+8)

TRANSCRIPT

Page 1: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

HBr,V(m+8), one-color, VMI

One-color:KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2Branching ratios……………………………………………………………..3-4Angular distributions………………………………………………………5-7Two color; Br detection…………………………………………………………………...8-20Br* detection………………………………………………………………….21-24H det……………………………………………………………………………..25-28

Updated: 09.10.2014

Page 2: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

4

3

2

1

0

3.02.52.01.51.00.50.0

At(wave1): 0.080819 At(wave1): 0.014809 At(wave1): 0.05506

At(wave3): 0.086407 At(wave3): 0.015168 At(wave3): 0.059844

At(wave5): 0.081932 At(wave5): 0.016612 At(wave5): 0.054638

At(wave7): 0.080005 At(wave7): 0.015925 At(wave7): 0.057725

At(wave9): 0.07808 At(wave9): 0.019208 At(wave9): 0.065056

At(wave11): 0.077664 At(wave11): 0.021054 At(wave11): 0.066456

At(wave13): 0.073827 At(wave13): 0.021456 At(wave13): 0.066274

At(wave15): 0.075848At(wave15): 0.023018 At(wave15): 0.064863

I(H*+Br*) I(H*+Br) HBr+*/HBr+

Integral values

…PXP-140922,pxp; Lay:0; Gr:1; …….XLS-140916.xlsx

KER/eV

J´=J´´=

7

6

5

4

3

2

1

0

V(m+8)

Page 3: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

5

4

3

2

1

0

76543210

…PXP-140922,pxp; Lay:1; Gr:2; …….XLS-140916.xlsx

I(H*+Br*)/I(H*+Br)

=> Overall drop in ratio with J´

V(m+8)

Page 4: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

3

2

1

0

76543210

…PXP-140922,pxp; Lay:2; Gr:3; …….XLS-140916.xlsx

=> Overall drop in ratio with J´

V(m+8)

I(HBr+/HBr+*)/I(H*+Br)

Page 5: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

3.0

2.5

2.0

1.5

1.0

0.5

150100500

3.0

2.5

2.0

1.5

1.0

0.5

150100500 q

V(m+8), H* + Br*

J´=J´´=

7

6

5

4

3

2

1

0

…PXP-140922,pxp; Lay:3; Gr:4; <= …XLS-140916.xlsx, sheet: „Angle processing“ => …PXP-140922,pxp; Lay:4; Gr:5;

V(m+8), H* + Br

J´=J´´=

7

6

5

4

3

2

1

0

q

Page 6: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

3.0

2.5

2.0

1.5

1.0

0.5

0.0

150100500

HBr+ (top peak)

J´=J´´=

7

6

5

4

3

2

1

0

q…PXP-140922,pxp; Lay:5; Gr:6; <= …XLS-140916.xlsx, sheet: „Angle processing“

Page 7: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

76543210

H*+Br

H*+Br*

top peak

b2

I(HBr+;top peak)I(H*+Br*),I(H*+Br)

V(m+8), VMIOne-step analysis using b2 and b4

…PXP-140922a,pxp; Lay:0; Gr:3; <= XLS-140916.pxp: sheet: „Angle fits“

V(m+8)

Page 8: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

Two color exp. Br detection:

Two color exp.

V(m+8)

Page 9: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

Two-color:pump: V(m+8), J´= 0,….7Probe: hv 2hv

Br line at 260,622 nm 38369,75 cm-1 76739,49

i.e. Br** <-<-Br:(…4p5) 4D3/2 <-<-(4p45p)2P3/2

V(m+8)

Page 10: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

J´= 0 1 2

J´= 3 4 5

Page 11: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

1.5

1.0

0.5

0.0

30025020015010050

2 color; Br detection (260.622 nm)

pix

…PXP-140922,pxp; Lay:6; Gr:7;

V(m+8),

J´=J´´=

7

65

4

3

210

V(m+8)

Page 12: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

Above data recorded for repeller voltage = 2 kVOne color VMI data recorded for repeller voltages = 3kV

Velocity conversion factor alteration: C(2kV) = C(3kV)*(2/3) (is that correct?)where KER(Br+) = C* (pix)2

and KER(Br+) = (1/80)* KER(total)HenceKER(total) = 80* KER(Br+)

V(m+8)

Page 13: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

1.5

1.0

0.5

0.0

1086420KER(total)/eV

…PXP-140922,pxp; Lay:7 Gr:8;

Strange disappearance of the peak V(m+8), H* + Br*

J´=J´´=

7

65

4

3210

1.25 eV

V(m+8)

Page 14: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

Now let´s do prediction calc.

1. Prediction calculation for one photon excitation into repulsive valence states followed by dissociation to form H + Br:

KER(total)= E(J´´) + hv – D0(HBr)

J´ hv E(J´´) KER(Br(3/2)) KER(Br(3/2))cm-1 cm-1 cm-1 eV

0 40014,5 0 9804,5 1,2156035271 40010,9 16,69516 9817,595161 1,217227122 40003,3 50,07752 9843,377524 1,2204237273 39991,2 100,1312 9881,331169 1,2251293814 39974,85 166,8322 9931,682217 1,2313721185 39954,5 250,1488 9994,648828 1,2391789866 39930,25 350,0412 10070,2912 1,2485574497 39900,9 466,4616 10157,36159 1,259352804

V(m+8)

Page 15: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

Now let´s do prediction calc.

1. Prediction calculation for three photon excitation into superexcitedState(s) followed by dissociation to form H* + Br:

KER(total)= E(J´´) + 3hv – D0(HBr)-E(H*)

J´ 3hv E(J´´) KER(Br(3/2)) KER(Br(3/2))cm-1 cm-1 cm-1 eV

0 120043,5 0 7574,55 0,939124861 120032,7 16,69516 7580,445161 0,9398557682 120009,9 50,07752 7591,027524 0,9411678143 119973,6 100,1312 7604,781169 0,9428730494 119924,6 166,8322 7622,432217 0,9450615015 119863,5 250,1488 7644,698828 0,947822216 119790,8 350,0412 7671,841204 0,9511874377 119702,7 466,4616 7700,211586 0,954704917

V(m+8)

Page 16: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

Now let´s do prediction calc.

1. Prediction calculation for two photon resonance excitation to ion-pair statefollowed by predissociation to form H + Br:

KER(total)= E(J´´) + 2hv – D0(HBr)

J´ 2hv E(J´´) KER(Br(3/2)) KER(Br(3/2))cm-1 cm-1 cm-1 eV

0 80029 0 49819 6,1767710851 80021,8 16,69516 49828,49516 6,1779483352 80006,6 50,07752 49846,67752 6,1802026623 79982,4 100,1312 49872,53117 6,1834081064 79949,7 166,8322 49906,53222 6,1876237015 79909 250,1488 49949,14883 6,1929074896 79860,5 350,0412 50000,5412 6,1992793347 79801,8 466,4616 50058,26159 6,206435752

V(m+8)

Page 17: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

Comment

• This suggests that the main peak is due to Br formed byone photon excitation followed by dissociation to form H + Br

• The „inner ring fits with non of the above possibilities!

„The „inner ring“ could be an artifact

V(m+8)

Page 18: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

Angular distribution analysis, 2 color exp. Br detection:

V(m+8)

Page 19: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

3.0

2.5

2.0

1.5

1.0

0.5

0.0

150100500

V(m+8) 2 colour

…PXP-140922c.pxp; Lay:0, Gr:1

V(m+8), fitting by beta2 and beta4 only J´=J´´=

7

6

5

4

3

2

1

0

0q

Br detection:V(m+8)

Page 20: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

-2

-1

0

1

2

76543210

Beta and delta Bata for V(m+8) 2 colour

b2

V(m+8)

…PXP-140922c.pxp; Lay:1, Gr:2Purely perpendicular

Br detection:

Page 21: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

2 color exp. Br* detection:

V(m+8)

Page 22: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

2.5

2.0

1.5

1.0

0.5

0.0

20151050

V(m+8)

…PXP-140922c.pxp; Lay:2, Gr:11

J´=J´´=

3

2

1

0

KER(total) eV

2hv

1hv

Check 2hv

Page 23: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

1.2

1.0

0.8

0.6

0.4

0.2

150100500

1.4

1.2

1.0

0.8

0.6

0.4

0.2

150100500…PXP-140922c.pxp; Lay:4, Gr:15

q

V(m+8)

2hv

No backgroundSubtractionFits for beta6 =0

J´=J´´=

3

2

1hv

…PXP-140922c.pxp; Lay:3, Gr:14q

Page 24: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

4.03.53.02.52.01.51.0

V(m+8)

b2

Two color Br*-detection (exp. 141007), (NB: for beta6=0 fit)

2hv (no bgr. Subtraction)

…PXP-140922c.pxp; Lay:6, Gr:16

1hv

Page 25: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

Angular distribution analysis, 2 color exp. H detection:

V(m+8)

Page 26: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

3.02.52.01.51.00.50.0

V(m+8) Two color exp. H-detection(set2):

H detection, one color,243.161 nm (H->->H* resonance)

H detection, one color, 250.010 nm (J´´=3->->J´=3 resonance

Two-color, 1) 250.010 nm (HBr resonance excitation)2) 243.161 nm H resonance excitation,

…PXP-140922b.pxp; Lay:1, Gr:3

KER(total)eV

Page 27: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

1.0

0.8

0.6

0.4

0.2

0.0

3.02.52.01.51.00.50.0

V(m+8) Two color exp., H-detection (set2):

One color, H detection, 250.010 nm (J´´=3->->J´=3 resonance

Two-color, 1) 250.010 nm (HBr resonance excitation)2) 243.161 nm H resonance excitation,

Two color – one color

KER(total)eV

…PXP-140922b.pxp; Lay:2, Gr:4

Page 28: HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4

1.0

0.8

0.6

0.4

0.2

0.0

3.02.52.01.51.00.50.0

Vm+8) Two color exp., H-detection:

H detection, one color,243.161 nm (H->->H* resonance)

Two color – one color

KER(total)eV

…PXP-140922b.pxp; Lay:3, Gr:5