harrachov 2007

38
On a weighted quasi-residual minimization strategy of QMR for solving complex symmetric shifted linear systems Harrachov 2007 Nagoya Universit y, Japan Dept. of Computational Science & Engineering, Tomohiro Sogabe (Joint work with S.-L. Zhang) omputational Methods with Applications- Aug. 19-

Upload: elga

Post on 12-Jan-2016

19 views

Category:

Documents


0 download

DESCRIPTION

-Computational Methods with Applications- Aug. 19-25. Harrachov 2007. On a weighted quasi-residual minimization strategy of QMR for solving complex symmetric shifted linear systems. Tomohiro Sogabe. (Joint work with S.-L. Zhang). Dept. of Computational Science & Engineering,. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Harrachov 2007

On a weighted quasi-residual minimization strategy of QMR for solving complex

symmetric shifted linear systems

Harrachov 2007

Nagoya University, Japan

Dept. of Computational Science & Engineering,

Tomohiro Sogabe

(Joint work with S.-L. Zhang)

-Computational Methods with Applications- Aug. 19-25

Page 2: Harrachov 2007

・ Complex symmetric shifted linear systems  

Outline

・ Conclusion

・ Improving the speed of convergence of shifted QMR_SYM

・ Numerical examples

miii ,...,2,1,)( bxIA σσ- Shifted linear systems

- Shifted COCG, Shifted COCR, Shifted QMR_SYM

- A proposal of a weight

- Large scale electronic structure calculation ( Si & Cu atoms )

・ Shifted QMR_SYM

(On a weighted quasi-residual minimization strategy )

- Advantages and shortcomings over shifted COCG(R)

- Comparison of computational cost

Page 3: Harrachov 2007

List of main symbols

・ Krylov subspace : },...,,{span:),( 1bAAbbbA nnK

・ W-dot product on :NC Wyxyx WH:),(

・ W-norm on : Wxxx WH:|||| NC

(W : N-by-N h.p.d. matrix)

NoteMatrix A is complex symmetric if A is not Hermitian but symmetric, i.e. .HT AAA

Page 4: Harrachov 2007

Linear systems

.,,, NNN CbxCAbAx

.,...,2,1,)( miii bxIA σσ

Shifted linear systems

Shifted linear systems

・ Lattice QCD  Numerical computation of the strong interaction between quarks mediated by gluons

・ Large scale electronic structure calculationDynamics computation of nanostructures based on quantum mechanics

Page 5: Harrachov 2007

.,...,2,1,)( miii bxIA σσ

Complex symmetric shifted linear systems

Our main interest

Krylov subspace (KS) methods

for solving complex symmetric linear systems

Page 6: Harrachov 2007

bxA 1I)( 1σσ

bxA mm

σσ I)(

KS methods for shifted linear systems

KS methods

KS methods

KS methods

bxA 1I)( 1σσ

bxA mm

σσ I)(

),(),( bIAbIA σσ nn KKi j

For more efficient computaion,

Reuse of the basisNo need for matrix-vector and dot products.

   Generate Krylov basis

Page 7: Harrachov 2007

KS solvers for non-Hermitian shifted linear systems

QMR for SLS ( Freund, 1993 )

BiCGSTAB-M

BiCGSTAB(ℓ)GMRES(k)

Non-Hermitian

( Jegerlehner, 1996 )

( Frommer & Grassner, 2003 )

( Jegerlehner, 1996 )

( Frommer, 2003 )ShiftedShifted

BiCG-M

..

GMRES ( Datta & Saad, 1991 )

Page 8: Harrachov 2007

KS methods for complex symmetric shifted linear systems

Complex symmetric linear systems

COCG (van der Vorst & Melissen, 1990)

COCR (S. & Zhang, 2007)

QMR_SYM (Freund, 1992)

Shifted COCR ( S. & Zhang, manuscript 2007 )

Complex symmetric shifted linear systems

Shifted COCG ( Takayama et al., 2006 )

Shifted QMR_SYM ← Readily obtained from two papers by Freund, 1992, 1993.

Page 9: Harrachov 2007

Property of each method

COCG:

COCR:

QMR_SYM:

),( 0rAr nn K

]:[ nn Axbr

),( 0rAAr nn KQnnn rVr 1

bAx

Shifted COCR:

Shifted COCG:

Shifted QMR_SYM:Q

nnnσσ rVr 1

Crr nnnn ππσ ,

Crr nnnn ππσ ,

bxIA σσ )(])(:[ nn xIAbr σσ

Page 10: Harrachov 2007

QMR_SYM bAxComp. symm. linear systems

)( ,11 nnnn TVAVn

nnnn CyyVx ,The comp. symm.

Approximate solutions

nnn yAVbr 2,111 ||||:),( byTeV ββ nnnn

||||minarg ,11 innn ni

zTeyCz

β1

H1 nn WW

,1 IW n),...,,( 1211 nn ωωωΩ diag

2121

11 |||||||| nnn VV Ωs.t.

Choice for weight, e.g.

Lanczos process

(Freund, 1992)

Page 11: Harrachov 2007

nnnnn CyyVx ,

1. Run nth step of the complex symmetric Lanczos process

||||minarg ,11 innn ni

zTeyCz

β

3. Update

For n=1,2,…

End

11 nHn WW

bAxComp. symm. linear systems

QMR_SYM

):( 1 nnn RVP

4-term recurrences relation

nnnn g pxx 1

nnnnnnnnnn ttt ,1,12,2 /)( ppvp

2. Solve

(Freund, 1992)

Page 12: Harrachov 2007

Shifted QMR_SYM mii

i ,...,2,1,)( bxIA σσ

)( ,11 nnnn TVAVn

nnnniii CyyVx σσσ ,

Approximate solutions

iinninσσ σ yVIAbr )(

.||||:),( ,111 byTeV ββ σσ iinnnn

T,1,1 0

: ninnnn

iI

TTσσ

||||minarg ,11 innni

ni

i zTeyCz

σσ β

1

H1 nn WW

The comp. symm. Lanczos process

Shifted comp. symm. linear systems

Page 13: Harrachov 2007

Shifted QMR_SYM

nnnnniii CyyVx σσσ ,

1. Run nth step of the complex symmetric Lanczos process

||||minarg ,11 innni

ni

i zTeyCz

σσ β

2. Solve

3. Update

For n=1,2,…

End

(i=1,2,…,m)

(i=1,2,…,m)

):( 1 nnn RVP

iiinnnn g σσσ pxx 1

nnnnnnnnnn ttt iii,1,12,2 /)( σσσ

ppvp

1H

1 nn WW

miii ,...,2,1,)( bxIA σσ

Shifted comp. symm. linear systems

4-term recurrences relation

Page 14: Harrachov 2007

Advantage and shortcoming of the shifted QMR_SYM

・ Shifted COCG

・ Shifted QMR_SYM ・ Shifted COCR

highlow

・ ShiftedCOCG ・ Shifted QMR_SYM

・ ShiftedCOCR

Required Not required

Possible to avoid(Cf. S. et al. 2007)

Cost per iteration (1<<m)

Need for the choice of a suitable seed system

Page 15: Harrachov 2007

Re(σ)

||||

||||log

b

rn

0.4 0.6 0.8 1.0 1.2 1.4

4

0

-4

-8

-12

Number of systems: 1001, seed system: σ=0.900+0.001i

Need for the choice of a suitable seed system

Shifted COCG

Page 16: Harrachov 2007

Comparison of costs per iteration step

   

Least squares problems

ShiftedQMR_SYM COCG(R)

Shifted COCG(R)

m: number of shifted linear systems N: order of matrices

1 1 m

6NmUpdate solutions 4Nm 4Nm

O(m)

  O(m)

O(m)

Polynomial comp.

If 1<<m, update solutions require the dominant computational cost

matrix ・ vector multiplication

Page 17: Harrachov 2007

Main idea

||||minarg ,11 innni

ni

i zTeyCz

σσ β

1

H1 nn WW

),...,,( 1211 nn ωωωΩ diag212

111 ||||||||

nnn VV Ωs.t.

1nW

)1,...,1,1(1 diagI n

1nL

T,11 0

BTL n

nnns.t. ( : upper bidiagonal )nB

A proposal of a weight for least squares problems to reduce the computational cost per iteration

Page 18: Harrachov 2007

Main idea (cont.)

||||minarg ,11 innni

ni

i zTeyCz

σσ β

1

H1 nn WW

iiinnnn g σσσ pxx 1

nnnnnnnnnn ttt iii,1,12,2 /)( σσσ

ppvp

,iinnnσσ yVx ):( 1 nnn RVP

11 nn LW

2,1111 ||)(|| innnni zTLeL σβ

ni Cz

minarg

0

0

T,11

0

BTL

σσ n

nnn

0

0

Page 19: Harrachov 2007

4Nm

11 nn LW

1nL

Comparison of costs per iteration step

Generate bases of KS

(matrix ・ vector)   

Least squares problems

ShiftedQMR_SYM COCG(R)

Shifted COCG(R)

1 1 m

6NmUpdate solutions 4Nm 4Nm

O(m)   O(m)

O(m)

Polynomial comp.

How is    chosen?

Page 20: Harrachov 2007

1

1

1

1

1

)1(2

2

αβ

2W

4

43

332

2)1(

2

11

0

β

αβ

βαβ

βα

βα

1

1

1

1

1

1

1

αβ

1W

4

43

332

2)1(

2

11

0

β

αβ

βαβ

βα

βα

4

43

3)2(

3

2)1(

2

11

0

0

β

αβ

βα

βα

βα

4

43

332

221

11

β

αβ

βαβ

βαβ

βα

4,5T

4,51234 TWWWW

0

0

0

0

)3(4

3)2(

3

2)1(

2

11

α

βα

βα

βα

5L

Page 21: Harrachov 2007

1

1

1

1

)1(

ii

i

αβ:iW

1WW n

1nL

nn ,1T

T,

0

B nn

For convenience shifted QMR_SYM with the weightis referred to as shifted QMR_SYM( B ).

Page 22: Harrachov 2007

On property of each method

・ Shifted COCG

・ Shifted QMR_SYM(B)

・ Shifted QMR_SYM ・ Shifted COCR

highlow

・ ShiftedCOCG

・ Shifted QMR_SYM(B)

・ Shifted QMR_SYM

・ ShiftedCOCR

Required Not required

Possible to avoid(Cf. S. et al. 2007)

Cost per iteration (1<<m)

Need for the choice of a suitable seed system

Page 23: Harrachov 2007

Some properties of shifted QMR_SYM

,,...,2,1,)( miii bxIA σσ

,Ciσ .NRb

For each system i, each approximate solution holds minimal residual norm.

⇒ In terms of number of iterations, shifted QMR_SYM always converges at fewer iterations than shifted COCG(R) .

2.

1. All matrix-vector multiplications can be done in real arithmetic.

Theorem 1. Let A be real symmetric,

If shifted QMR_SYM is applied to the systems of the form

then, shifted QMR_SYM has the following properties:

The QMR_SYM holds the above two properties. (Cf. Freund, 1992)

Page 24: Harrachov 2007

Some properties of shifted QMR_SYM(B)

,,...,2,1,)( miii bxIA σσ

,Ciσ .NRb

2.

1. All matrix-vector multiplications can be done in real arithmetic.

Theorem 2. Let A be real symmetric,

If shifted QMR_SYM(B) is applied to the systems of the form

then, shifted QMR_SYM(B) has the following properties:

.|||||||||||| 2SQMR_SYM

2SCOCG

2)(SQMR_SYM

nnB

n rrr

⇒ Shifted QMR_SYM(B) and shifted COCG generate approximate solutions with the same residual 2-norm .

Page 25: Harrachov 2007

Comparison of costs per iteration step

  1 (real ・ real)

   1

  1(real ・ complex)

Least squares

problems

ShiftedQMR_SYM(B)

Shifted COCG(R)

Shifted QMR_SYM

(real ・ real)

Update solutions

O(m)

4Nm 6Nm 4Nm

O(m)

  O(m)

m: number of shifted linear systems, N: order of matrices

Polynomial comp.

matrix ・ vector multiplication

Page 26: Harrachov 2007

Numerical examples

VT64 Workstation 2100

CPU: 2.4GHz (AMD Opteron 252)

Memory: 8GB

  Fortran 77

(double precision arithmetic)

Initial guess all zeros

1210||||

|||| b

rn

Code

Stopping criterion

Page 27: Harrachov 2007

Example 1( large scale electronic structure calculation )

Si512 atoms surface reconstructuring simulation

,2048Ckσ

bxIA kk

σσ )(

2048Rb,20482048RA

(Cf. Takayama et al., Phys. Rev. B, 2006)

Page 28: Harrachov 2007

Shifted COCG

Shifted QMR_SYM

Shifted QMR_SYM( B )

Shifted COCG

Shifted QMR_SYM

Example 1

Number of iterations

R

elat

ive

resi

du

al 2

- rn

omσ=1.000+0.001i

0 50 100 150 200 250

-8

0

-12

-4

(log

10 | |

rn ||

/ || b

| |)

Page 29: Harrachov 2007

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 200 400 600 800 1000 1200

Example 1 (Ratio of computation time)

( The computational time for shifted COCG is scaled to 1. )Reσ∈ [0.4, 1.4]

Shifted QMR_SYMShifted QMR_SYM(B)■

5.1[s]

5.2[s]

7.2[s]

Number of shifted linear systems

Rat

io o

f co

mp

uta

t ion

tim

e

Page 30: Harrachov 2007

Example 2

Cu1568 atoms surface reconstructuring simulation

,41121Ckσ

bxIA kk

σσ )(

14112Rb,1411241121 RA

(Cf. Takayama et al., Phys. Rev. B, 2006)

( large scale electronic structure calculation )

Page 31: Harrachov 2007

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 500 1000 1500

Example 2 (Ratio of computation time)

Shifted QMR_SYM

Reσ∈ [-0.5, 1.0]

Shifted QMR_SYM(B)■

87[s]

103[s]118[s]

Number of shifted linear systems

Rat

io o

f co

mp

uta

t ion

tim

e

( The computational time for shifted COCG is scaled to 1. )

Page 32: Harrachov 2007

Conclusion

1 . Shifted QMR_SYM(B) is proposed.

3 . In terms of computational time 

2 . In terms of number of iteration stepsShifted QMR_SYM(B) required almost the same iteration steps as shifted COCG and shifted QMR_SYM,

4 . No need for the choice of a suitable seed system.

For large m, it converged in the almost the same time as shifted COCG and converged about 20% faster than shifted QMR_SYM .

For small m, it converged faster than the others.

Page 33: Harrachov 2007

||||||)(|||||| ,11,111iiiiinnnnnnnnσσσσσ ββ yTeyTeVr

),( 111)1(

1

nnTn

nNn IVVRV

Appendix 1

Proof of Theorem 2

||||min||||min ,11),(

ii

nin

i

nin

nnnnK

σσσ

σβ

σσyTer

CybIAx

Page 34: Harrachov 2007

Shifted COCR

)(11 σσ nn R

nnnn αα σσσ )/( 1

12

11 )/( nnnn ββ σσσ

bxA

σσσσ β11

/1

nnn nn prp

σσσσ αnnn n pxx

1

bxIA σσ )(

r,, βαCOCR

)()1()( 11

111

σσσσ ππααβ

πσασπ

nnn

n

nnnnn R

Appendix 3

Page 35: Harrachov 2007

Shifted COCG

)(11 σσ nn R

nnnn αα σσσ )/( 1

12

11 )/( nnnn ββ σσσ

bxA

σσσσ β11

/1

nnn nn prp

σσσσ αnnn n pxx

1

bxIA σσ )(

r,, βαCOCG

)()1()( 11

111

σσσσ ππααβ

πσασπ

nnn

n

nnnnn R

Appendix 4

Page 36: Harrachov 2007

LS-electronic structure calculation

jiji i ,1

, ])[( HIG δε

1. Computation of Green’s function  

Tkfd

Bjiji

μεεε

π)(Im

1,, Gρ

2. Computation of density matrices  

3. Physical quantity  

]X[TrX ρ

Appendix 5

Page 37: Harrachov 2007

jiji i ,1

, ])[( HIG δε

1. Computation of Green’s function  

ji eie 1])[( HIδε

ji i exHIxe ])[(),,( δε

Tkfd

Bjiji

μεεε

π)(Im

1,, Gρ

),,( ε Numerical integration

The number of mesh ⇒The number of shifted linear systems

Appendix 6 LS-electronic structure calculation

Page 38: Harrachov 2007

補足資料 8

多項式前処理は適用可能( Cf. Jegerlehner, 1996 )

yxbAybxA nnnn PPPP and1

ησσ AA nPIP )(n

)),((),( 1111 bMIAMbMAM σnn KK

前処理がシフト方程式に対して適用できない例

前処理について