harmo18, 9‐12 oct 2017, bologna, italy clustering of ... fileclustering of atmospheric and...

1
CLUSTERING OF ATMOSPHERIC AND EMISSION CONDITIONS THAT LEAD TO MODELLED PEAK OZONE CONCENTRATIONS Andrea L. Pineda Rojas 1 ‐ Nicolás A. Mazzeo 2 1 Centro de Investigaciones del Mar y la Atmósfera (CIMA/CONICET‐UBA), DCAO/FCEN, UMI‐IFAECI/CNRS, Buenos Aires, Argentina 2 Departamento de Ingeniería Química, Facultad Regional Avellaneda, Universidad Tecnológica Nacional, CONICET, Buenos Aires, Argentina An application of a simple urban air quality model (DAUMOD‐GRS, [1]) shows that summer maximum O 3 hourly concentrations (C max ) above 40 ppb [one of the accepted thresholds to protect vegetation] occur outside the Metropolitan Area of Buenos Aires (MABA) where the absence of observations impedes model testing [2]. In addition, those relatively high values present the greatest model uncertainty caused by possible errors in model input variables [3]. In this context, a probability assessment of such exceedances may provide a more robust estimate than a deterministic one. MOTIVATION AND OBJECTIVES CONCLUSIONS The probability of occurrence of values of C max 40 ppb is very low in the urban area and greater than 70% outside the MABA From the clustering analysis, three main clusters with a marked spatial distribution resembling that of the O 3 precursor species emissions are obtained Differences in the mean variables of the clusters suggest different main drivers on ozone formation: photochemical (clusters 1, 3 and 4) vs dispersive (cluster 2) REFERENCES [1] Pineda Rojas, A.L.; Venegas, L.E. 2013a. Upgrade of the DAUMOD atmospheric dispersion model to estimate urban background NO 2 concentrations. Atmos. Res., 120‐121, 147‐154. [2] Pineda Rojas, A.L.; Venegas, L.E. 2013b. Spatial distribution of ground‐level urban background O 3 concentrations in the Metropolitan Area of Buenos Aires, Argentina. Environ. Pollut., 183, 159‐165. [3] Pineda Rojas, A.L., Venegas, L.E.; Mazzeo, N.A. 2016. Uncertainty of modelled urban peak O 3 concentrations and its sensitivity to input data perturbations based on the Monte Carlo analysis. Atmos. Environ., 141, 422‐429. [4] Hanna, S.R.; Chang, J.C.; Fernau, M.E. 1998. Monte Carlo estimates of uncertainties in predictions by a photochemical grid model (UAM‐IV) due to uncertainties in input variables. Atmos. Environ., 32, 21, 3619‐3628. This work presents a Monte Carlo (MC) evaluation of the probability of occurrence of peak O 3 hourly concentrations greater than 40 ppb in the MABA during a typical summer season, using the DAUMOD‐GRS model. In order to overcome the limitations due to the size of the MC outcomes, a clustering analysis is performed aiming to identify the environmental conditions under which C max occurs and to gain insight on the model performance outside the MABA, where the highest values are obtained. METHODOLOGY RESULTS AND CONCLUSIONS Harmo18, 9‐12 Oct 2017, Bologna, Italy Surface hourly and sounding meteorological data from a typical summer (2007) MABA area source emissions of NO x and VOCs Clean air regional background concentrations The DAUMOD‐GRS model Probabilistic evaluation of C max > 40 ppb DAUMOD‐GRS is an urban‐scale atmospheric dispersion model which allows estimation of ground‐ level urban background concentrations of NO 2 and O 3 resulting from area source emissions of NO x and VOCs. Its performance evaluation in the MABA is discussed in [1] and [2]. Base case conditions Clustering analysis of the Monte Carlo outcomes • Meteorological data • NO x and VOCs emissions • Regional background concentrations DAUMOD‐GRS C max N=100 outcomes (M‐dimensional) N=100 alternative input data sets P(C max >40 ppb) = No. of exceedances / N MC simulations: An object is a set of conditions in which C max occurs: its hour of occurrence and nine perturbed model input variables (M=10) Each variable is scaled subtracting its mean and dividing by its standard deviation across the whole modelling domain: The Matlab function kmeans is used with k=4, and 100 random initializations are performed to avoid suboptimal solutions Probability density functions (N: normal, LN: lognormal) and uncertainty ranges of the model input variables [4] Probability of occurrence of values of C max ≥ 40 ppb cluster # C max H WS T SC KST TSR QNOx QVOC (ppb) (m/s) (°C) (okta) (W/m 2 ) (g/km 2 s) (g/km 2 s) 1 20.2 13 5.1 27.0 1 2 854.9 1.2 0.6 2 32.9 7 1.3 22.4 1 5 166.5 0.1 0.0 3 30.8 15 1.7 24.5 4 4 119.8 0.3 0.1 4 18.5 14 6.0 26.8 1 2 762.3 6.3 5.1 -2 -1 0 1 2 3 4 5 Cmaxv H WS T SC KST TSR QNOx QVOC [O3]r Cluster mean normalised value Variable Cluster #1 Cluster #2 Cluster #3 Cluster #4 Dominant cluster Variables’ mean and 95% confidence range vs cluster number Wind roses of each cluster Normalised variables (z‐score) averaged for each cluster C max : summer maximum O 3 hourly concentration H: hour of occurrence of C max WS: wind speed T: air temperature SC: sky cover KST: atmospheric stability class TSR: total solar radiation QNO x : local emission rate of NO x QVOC: local emission rate of VOCs [O 3 ] r : regional background O 3 concentration Variables averaged for each cluster ݔInput variable PDF 2 / E(%) WS (%) LN 30 DIR () N 30 T(C) N 3 SC (okta) N 1 KST N 1 TSR (%) LN 12.5 QNO x (%) LN 40 QVOC (%) LN 80 [O 3 ] r (%) LN 30 0 5 10 15 20 N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW Cluster #1 % 0 5 10 15 20 N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW Cluster #2 % 0 5 10 15 20 N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW Cluster #3 % 0 5 10 15 20 N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW Cluster #4 % 1 2 3 4 0 5 10 15 QVOC (g/km2.s) Cluster 1 2 3 4 0 10 20 30 [O3]r (ppb) Cluster 1 2 3 4 0 20 40 60 Cmax (ppb) 1 2 3 4 0 5 10 15 20 H 1 2 3 4 0 5 10 15 WS (m/s) 1 2 3 4 0 10 20 30 T (ºC) 1 2 3 4 0 2 4 6 8 SC (okta) 1 2 3 4 1 2 3 4 5 6 KST 1 2 3 4 0 250 500 750 1.000 TSR (W/m2) 1 2 3 4 0 5 10 15 QNOx (g/km2.s)

Upload: phamnhan

Post on 04-Aug-2019

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Harmo18, 9‐12 Oct 2017, Bologna, Italy CLUSTERING OF ... fileclustering of atmospheric and emission conditions that lead to modelled peak ozone concentrations andrea l. pineda rojas1‐nicolás

CLUSTERING OF ATMOSPHERIC AND EMISSION CONDITIONS THAT LEAD TO MODELLED PEAK OZONE CONCENTRATIONS

Andrea L. Pineda Rojas1 ‐ Nicolás A. Mazzeo2

1Centro de Investigaciones del Mar y la Atmósfera (CIMA/CONICET‐UBA), DCAO/FCEN, UMI‐IFAECI/CNRS, Buenos Aires, Argentina2Departamento de Ingeniería Química, Facultad Regional Avellaneda, Universidad Tecnológica Nacional, CONICET, Buenos Aires, Argentina

An application of a simple urban air quality model (DAUMOD‐GRS, [1])shows that summer maximum O3 hourly concentrations (Cmax) above40 ppb [one of the accepted thresholds to protect vegetation] occuroutside the Metropolitan Area of Buenos Aires (MABA) where theabsence of observations impedes model testing [2]. In addition, thoserelatively high values present the greatest model uncertainty causedby possible errors in model input variables [3]. In this context, aprobability assessment of such exceedances may provide a morerobust estimate than a deterministic one.

MOTIVATION AND OBJECTIVES

CONCLUSIONS

The probability of occurrence of values of Cmax 40 ppb is very low in the urban areaand greater than 70% outside the MABA

From the clustering analysis, three main clusters with a marked spatial distributionresembling that of the O3 precursor species emissions are obtained

Differences in the mean variables of the clusters suggest different main drivers on ozoneformation: photochemical (clusters 1, 3 and 4) vs dispersive (cluster 2)

REFERENCES[1] Pineda Rojas, A.L.; Venegas, L.E. 2013a. Upgrade of the DAUMOD atmospheric dispersion model to estimate urban background NO2 concentrations. Atmos. Res., 120‐121, 147‐154.[2] Pineda Rojas, A.L.; Venegas, L.E. 2013b. Spatial distribution of ground‐level urban background O3 concentrations in the Metropolitan Area of Buenos Aires, Argentina. Environ. Pollut., 183,159‐165.[3] Pineda Rojas, A.L., Venegas, L.E.; Mazzeo, N.A. 2016. Uncertainty of modelled urban peak O3 concentrations and its sensitivity to input data perturbations based on the Monte Carloanalysis. Atmos. Environ., 141, 422‐429.[4] Hanna, S.R.; Chang, J.C.; Fernau, M.E. 1998. Monte Carlo estimates of uncertainties in predictions by a photochemical grid model (UAM‐IV) due to uncertainties in input variables. Atmos.Environ., 32, 21, 3619‐3628.

This work presents a Monte Carlo (MC) evaluation of the probability ofoccurrence of peak O3 hourly concentrations greater than 40 ppb inthe MABA during a typical summer season, using the DAUMOD‐GRSmodel. In order to overcome the limitations due to the size of the MCoutcomes, a clustering analysis is performed aiming to identify theenvironmental conditions under which Cmax occurs and to gain insighton the model performance outside the MABA, where the highestvalues are obtained.

METHODOLOGY

RESULTS AND CONCLUSIONS

Harmo18, 9‐12 Oct 2017, Bologna, Italy

Surface hourly and sounding meteorological datafrom a typical summer (2007)

MABA area source emissions of NOx and VOCs

Clean air regional background concentrations

The DAUMOD‐GRS model

Probabilistic evaluation of Cmax > 40 ppb 

DAUMOD‐GRS is an urban‐scale atmosphericdispersion model which allows estimation of ground‐level urban background concentrations of NO2 and O3

resulting from area source emissions of NOx andVOCs. Its performance evaluation in the MABA isdiscussed in [1] and [2].

Base case conditions 

Clustering analysis of the Monte Carlo outcomes 

• Meteorological data

• NOx and VOCs emissions

• Regional background concentrations

DAUMOD‐GRS

Cmax

N=100 outcomes(M‐dimensional)

N=100 alternative input data sets

P(Cmax>40 ppb) = No. of exceedances / N

MC simulations:

An object is a set of conditions in which Cmax occurs: itshour of occurrence and nine perturbed model inputvariables (M=10)

Each variable is scaled subtracting its mean anddividing by its standard deviation across the wholemodelling domain:

The Matlab function kmeans is used with k=4, and 100random initializations are performed to avoid suboptimalsolutions

Probability density functions(N: normal, LN: lognormal)and uncertainty ranges of themodel input variables [4]

Probability of occurrence of values of Cmax ≥ 40 ppb

cluster # Cmax H WS T SC KST TSR QNOx QVOC

 (ppb)  (m/s)  (°C)  (okta)  (W/m2)  (g/km

2s) (g/km

2s)

1 20.2 13 5.1 27.0 1 2 854.9 1.2 0.6

2 32.9 7 1.3 22.4 1 5 166.5 0.1 0.0

3 30.8 15 1.7 24.5 4 4 119.8 0.3 0.1

4 18.5 14 6.0 26.8 1 2 762.3 6.3 5.1

-2

-1

0

1

2

3

4

5

Cmaxv H WS T SC KST TSR QNOx QVOC [O3]r

Clu

ste

r m

ea

n n

orm

ali

se

d v

alu

e

Variable

Cluster #1

Cluster #2

Cluster #3

Cluster #4

Dominant cluster

Variables’ mean and 95% confidence range vs cluster number Wind roses of each cluster

Normalised variables (z‐score) averaged for each cluster

Cmax: summer maximum O3 hourly concentrationH: hour of occurrence of Cmax

WS: wind speed T: air temperatureSC: sky cover KST: atmospheric stability classTSR: total solar radiationQNOx: local emission rate of NOx

QVOC: local emission rate of VOCs [O3]r: regional background O3 concentration

Variables averaged for each cluster

′  

Input variable PDF 2 / E(%)

WS (%) LN 30DIR () N 30T (C) N 3

SC (okta) N 1

KST N 1

TSR (%) LN 12.5

QNOx (%) LN 40

QVOC (%) LN 80[O3]r (%) LN 30

0

5

10

15

20

NNNE

NE

ENE

E

ESE

SE

SSES

SSW

SW

WSW

W

WNW

NW

NNWCluster #1%

0

5

10

15

20

NNNE

NE

ENE

E

ESE

SE

SSES

SSW

SW

WSW

W

WNW

NW

NNWCluster #2%

0

5

10

15

20

NNNE

NE

ENE

E

ESE

SE

SSES

SSW

SW

WSW

W

WNW

NW

NNWCluster #3%

0

5

10

15

20

NNNE

NE

ENE

E

ESE

SE

SSES

SSW

SW

WSW

W

WNW

NW

NNWCluster #4%

1 2 3 40

5

10

15

QV

OC

(g

/km

2.s

)

Cluster1 2 3 4

0

10

20

30

[O3

]r (

pp

b)

Cluster

1 2 3 40

20

40

60

Cm

ax

(pp

b)

1 2 3 40

5

10

15

20H

1 2 3 40

5

10

15

WS

(m

/s)

1 2 3 40

10

20

30

T (

ºC)

1 2 3 40

2

4

6

8

SC

(o

kta

)

1 2 3 4

1

2

3

4

5

6

KS

T

1 2 3 40

250

500

750

1.000

TS

R (

W/m

2)

1 2 3 40

5

10

15

QN

Ox

(g/k

m2

.s)