hair hydration measurements using opto -thermal radiometry and aquaflux

24
Hair Hydration Measurements Using Opto-thermal Radiometry and AquaFlux a Faculty of ESBE, London South Bank University, 103 Borough Road, London SE1 0AA, UK b Biox Systems Ltd, 103 Borough Road, London SE1 0AA, UK Perry Xiao ab and RE Imhof b

Upload: richard-maxwell

Post on 01-Jan-2016

25 views

Category:

Documents


0 download

DESCRIPTION

Hair Hydration Measurements Using Opto -thermal Radiometry and AquaFlux. Perry Xiao ab and RE Imhof b. a Faculty of ESBE, London South Bank University, 103 Borough Road, London SE1 0AA, UK b Biox Systems Ltd, 103 Borough Road, London SE1 0AA, UK. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Hair Hydration Measurements Using Opto-thermal Radiometry and AquaFlux

aFaculty of ESBE, London South Bank University, 103 Borough Road, London SE1 0AA, UK

bBiox Systems Ltd, 103 Borough Road, London SE1 0AA, UK

Perry Xiaoab and RE Imhofb

Page 2: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Opto-Thermal Transient Emission Radiometry (OTTER)

Pulsed Laser ExcitationPulsed Laser Excitation Infrared Emission SignalInfrared Emission Signal

SampleSample

tt tt

9.5µm9.5µm13.1µm13.1µm

Heat

AirAir

Thermal diffusivity, D (m2s-1)

Absorption coefficient to excitation light, (m-1)

Absorption coefficient to emission light, (m-1)

Layer structure

Page 3: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Opto-Thermal Skin Measurements

Page 4: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Opto-Thermal Delayed Thermal Wave (DTW) Measurements

Opto-thermal delay time t=L2/(D)

L : Epidermis thickness

D: Epidermis thermal diffusivity

SkinSkin

Stratum Stratum

CorneumCorneum

EpidermisEpidermis

DermisDermis

Heat absorbed byHeat absorbed by

melanin &melanin &

HaemoglobinHaemoglobin

LL

OPO Laser

420 ~ 590nm

Thermal Delayed Signal

AirAirTime /ms

Inte

ns

ity

/a

rb A

C

B

Time /ms

Inte

ns

ity

/a

rb A

C

B

Page 5: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Opto-Thermal Skin Measurements

Infrared Infrared Emission SignalEmission Signal

Er:YAG 2.94µmEr:YAG 2.94µm

Stratum Stratum CorneumCorneum

EpidermisEpidermis

DermisDermis

Heat absorbed byHeat absorbed bywaterwater

AirAir

SkinSkin

S t Ae erfc tt( ) //

Page 6: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Opto-Thermal Skin Measurements

Stratum CorneumStratum Corneum EpidermisEpidermis

HydrationHydration HydrationHydration

Stratum CorneumStratum Corneum EpidermisEpidermis airair

HH00

HH00

HH11

LL

S t A

W t

Wt

Wte erfc

t

Wt

t

Wt

( )( )

( )(

/)

/

2

2 1

1

2 1 2 132 1

S t A e erfc tt( ) ( / )/

1 2/ D 1 0

2/ D W wD

Uniform Model Gradient ModelUniform Model Gradient Model

Page 7: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Opto-Thermal Skin Measurements

1 2 3 4 5 6 7 8 9 10 11 12a

b

c0

0.2

0.4

0.6

0.8

1

1.2

1.4

Surface Lifetime

/ms

Row

1.2-1.4

1-1.2

0.8-1

0.6-0.8

0.4-0.6

0.2-0.4

0-0.2Wrist

Elbow

1 2 3 4 5 6 7 8 9 10 11 12a

b

c0

200

400

600

800

1000

1200

1400

1600

Effective Gradient

/s-1

Row

1400-1600

1200-1400

1000-1200

800-1000

600-800

400-600

200-400

0-200Wrist

Elbow

12

34

56

78

910

1112

a

b

c

0

10

20

30

40

50

60

70

Th

ick

ne

ss

m

Row

60-70

50-60

40-50

30-40

20-30

10-20

0-10

Elbow

Wrist

Page 8: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Opto-Thermal Measurements

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

S t

t

S t t / m

Z te z z t dz

e z t dz

z

z( )

( , )

( , )

0

0

Page 9: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Opto-Thermal Measurements

S t Ae erfc tt( ) //

Traditional Least-Squares Fitting Segmented Least-Squares Fitting

Page 10: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Opto-Thermal Measurements

( )z

S t( )

Z tt

e erfc t

t

t( )

22

Time

Depth

1

1

0

Transform Function

( )( )

zt D

1

Page 11: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Opto-Thermal Hair Measurements

Page 12: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Opto-Thermal Hair Measurements

Page 13: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Opto-Thermal Hair Measurements

Page 14: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Opto-Thermal Hair Measurements

Page 15: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Opto-Thermal Hair Measurements

Page 16: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Condenser TEWL Method -AquaFlux

Page 17: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Condenser based, Closed-Chamber TEWL Measurements Technology

Condenser-7.65 °C

RH and Temperature Sensors

Sample

Ice

Page 18: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

TEWL – Trans - Epidermal Water LossTOWL – Trans - Onychial Water Loss

TEWL and TOWL Measurements

TEWLV

ambambskinV

JJ

TRHTHBfJ

),,,,( 0

Stratum CorneumStratum Corneum EpidermiEpidermiss

HydrationHydration

airair

HH00

HH11

LL

WW

Jv JTEWL

z

HDJTEWL

Page 19: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Hair Desorption

Page 20: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Hair Desorption

Page 21: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Hair Desorption

Page 22: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Hair Desorption

Page 23: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Conclusions

•The results show that OTTER can be used to measure the water concentration and water diffusion within hair samples. OTTER signals can reflect the layered structure of hair, the water concentration depth profiles show that within hair water might not distributed uniformly. Hair samples appeared to be able to absorb a lot of water during 10 minutes soaking, and to hold on most of it during the next 20 minutes period.

•AquaFlux can be used for measuring the water holding capability of ex-vivo hair samples through natural desorption process. The results show that different hairs have quite different desorption processes which are likely indicating different water holding capabilities. By fitting the desorption curves with suitable mathematical models we can also extract the water diffusion coefficients of hair.

Page 24: Hair Hydration Measurements  Using  Opto -thermal Radiometry and  AquaFlux

Acknowledgements

We thank London South Bank University and EPSRC for the financial support.