ha a - + h +

76
Determination of dissociation constants of uniprotic acids with known spectrum of acidic or basic component

Upload: pete

Post on 14-Jan-2016

34 views

Category:

Documents


0 download

DESCRIPTION

Determination of dissociation constants of uniprotic acids with known spectrum of acidic or basic component. HA A - + H +. C t [H + ]. C t K a. [ HA] =. [ A - ] =. [ H + ] + K a. [ H + ] + K a. s HA. s A. c A. c HA. =. +. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: HA             A -  + H +

Determination of dissociation constants of uniprotic acids with known spectrum of

acidic or basic component

Page 2: HA             A -  + H +

Determination of dissociation constants of uniprotic acids with known spectrum of acidic or basic component

HA A- + H+

[HA] =

Ct [H+][H+] + Ka

[A-] =

Ct Ka

[H+] + Ka

D XHA XA= +

cHA

sHA

= cA

sA

+

R = D - XHA = D - cHAsHAT

Page 3: HA             A -  + H +

Determination of dissociation constants of uniprotic acids with known spectrum of acidic or basic component

R = D - XHA = D - cHAsHAT

cHA =f (Ka)

sHAD

Page 4: HA             A -  + H +

rafa_Ka.m

Determination of Pka value for an uniprotic acid with known spectrum of HA

species

Page 5: HA             A -  + H +

Calling function rafa_Ka

Page 6: HA             A -  + H +
Page 7: HA             A -  + H +
Page 8: HA             A -  + H +
Page 9: HA             A -  + H +

?Investigate the effects of extent of spectral overlapping on the determined pKa value by RAFA

Page 10: HA             A -  + H +

Di-protic Acids

[H]2 + Ka1 [H] + Ka1 Ka2

Ct [H]2

[H2A] =

[H]2 + Ka1 [H] + Ka1 Ka2

Ct Ka1 [H]2

[HA] =

[H]2 + Ka1 [H] + Ka1 Ka2

Ct Ka1 Ka2[A] =

R = D - XH2A = D - cH2AsH2AT

cH2A =f (Ka1, Ka2)

Page 11: HA             A -  + H +

pKa1= 3.0 pKa2=4.0

Page 12: HA             A -  + H +

pKa1= 3.0 pKa2=4.5

Page 13: HA             A -  + H +

pKa1= 3.0 pKa2=5.0

Page 14: HA             A -  + H +

pKa1= 3.0 pKa2=5.5

Page 15: HA             A -  + H +

pKa1= 3.0 pKa2=6.0

Page 16: HA             A -  + H +

pKa1= 3.0 pKa2=6.5

Page 17: HA             A -  + H +

pKa1= 3.0 pKa2=7.0

Page 18: HA             A -  + H +

Determination of amount and pKa values of an acid in a mixture with known spectrum of

its components

Page 19: HA             A -  + H +

HA A- + H+

[HA] =

Ct [H+][H+] + Ka

[A-] =

Ct Ka

[H+] + Ka

XHA XAD = +

cHA

sHAcA

sA

= +

R = D - XHA - XA = D - cHAsHAT- cA sA

T

Determination of amount and pKa values of an acid in a mixture with known spectrum of its components

Interferences+

+ Interferences

Page 20: HA             A -  + H +

pH-metric titration of a mixture containing an acid with known spectrum of components

D sHA sA

R = D - XHA -XA= D - cHAsHAT - cA sA

T

cHA =f (C0,Ka) cA =f (C0,Ka)

Page 21: HA             A -  + H +

rafa_CKa.m

Determination of concentration and Pka

values for an uniprotic acid with known spectrum of

HA and A component

Page 22: HA             A -  + H +

Calling function rafa_CKa

Page 23: HA             A -  + H +
Page 24: HA             A -  + H +
Page 25: HA             A -  + H +
Page 26: HA             A -  + H +
Page 27: HA             A -  + H +
Page 28: HA             A -  + H +

?Use RAFA_CKa and determine the amount and pKa values of a known acid in an unknown mixture

Page 29: HA             A -  + H +

Rank Annihilation Factor Analysis for Spectrophotometric Study of Complex Formation Equilibria

Anal. Chim. Acta486, 109-123, 2003

Page 30: HA             A -  + H +

M + nL MLnM + nL MLn

[M] [L][MLn]

Kf= n[M] [L][MLn]

Kf= n

CL = [L] + [ [MLn]

CM = [M] + [ [MLn]

Kf[L]n+1 + (nKfCM – KfCL) [L]n + [L] –CL = 0

[MLn] = Kf CM[L]n / (1+Kf[L]n)

[M] = CM / (1 + Kf[L]n)

One-step complex formation equilibria

Page 31: HA             A -  + H +

XMLnD = XL +

cL

sLcMLn

sMLn

= +

R = D - XL = D - cLsLT

+ Interferences

cL= f(Kf,n)

Rank Annihilation Factor Analysis for Spectrophotometric Study of Complex Formation Equilibria

Page 32: HA             A -  + H +

One step complex formation (n=2)

M + 2L MLM + ML2

[L] [M]

[ML2]

CL=0.001KL=106.

5

Page 33: HA             A -  + H +

rafa_MLn.m

Determination of stoichiometry and

formation constant values for an MLn complex with known spectrum of ligand

Page 34: HA             A -  + H +
Page 35: HA             A -  + H +
Page 36: HA             A -  + H +
Page 37: HA             A -  + H +
Page 38: HA             A -  + H +
Page 39: HA             A -  + H +

n=1

n=2

n=3

n=4n=

5

Page 40: HA             A -  + H +
Page 41: HA             A -  + H +

?Create the data for ML3 system and use RAFA for determination of Kf and its stoichiometry.

Page 42: HA             A -  + H +

MLn.m

Simulation of MLn complex formation system

Page 43: HA             A -  + H +

Calling function MLn

Page 44: HA             A -  + H +
Page 45: HA             A -  + H +
Page 46: HA             A -  + H +
Page 47: HA             A -  + H +
Page 48: HA             A -  + H +
Page 49: HA             A -  + H +
Page 50: HA             A -  + H +
Page 51: HA             A -  + H +
Page 52: HA             A -  + H +

[M] [L][ML]

K1=

[ML] [L][ML2]K2=

CL = [L] + [ML] + 2 [ML2]CM = [M] + [ML] + [ML2]

K1K2[L]3 + (K1(1+K2(2CM –CL)))[L]2 + (1+K1(CM –CL))[L]–CL = 0

ML + L ML2

M + L ML

Two successive step complex formation

Page 53: HA             A -  + H +

A = AL + AML + AML2 + R

= L [L]T + ML [ML]T + ML2 [ML2]T + R

= E CT + R

Two successive step complex formation

R = D - XL = D - cLsLT

cL= f(K1 , K2)

Page 54: HA             A -  + H +

Determination of dissociation constants of uni-protic acids without known spectrum

Page 55: HA             A -  + H +

12

543

54

123

11

111

52

0.20.51

0.1 0.2 0.3 0.40.1 0.3 0.4 0.2

0.1 0.2 0.3 0.40.1 0.3 0.4 0.2

0.60.30.20.150.12

1.70.80.50.350.26

2.31.10.70.50.38

1.40.80.60.50.44

=

0.60.60.60.60.6

1.71.61.51.41.3

2.32.22.12.01.9

1.41.61.82.02.2

=

12

543./

12

543./

A simple mathematical rule

Page 56: HA             A -  + H +

12

543

54

123

12

543./

11

111

52

0.20.51

00

000

3.260.26

-1.54-1.24-0.74

12

543

54

123

32

451./

0.331

1.250.83

1.662

0.250.43

-0.746 0.1980.538

-1.212-1.0621.538

-0.076 1.924-0.276 0.174

Mean centering

Mean centering

Rank = 2 Rank = 2 Rank = 1

Rank = 2 Rank = 2 Rank = 2

Page 57: HA             A -  + H +

HA A- + H+

[HA] =

Ct [H+][H+] + Ka

[A-] =

Ct Ka

[H+] + Ka

D XHA XA= +

cHA

sHAcA

sA

= +

D’ = D ./ cHA

Determination of dissociation constants of uni-protic acids

Mean centering (D’)

cHA = f(Ka)

Page 58: HA             A -  + H +

Titration of an uni-protic acid or a mixture containing an uni-protic acid

Page 59: HA             A -  + H +

Rafa_mcKa.m

Determination of dissociation constants of

uni-protic acids

Page 60: HA             A -  + H +

Calling function rafa_mcKa

Page 61: HA             A -  + H +
Page 62: HA             A -  + H +
Page 63: HA             A -  + H +
Page 64: HA             A -  + H +
Page 65: HA             A -  + H +
Page 66: HA             A -  + H +

?Use mean centering based method for determination of acidity constant of an uniprotic acid in a mixture

Page 67: HA             A -  + H +

Determination of dissociation constants of di-protic acids without known spectrum

Page 68: HA             A -  + H +

cHA =f (Ka1, Ka2)

Determination of dissociation constants of di-protic acids without known spectrum

D’ = D ./ cHA Mean centering (D’)

Page 69: HA             A -  + H +

Rafa_mcH2A.m

Determination of dissociation constants of

di-protic acids

Page 70: HA             A -  + H +

Calling function rafa_mcH2A

Page 71: HA             A -  + H +
Page 72: HA             A -  + H +
Page 73: HA             A -  + H +
Page 74: HA             A -  + H +
Page 75: HA             A -  + H +
Page 76: HA             A -  + H +

?Use mean centering based method for determination of acidity constant of an di-protic acid in a mixture