h. p. gunnlaugsson /r. sielemann, 57 mn mössbauer collaboration at isolde/cern

25
H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN Magnetism in Iron Implanted Oxides: A Status Report

Upload: teresa

Post on 16-Jan-2016

42 views

Category:

Documents


0 download

DESCRIPTION

Magnetism in Iron Implanted Oxides: A Status Report. H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN. 57 Mn Mössbauer collaboration at ISOLDE/CERN. Århus : H. P. Gunnlaugsson, G. Weyer CERN : K. Johnston Milan : R. Mantovan, M. Fanciulli - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

H. P. Gunnlaugsson/R. Sielemann,

57Mn Mössbauer collaboration at ISOLDE/CERN

Magnetism in Iron Implanted Oxides: A Status Report

Page 2: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

Århus: H. P. Gunnlaugsson, G. Weyer CERN: K. JohnstonMilan: R. Mantovan, M. FanciulliReykjavík: T. E. Mølholt, S. Ólafsson, H. P. GíslasonSouth Africa: D. Naidoo, K. Baruth-Ram, H. Masenda, W. Dlamini, W. N. SibandaLeuven: G. LangoucheBerlin: R. SielemannJapan: Y. Yutaka, Y. Kobahashi

57Mn Mössbauer collaboration at ISOLDE/CERN

Page 3: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

Magnetism in Iron Implanted Oxides: A Status Report

Motivation (Magnetism in TM doped oxides)

Physical/technical introduction (CERN Mössbauer)

Experimental spectra Mn/Fe in ZnO and others

Ordered Magnetism versus Paramagnetism

Conclusion

Page 4: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

Magnetic inventory

vacancy

TM

Transition metal probe

Metals alloys

componds

Dilute magnets

Defect magnetis

m

Page 5: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

0

200

400

600

800

1000

1200

1400

1600

0 0.5 1 1.5 2

Spins/atoms

TC o

r T

N (

K)

Ferromagnetism

Minimum needed

Room temperature

Diluted magneticsemiconductors

Page 6: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

57Fe emission Mössbauer spectroscopy

57Fe

57MFe (T½ = 98 ns)14.4 keV, I = 3/2

I = 1/2

57Co (T½ = 271 d)57**Fe (T½ = 8 ns)57Mn (T½ = 1.5 min)

EC

Coulombexcited-

ER = 40 eV

~ 10-9 eV

Page 7: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

Mössbauer spectroscopy at ISOLDE/CERNProton Booster

Synchrotron

1.4 GeV p+

UC2 target

LaserSelective ionization of Mn and Sn

Accelerationto 60 keVImplantation

chamber

Mass separation

Mössbauer drive system and detector

~6108 At. s-1

Highlights:-Low concentrations of probe atoms (~10-4 At.%)

-Valence state of Fe

-Site symmetry

-Magnetic interactions

Page 8: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

Implantation of 57Mn

Page 9: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

III-V semiconductors

See poster presented by Hilary Masenda (PS3-24)

-5 -4 -3 -2 -1 0 1 2 3 4 5

Velocity (mm/s)

Rel

ativ

e em

issi

on (

arb.

uni

ts) GaAs

426 K

300 K

-Damage site-Substitutional Fe-Fe-V complexes

No 6-line magnetic pattern!

Page 10: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

-12 -9 -6 -3 0 3 6 9 12

Velocity (mm/s)

Em

issi

on (

arb.

uni

t)

B ext = 0 Tq = 60o

ZnO without external magnetic field

H. P. Gunnlaugsson et al., APL, 2010 (accepted)

Page 11: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

ZnO temperature series

-10 -7.5 -5 -2.5 0 2.5 5 7.5 10-10 -7.5 -5 -2.5 0 2.5 5 7.5 10

Rel

ativ

e em

issi

on (

arb.

uni

ts)

Velocity (mm/s)

450 K

433 K

370 K

366 K

339 K

300 K

837 K

795 K

664 K

579 K

522 K

494 K

See talk given by T. Mølholt after this talk

Page 12: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

1.0

1.5

2.0

2.5

3.0

-12 -8 -4 0 4 8 12

Velocity (mm/s)

Rel

ativ

e em

issi

on Al2O3

T = 300 K

Other oxides:

See poster presented by H. P. Gunnalugsson (PS3-23)

Page 13: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

See talk given by T. Mølholt after this talk and (PS3-22)

-12 -8 -4 0 4 8 12

Velocity (mm/s)

Rel

ativ

e em

issi

on

77 KFeS FeIFeD

Other oxides:

MgOT = 77 K

Page 14: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

Mössbauer spectroscopy of magnetic materials

Single line resonance detector

57Mn (T½ = 1.5 min)

57*Fe 14.4 keVT½ = 98 nsI = 3/2

57Fe I = 1/2

mI

3/2

1/2-1/2-3/2

1/2

-1/2

Bhf·g3/2·mI

Bhf·g1/2·mI

mI = 0, ±1

BµB IgH NNˆˆ

Page 15: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

Ferromagnetism (S = 5/2 good quantum number)

Bext

SampleMössbauer

Spectrum

Relative lineratios

Individual line ratios depend on the angle between Bext and

3 4 1 1 4 33 0 1 1 0 3

mI = 0

Page 16: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

Temperatue dependent magnetic order

Bhf

Spins

Mössbauerspectra

Magnetic hyperfine field

TC or TN

T

-T Bhf

- No line broadening

Cold Hot

Page 17: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

Slow paramagnetic relaxations

IJ

HHFI

3dLattice · charge, · phonons

Spins · nuclear- · electron-

Coupled(C) to:

electron spin

Lattice vibrations

Fe2+ (3d6)5D4

Fe3+ (3d5)6S5/2

ml

-2-1012

ml

-2-1012

Spin lattice relaxations

Sa ~ Sb

S ~ S

ss

Hdd orHex

)exp(

12

12 EE

HH exddss

Spin-spin relaxations

Conditions for static Bhf

C ≥ L (Nucl. Larmor time)C ≥ N (lifetime of Mössbauer state) Bhf not T dependent Otherwise broadened

Broadening in MS if >~0.1 at.%

Page 18: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

Mössbauer spectra of paramagnetic Fe3+

Needs electron spin operators!

...ˆˆˆˆˆ NQIHFIEZICF HHHHH

±1/2±3/2

±5/2

6S5/2

+5/2

+3/2

+1/2

-1/2

-3/2

-5/2

Bext

Few K

SSHCFˆˆˆ D SµH BEZI

ˆˆ gB

Low B

SIH HFIˆˆˆ A

Plays a role. Combined electronic and nuclear states

High B (> 0.3 T)

Kramer doublets give sextets with

Bhf |SZ|

-12 -8 -4 0 4 8 12

Velocity (mm/s)

±5/2

±3/2

±1/2

Sum

High B (> 0.3 T)

Kramer doublets give sextets with

Bhf |SZ|

-12 -8 -4 0 4 8 12

Velocity (mm/s)

±5/2

±3/2

±1/2

Sum

Page 19: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

Paramagnetism (slow relaxation)

Bext

Sample

Individual line ratios depend on the angle between Bext and

SZ = ±5/2

SZ = ±3/2

SZ = ±1/2

mI = 0 from SZ = ±3/2

Page 20: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

ZnO at RT in Bext = 0.6 T

Sextet originating from Kramer doublets clearly observed

No relaxation at RT?

H. P. Gunnlaugsson et al., APL, 2010 (accepted)

Page 21: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

Slow paramagnetic relaxations at RT plausible?

Temperature (K)

109

108

107

106

105

104

103

102

101100 102 103

Spi

n re

laxa

tion

rat

e (s

-1)

T1 data from

Tribollet et al.,(2008)

Broadening in MS

Page 22: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

Does defect magnetism exist?

In ZnO, implanted Mn/Fe Fe3+ shows slow paramagnetic relaxations

-> No spin-spin relaxations with defects

<- Theory overestimates range of magnetism from isolated defects (Zunger et al., 2010), data misinterpretated and precipitation not documented (Potzger et al., 2008+)

Is defect or dilute magnetism myth?

Page 23: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

Defect magnetism exists!

-10 -5 0 5 10-10 -5 0 5 10

Velocity (mm/s)

Rel

ativ

e em

issi

on (

arb.

uni

ts)

10 -10

Poly-crystalline

(iii)

HOPG (ii)

HOPG (i)14 K

40 K

100 K

200 K

25 K

295 K

Sext D2D1

S1

D2D1

S1

-Implantation of 57**Fe into Graphite

-Sextet (Fe2+) observed at 14 K

-Reduced Bhf at 40 K (not a static Bhf)

Sieleman et al., PRL, 2007

Page 24: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

Conclusions/summary-Implanted Mn/Fe ions in oxides lead to TM in various charge states and lattice sites

-Fe as 3+ state has extremely long relaxation time and displays static (para)-magnetic spectra. Most extreme case Fe in ZnO.

-Application of external magnetic field decouples perturbing fields and yields spectrum looking like an effective magnetic field.

-Identification of defect related magnetism by Mössbauer spectroscopy has been observed at very low temperatures in graphite.

Page 25: H. P. Gunnlaugsson /R. Sielemann, 57 Mn Mössbauer collaboration at ISOLDE/CERN

Thank you

IS443 summer 2009 missing K. Johnston, M. Fanciulli,

K. Baruth-Ram, Y. Kobahashi