grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · venera...

39
Grid-based tensor numerical methods in electronic structure calculations Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 Max-Planck-Institute for Mathematics in the Sciences, Leipzig Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 () Tensor methods in quantum chemistry 1 / 39

Upload: others

Post on 19-Jan-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Grid-based tensor numerical methods

in electronic structure calculations

Venera KhoromskaiaSeminar at the Mathematics InstituteUniversity of Warwick, 23.01.2014

Max-Planck-Institute for Mathematics in the Sciences, Leipzig

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 1 / 39

Page 2: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Overview

Outline of the talk

1 Tensor-structured methods in Rd

Basic rank-structured formats

Tensor product operations

Why Tucker was important

Canonical to Tucker tensor approximation

Tensor formats for higher dimensions

2 Solver I: start of tensor-structured numerical methods

The Hartree-Fock (HF) equation

3D grid-based Hartree and exchange potentials

EVP solver by multilevel TS methods

3 HF Solver II: standard scheme

3D grid-based factorized TEI

Core Hamiltonian

“Ab-initio“ black-box HF solver

4 Grid-based extended and periodic systems

5 Outline

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 2 / 39

Page 3: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Tensor-structured methods in Rd Basic rank-structured formats

Rank-structured representation of higher order tensors

A = [ai1...id ] ∈ Rn1×...×nd , ℓ = 1, . . . , d,

for nℓ = n, N = nd –“curse of dimensionality”.

⇒ We need structured representation of tensors:

Tensor product of vectors u(ℓ) = {u(ℓ)iℓ}niℓ=1 ∈ RIℓ forms the canonical rank-1 tensor

A(1) = u(1) ⊗ . . .⊗ u(d) ≡ [ui]i∈I,

with entries ui = u(1)i1

· · · u(d)id. Storage: dn << nd .

Definition 3. The canonical format, CR,n

A(R) =∑R

k=1cku

(1)k ⊗ . . .⊗ u

(d)k , ck ∈ R, (1)

with normalised u(ℓ)k ∈ Rn and the canonical rank ≤ R.

R

(3)1

(2)2

(1)1

(3)R

(2)R

(1)R

.

.

b

c1

u

u

u u

u

u

c+ . . . +A

n3

n1

n2

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 3 / 39

Page 4: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Tensor-structured methods in Rd Basic rank-structured formats

Tucker tensor format

Definition. Given the rank parameter r = (r1, . . . , rd ), define the Tucker tensor format [Tucker ’66].

A(r) =∑r1

ν1=1. . .∑rd

νd=1βν1...νd v

(1)ν1 ⊗ . . .⊗ v

(d)νd , (2)

with orthonormal v(ℓ)νℓ ∈ Vℓ = R

Iℓ (1 ≤ νℓ ≤ rℓ), and the core tensor

β = [βν1,...,νd ] ∈ Br = Rr1×...×rd

.

Using side matrices V (ℓ) = [v(ℓ)1 . . . v

(ℓ)rℓ ] ∈ R

nℓ×rℓ and tensor-by-matrix contracted product,

A(r) = β ×1 V(1) ×2 V

(2) ×3 . . .×d V (d).

AB

V

V

r3

I3

I2

r2

(3)

(2)

I1

I

I

I

2

3

1r2

r3

r1

r1

V (1)

Storage: rd + drn ≪ nd .Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 4 / 39

Page 5: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Tensor-structured methods in Rd Basic rank-structured formats

Mixed Tucker-canonical (TC) tensor format

A(r) =

(R∑

k=1

bku(1)k ⊗ . . .⊗ u

(d)k

)×1 V

(1) ×2 V(2) ×3 . . .×d V (d).

A

r3

I3

I2

r2

(3)

(2)

I1

I

I

I

2

3

1r2

r3

r1

+ . . . +1(3) (3)

r

1

1(2)

(1)r2

r3

r1

+ d r nr1 rdnd

(1)

u

u

u u

b1 bR (2)

ru

u(1)r

2R < = rV

V

V β

β β

Advantages of the Tucker tensor decomposition:1. Robust algorithm for approximating full format tensors of size nd .2. Rank reduction of the rank-R canonical tensors with large R .3. Efficient for 3D tensors since r3 is small.

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 5 / 39

Page 6: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Tensor-structured methods in Rd Tensor product operations

Multilinear operations in canonical tensor format

A1 =

R1∑

k=1

cku(1)k ⊗ . . .⊗ u

(d)k , A2 =

R2∑

m=1

bmv(1)m ⊗ . . .⊗ v

(d)m .

Euclidean scalar product (complexity O(dR1R2n) ≪ nd ),

〈A1,A2〉 :=R1∑

k=1

R2∑

m=1

ckbm

d∏

ℓ=1

⟨u(ℓ)k , v

(ℓ)m

⟩.

Hadamard product of A1, A2

A1 ⊙ A2 :=

R1∑

k=1

R2∑

m=1

ckbm(u(1)k ⊙ v

(1)m

)⊗ . . .⊗

(u(d)k ⊙ v

(d)m

).

Convolution, for d = 3 (complexity O(R1R2n log n) ≪ n3 log n (3D FFT))

A1 ∗ A2 =

R1∑

k=1

R2∑

m=1

ckbm(u(1)m ∗ v

(1)k )⊗ (u

(2)m ∗ v

(2)k )⊗ (u

(3)m ∗ v

(3)k )

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 6 / 39

Page 7: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Tensor-structured methods in Rd Tensor product operations

The unfolding of a tensor along mode ℓ is a matrix

A(ℓ) = [aij ] ∈ Rnℓ×(nℓ+1···nd n1···nℓ−1)

whose columns are the respective fibers along ℓ-mode.

I

I

I2

3

1

I 3A

I 2

A(1)I1

Given a tensor A ∈ RI1×...Id and a matrix M ∈ RJℓ×Iℓ , we define the mode-ℓ tensor-matrixproduct by

B = A×ℓ M ∈ RI1×...×Iℓ−1×Jℓ×Iℓ+1...×Id ,

where bi1,...,iℓ−1,jℓ,iℓ−1,...,id =nℓ∑

iℓ=1ai1,...,iℓ−1,iℓ,iℓ−1,...,idmiℓ,jℓ , jℓ ∈ Jℓ.

n3 n 3

r3

r3

n1

n1

n2

n2

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 7 / 39

Page 8: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Tensor-structured methods in Rd Why Tucker was important

Tucker tensor approximation

Multilinear algebra for the problems of chemometrics, psychometrics, data processing, etc.[Tucker ’66, De Lathauwer et al, 2000]

A0 ∈ Vn : f (A) := ‖A(r) − A0‖2 → min over A ∈ T r. (3)

The minimisation problem is equivalent to the maximisation problem

g(V (1), ...,V (d)) :=∥∥∥A0 ×1 V

(1)T × ...×d V (d)T∥∥∥2→ max (4)

over the set of V (ℓ) ∈ Rnℓ×rℓ .For given V (ℓ), the core β in minimizer of (3), A(r) = β ×1 V (1) ×2 . . .×d V (d) is

β = A0 ×1 V(1)T × ...×d V (d)T ∈ R

r1×...×rd .

Complexity for d = 3, O(n4 + n3r + n2r2 + nr3), r = maxℓ rℓ.

For function related tensors, [B. Khoromskij 2006]:

‖A(r) − A0‖ ≤ Ce−αr , with r = minℓ

rℓ.

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 8 / 39

Page 9: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Tensor-structured methods in Rd Why Tucker was important

Full-size tensor to Tucker

Algorithm ALS Tucker (Vn → T r,n). Given the input tensor A ∈ Vn.

1 Compute an initial guess V(ℓ)0 (ℓ = 1, ...,d) for the ℓ-mode side-matrices by truncated SVD

applied to matrix unfolding A(ℓ) (cost O(nd+1)).

2 For k = 1 : kmax do: for each q = 1, ...,d, and with fixed side-matrices V (ℓ) ∈ Rn×rℓ ,ℓ 6= q, optimise the side matrix V (q) via computing the dominating rq-dimensionalsubspace (truncated SVD) for the respective matrix unfolding B(q) ∈ Rn×rq ,rq = r1...rq−1rq+1...rd , corresponding to the q-mode contracted product

B(q) = A×1 V(1)T × ...×q−1 V

(q−1)T ×q+1 V(q+1)T ...×d V (d)T .

Each iteration costs O(drd−1nmin{rd−1, n}), since rq = O(rd−1).

3 Compute the core β as the representation coefficients of the orthogonal projection of Aonto Tn = ⊗d

ℓ=1Tℓ with Tℓ = span{vνℓ }

rℓν=1,

β = A×1 V(1)T × ...×d V (d)T ∈ Br,

at the cost O(rdn).

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 9 / 39

Page 10: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Tensor-structured methods in Rd Why Tucker was important

Functional Tucker approximation [B.N. Khoromskij, VKH ’07]

f (x), x = (x(1), x(2), x(3))T ∈ R3 is discretized in [a, b]3. Sampling points: x

(ℓ)iℓ

= aℓ + (iℓ − 12)( b−a

nℓ), iℓ = 1, 2, . . . nℓ .

⇒ We generate a tensor A ∈ Rn1×n2×n3 with entries aijk = f (x

(1)i

, x(2)j

, x(3)k

).

x ix j

xk

0

aijk

n

n1

3

n2

A

b

b

b(2)

(1) X(1)

X(3)

(2)

X

(3)

SVD

SVD

SVD

V

V

V

r

r

r

n

n

n

n

n . n

n

n

3

n n.

1

n1

2

1

3

n . n2 3

n 2

n3

2 1

2

3

1

1

2

3

(2)

(3)

(1)

B

B

B [1]

[2]

[3]

n1 n1n1

B [1]

r 3 r2

...

r3

r2r1

.

Example: Slater function f (x) = exp(−α‖x‖), EFN =‖A0−A(r)‖

||A0||EFE =

‖A0‖−‖A(r)‖

||A0||, EC :=

maxi∈I |a0,i−ar,i |

maxi∈I |a0,i |.

2 4 6 8 10 12 14

10−10

10−5

100

Tucker rank

erro

r

Slater function, AR=10, n = 64

EFN

EFE

EC

0

5

10

05

10

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Orthogonal vectors, r=6

y−axis

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 10 / 39

Page 11: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Tensor-structured methods in Rd Why Tucker was important

Multigrid Tucker for 3D periodic structures

[VKH ’10]

Complexity for d = 3: O(n3) (instead of O(n4)).

2 4 6 8 10 1210

−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Tucker rank

Slater function, MGA Tucker, EFN (solid), E

EN (dashed)

n=512

n=256

n=128

n=64

n=512

n=256

n=128

n=64

−5

0

5

−5

0

50

0.2

0.4

0.6

The “multi-centered Slater potential“ obtained by displacing a single Slater potential withrespect to the m ×m ×m spatial grid of size H > 0, (here m = 10)

g(x) =m∑

i=1

m∑

j=1

m∑

k=1

e−α√

(x1−iH)2+(x2−jH)2+(x3−kH)2 .

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 11 / 39

Page 12: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Tensor-structured methods in Rd Why Tucker was important

Example of Multigrid Tucker decomposition

Tucker approx. of el. density for large Aluminium clusters: [Blesgen, Gavini, VKH ’09 (JCP 2012)]

Cluster with 666 Al atoms, substitutions: 10 random vacancies and 10 random Li atoms.

−30−20

−100

1020

30

−30

−20

−10

0

10

20

300

0.2

0.4

−10

−5

0

5

10

−10

−5

0

5

100

0.05

−30 −20 −10 0 10 20 30

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

v(2)1

v(2)2

v(2)3

v(2)4

v(2)5

v(2)6

v(2)7

−8 −6 −4 −2 0 2 4 6 8−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

u1(1)

u2(1)

u3(1)

u4(1)

u5(1)

u6(1)

5 10 15 20 2510

−5

10−4

10−3

10−2

10−1

100

Tucker rank

ρ for Al, Cluster1, Subdib3

Een

, n=201

EF, n=201

EF, n=101

Een

, n=101

FE OFDFT (coarse graining) ⇒ large paral. supercomputer ∗ ( [V. Gavini, J. Knap, K. Bhattacharya, and M. Ortiz,’07]).

FE data∗ ⇒ 3D Cartesian grid ⇒ Tucker decomposition (Matlab, SUN).

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 12 / 39

Page 13: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Tensor-structured methods in Rd Canonical to Tucker tensor approximation

Canonical to Tucker Approximation

[Khoromskij, VKH ’09] Theorem.Let A ∈ CR,n. Then the minimisation problem

A ∈ CR,n ⊂ Vn : A(r) = argminV∈Tr,n‖A− V ‖Vr , (5)

[Z (1), ...,Z (d)] = argmaxV (ℓ)∈Mℓ

∥∥∥∥∥

R∑

ν=1

cν(V (1)T u

(1)ν

)⊗ ...⊗

(V (d)T u

(d)ν

)∥∥∥∥∥

2

Vr

,

Init. guess: RHOSVD Z(ℓ)0 ⇒ the truncated SVD of U(ℓ) = [u

(ℓ)1 ...u

(ℓ)R ],

under the compatibility condition

rℓ ≤ rank(U(ℓ)) with U(ℓ) = [u(ℓ)1 ...u

(ℓ)R ] ∈ R

n×R ,

Error bounds for RHOSVD

‖A− A0(r)‖ ≤ ‖c‖

d∑

ℓ=1

(

min(n,R)∑

k=rℓ+1

σ2ℓ,k )

1/2, where ‖c‖2 =R∑

ν=1

c2ν .

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 13 / 39

Page 14: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Tensor-structured methods in Rd Canonical to Tucker tensor approximation

C2T + T2C rank reduction

[Khoromskij, VKH ’09]

A =R∑

k=1ck ⊗ u

(1)k ⊗2 u

(2)k ⊗3 u

(3)k

+ ... +

n1 n nn

1 11

n

n3

2

rr

r12r r2

r33 r 3 3r

r2 23

B(q) β(q)

+ ... +

n3

n 2

n1

u u

u u

u u

(1) (1)

(2) (2)

(3)(3)

1

1

1

R

R

Rn1 n

1n1

B [1]

r 3 r2

...

r3

r2r1

.

Rt ≪ R, Rt ≤ r2

r3

I3

I2

r2

(3)

(2)

I1

r2

r3

r1

r1

(1)

T

T

T

β

b1

b+ . . . +

B

1(3) (3)

(2)

(1)1

1(2)

(1)

.

r3r

r

1

1

u

u

u

u

u

u

R

R

R

RRt

t

t

t

tn

n3

2+ ... +

n1u u

u u

uu

(1) (1)

(2)(2)

(3)(3)

1

1

1

R

R

R

tt

tR t

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 14 / 39

Page 15: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Tensor-structured methods in Rd Tensor formats for higher dimensions

Tensors in higher dimensions

Matrix product states tensor factorization (MPS): [White 1992], [Cirac, Verstraete 2004] [Vidal 2003]

(renamed as tensor train format by [Oseledets, Tyrtyshnikov 2009])

ai1,i2,i3,i4,i5 =5∏

k=1

Bk(ik), A ∈ Rn1×n2×n3×n4×n5 , Bk ∈ R

rk−1×rk , r0 = r5 = 1.

.

r r

r r r

r

r1 1

2 3

3

4

4

i

i i

i

1

2 4

5

n

n n n

n

1

2 3 4

5

2r

3i

Quantized tensor format (QTT) (for function related vectors/tensors): [Khoromskij 2009]

2L >> 2Lr2, r = 1 for e−α‖x‖, r = 2 for sin(x), etc.

F

N=23

L=log N=3

+ ...

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 15 / 39

Page 16: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Solver I: start of tensor-structured numericalmethods The Hartree-Fock (HF) equation

The Hartree-Fock equation, standard Galerkin scheme

Nonlinear eigenvalue problem

Fϕi (x) ≡ (−1

2∆ + Vc + VH −K)ϕi (x) = λi ϕi (x), i = 1, ...,Norb.

The Fock operator F depends on τ(x , y) = 2Norb∑i=1

ϕi (x)ϕi (y),

Fϕ := [−1

2∆−

M∑

ν=1

‖x − aν‖+

R3

τ(y , y)

‖x − y‖ dy ]ϕ− 1

2

R3

τ(x , y)

‖x − y‖ ϕ(y)dy .

Numerical challenges: high accuracy, 3D and 6D singular integrals, strong nonlinearity.Standart computational scheme.

Expansion of molecular orbitals in {gµ}1≤µ≤Nb,

ϕi (x) =

Nb∑

µ=1

ciµgµ(x), i = 1, ...,Norb,

yields the Galerkin system of nonlinear equations for coefficients matrix C = {ciµ} ∈ RNorb×Nb ,

(and density matrix D = 2CC∗ ∈ RNb×Nb )

F (C)C = SCΛ, Λ = diag(λ1, ..., λNb), CTSC = INb

,

where F (C) = H + J(C) + K(C).

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 16 / 39

Page 17: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Solver I: start of tensor-structured numericalmethods The Hartree-Fock (HF) equation

Standard Galerkin scheme

Precomputed: core Hamiltonian H = {hµν}

hµν =1

2

R3∇gµ · ∇gνdx +

R3Vc (x)gµgνdx 1 ≤ µ, ν ≤ Nb.

and two-electron integrals (TEI)

bµνκλ =

R3

R3

gµ(x)gν(x)gκ(y)gλ(y)

‖x − y‖ dxdy .

Then the EVPF (C)C = SCΛ

is solved iteratively, using DIIS [Pulay ’80] and updating F (C) = H + J(C) + K(C),

J(C)µν =

Nb∑

κ,λ=1

bµν,κλDκλ, K(C) = −1

2

Nb∑

κ,λ=1

bµλ,νκDκλ.

The ground state energy

EHF = 2

Norb∑

i=1

λi −Norb∑

i=1

(Ji − Ki

),

where Ji = (ϕi ,VHϕi ) and Ki = (ϕi ,Kϕi ).

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 17 / 39

Page 18: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Solver I: start of tensor-structured numericalmethods The Hartree-Fock (HF) equation

Competing grid-based tensor approach to computational quantum chemistry

Benchmark packages (analytic): MOLPRO [Werner et al.], GAUSSIAN, CRYSTAL, ...

Grid-based tensor methods in HF calculations: [Khoromskij, VKH, Flad, 2009, SISC ’11],

◮ Example of a compact molecule computed by tensor method: Alanin aminoacid

◮ 3D lattice structure

◮ Grid-based tensor numerical methods look promising for computation of

structured extended systems and periodic compounds.

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 18 / 39

Page 19: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Solver I: start of tensor-structured numericalmethods The Hartree-Fock (HF) equation

Basic building blocks

[VKH, Khoromskij ’08 - ’13]

◮ Canonical, Tucker and QTT tensor arithmetics.

◮ Grid basis {gµ}, and core Hamiltonian in (O(n) and O(log n) operations.

◮ Fast 3D tensor convolution in O(n log n) operations.

◮ Direct/redundancy free factorizations of TEI matrix B = [bµν;κλ] ∈ RN2b×N2

b .

◮ Cholesky decomposition (ε-approximation) of B:Compute columns and diagonal of B using precomputed factorization,

B = mat(B) := [bµν,κλ] ≈ LLT , RB = rankε(B) = O(Nb).

QTT compression of the Cholesky factor L ∈ RN2b×RB : N2

b ⇒ N2orb, Nb ≈ 10Norb.

◮ DIIS self-consistent iteration (standard in quantum chemistry).

◮ MP2 energy correction via tensor factorizations.

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 19 / 39

Page 20: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Solver I: start of tensor-structured numericalmethods The Hartree-Fock (HF) equation

Discretization of 3D basis functions

−b +bx

g

g(1)

gk k

k

i i+1

i−1

g k (x )1

(1) (1)

xx1,i1,i−1 1,i+1

gk(x )1

x1

x x x x

The computational box: [−b, b]3, b ≈ 15◦A

n × n × n 3D Cartesian grid, n ∼ 105

gk (x) = pk (x1, x2, x3)eαk (x

21+x22+x23 )

the continuous basis functions gk(x) : I0 : gk → gk :=∑i∈I

gk (xi)ζi(x).

gk(x) ≈ I0gk := gk(x) =∏3

ℓ=1 g(ℓ)k (xℓ) =

∏3ℓ=1

n∑iℓ=1

g(ℓ)k (xℓ,iℓ)ζ

(ℓ)iℓ

(xℓ), ℓ = 1, 2, 3

rank-1 tensors: Gk = G(1)k ⊗ G

(2)k ⊗ G

(3)k , with G

(ℓ)k = {g (ℓ)

k (xℓ,iℓ)}niℓ=1 ∈ RIℓ .

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 20 / 39

Page 21: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Solver I: start of tensor-structured numericalmethods The Hartree-Fock (HF) equation

O(n) computation of the Hartree potential on huge 3D grids

VH (x) :=

R3

ρ(y)

‖x − y‖ dy ρ(x) = 2

Norb∑

a=1

(ϕa)2, x ∈ R

3

ϕa(x) =

Nb∑

µ=1

caµgµ(x), a = 1, ...,Norb,

ρ ≈ Θ : =

Norb∑

a=1

Nb∑

κ=1

Nb∑

λ=1

cκacλaGκ ⊙ Gλ

=

Rρ∑

m=1

cmu(1)m ⊗ u

(2)m ⊗ u

(3)m , u

(ℓ)m = G

(ℓ)κ ⊙ G

(ℓ)λ ∈ R

n.

Rρ(CH4) = 1540, Rρ(C2H6) = 4656, Rρ(H2O) = 861

Multigrid C2T + T2C tensor rank reduction: Θ ⇒ Θ′

rank(Θ) ≈ 104 ⇒ rank(Θ′) ∼ 102.

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 21 / 39

Page 22: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Solver I: start of tensor-structured numericalmethods 3D grid-based Hartree and exchange potentials

O(n) computation of the Hartree potential on huge 3D grids [Khoromskij, VKH ’08 (SISC 2009)]

The Newton kernel PN =[〈 1‖x‖

, ζi〉], ζi p.w.c.,

by sinc-quadratures. Rank(PN ) ∼ 20÷ 30. [Bertoglio, Khoromskij ’08 (CPC 2012)]

The tensor-product convolution [Khoromskij ’08], (accuracy O(h2))

VH = ρ ∗ 1

‖ · ‖ ≈ Θ′ ∗ PN

=

Rρr∑

m′=1

RN∑

k=1

cm′bk

(u(1)m′ ∗ v

(1)k

)⊗(u(2)m′ ∗ v

(2)k

)⊗(u(3)m′ ∗ v

(3)k

).

The Coulomb matrix

J(C)µν =

R3gµ(x)VH (x)gν(x)dx ≈

R3gµ(x)VH (x)gν(x)

≈ 〈Gµ ⊙ Gν ,Θ′ ∗ PN 〉, 1 ≤ µ, ν ≤ Nb.

WC∗C = O(RρrRNn log n)

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 22 / 39

Page 23: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Solver I: start of tensor-structured numericalmethods 3D grid-based Hartree and exchange potentials

Tensor-product convolution vs. 3D FFT

[Khoromskij, VKH ’08 (SISC 2009)]

The cost of computation of VH by tensor product convolution (1D FFT):

NC∗C = O(RρrRNn log n)

instead of O(n3 log n) for 3D FFT.

n3 1283 2563 5123 10243 20483 40963 81923 163843

FFT3 4.3 55.4 582.8 ∼ 6000 – – – ∼ 2 yearsC ∗ C 0.2 0.9 1.5 8.8 20.0 61.0 157.5 299.2C2T 4.2 4.7 5.6 6.9 10.9 20.0 37.9 86.0

CPU time (in sec) for the computation of VH for H2O.

(3D FFT time for n ≥ 1024 is obtained by extrapolation).

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 23 / 39

Page 24: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Solver I: start of tensor-structured numericalmethods 3D grid-based Hartree and exchange potentials

High accuracy computations of the Coulomb matrix for H2O

(for calculation over the 3D tensor with the number of entries N ≈ 4.3 · 1012). Approx. error O(h3), h = 2b/n (h ≈ 0.001◦A).

Richardson extrapolation: J(n)Rich = (4 · J(2n) − J(n))/3.

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 24 / 39

Page 25: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Solver I: start of tensor-structured numericalmethods 3D grid-based Hartree and exchange potentials

TS computation of the exchange matrix

[VKH, 2010]

Kk,m :=

R3

R3gk(x)

ϕa(x)ϕa(y)

|x − y | gm(y)dxdy , k,m = 1, . . .Nb

1. Convolution

Wa,m(x) =

R3

ϕa(y)gm(y)

|x − y | dy ≈ W a,m :=

Gm ⊙Nb∑

ν=1

cνaGν

∗ PN ,

2. Scalar products

Vkm,a =

R3ϕa(x)gk (x)Wa,m(x)dx ≈ V km,a := 〈Gk ⊙

Nb∑

µ=1

cµaGµ

,W am〉.

3. The exchange matrix

Kk,m =

Norb∑

a=1

V km,a.

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 25 / 39

Page 26: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Solver I: start of tensor-structured numericalmethods EVP solver by multilevel TS methods

Multilevel Hartree-Fock solver (on a sequence of 3D grids)

[Khoromskij, VKH, Flad, ’09 (SISC, 2011)]

FC = SCΛ, F = H0 + J(C) − K(C),

Our iterative scheme

Initial guess for m = 0: J = 0, K = 0 ⇒ F0 = H0.

On a sequence of refined grids n = n0, 2n0, . . . , 2pn0,

solve EVP [H0 + Jm(C) − Km(C)]U = λSU .

Fast update of Jm(C) and Km(C).

Grid dependent termination criteria εp = ε0 · 4−p .

Use DIIS [Pulay ’80] to provide fast convergence.

5 10 1510

−6

10−4

10−2

100

iterations

residual in HF EVP, all electron case H2O

1 2 3 4 5 6 710

−5

10−4

10−3

10−2

10−1

100

101

102

4096 = 212, error in energy vs grid level: 1 corresponds to 32, (25)Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 26 / 39

Page 27: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

HF Solver II: standard scheme 3D grid-based factorized TEI

Grid-based two-electron integrals (TEI)

[VKH, Khoromskij, Schneider, ’12]

bµνκλ =

R3

R3

gµ(x)gν(x)gκ(y)gλ(y)

‖x − y‖ dxdy = 〈Gµ ⊙ Gν ,PN ∗ (Gκ ⊙ Gλ)〉n⊗3 ,

Gµ = G(1)µ ⊗ G

(2)µ ⊗ G

(3)µ ∈ R

n×n×n.

G (ℓ) =[G

(ℓ)µ ⊙ G

(ℓ)ν

]

1≤µ,ν≤Nb

∈ Rn×N2

b ℓ = 1, 2, 3.

Factorization (“1D density fitting”) by Cholesky decomposition of G (ℓ)G (ℓ)T :

G (ℓ) ∼= U(ℓ)V (ℓ)T , U(ℓ) ∈ Rn×Rℓ , V (ℓ) ∈ R

N2b×Rℓ ,

⇒ number of convolutions is reduced from N2b to Rℓ ≤ Nb,

n = 32768 (up to 131072),N2

b ∼ 28000 (40000 for alanine):

ε-rank reduction for glycine:from N2

b = 28900, to Rℓ ∼ 100÷ 220. 0 50 100 150 200 25010

−8

10−6

10−4

10−2

100

glycin, 4k, Nrank=170

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 27 / 39

Page 28: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

HF Solver II: standard scheme 3D grid-based factorized TEI

Fast convolution via tensor approximation of Green’s kernel

Tensor approximation of the Newton kernel using Laplace transform and sinc-quadratures:[Gavrilyuk, Hackbusch, Khoromskij ’08]

[Bertoglio, Khoromskij ’10]

Green’s function for ∆ in R3, via (2M + 1)-term sinc-quadrature approximation

1

‖x‖ =

∫ ∞

0e−t2‖x‖2dt ≈

M∑

k=−M

cke−t2k‖x‖

2=

M∑

k=−M

ck∏3

ℓ=1e−t2k x

2ℓ 7→ PN .

PN ∈ Rn×n×n, can. rank of PN RN ≤ 30.

Tensor-product convolution, O(n log n):[Khoromskij ’08]

[Khoromskij, Khoromskaia ’09]

U ∗ PN =

RF∑

k=1

RN∑

m=1

ckbm(u(1)m ∗ p

(1)k ) ⊗ (u

(2)m ∗ p

(2)k )⊗ (u

(3)m ∗ p

(3)k )

n3 5123 10243 20483 40963 81923 163843 327683

FFT3 37.5 350.6 ∼ 3500 – – – ∼ 1.2 yearsCRF

∗ CRN2.4 6.7 14.6 44 107 236 535

CPU time (in sec) for TEI: 1‖x‖

∗ gµgν , µ, ν = 1, ...,Nb, ε = 10−7,

H2O, Nb = 41,Nb(Nb+1)

27→ RF = 71, RN = 27.

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 28 / 39

Page 29: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

HF Solver II: standard scheme 3D grid-based factorized TEI

Factorized TEI

The Newton kernel: P(ℓ) ∈ Rn×RN are the factor matrices in the rank-RN canonical tensorPN ∈ Rn×n×n.

B ∼= Bε :=

RN∑

k=1

⊙3ℓ=1V

(ℓ)M(ℓ)k V (ℓ)T ∈ R

N2b×N2

b

with the convolution matrix

M(ℓ)k = U(ℓ)T (P

(ℓ)k ∗n U(ℓ)) ∈ R

Rℓ×Rℓ , k = 1, ...,RN .

The diagonal elements and j-column in the TEI matrix B :

B(i , i) =

RN∑

k=1

⊙3ℓ=1V

(ℓ)(:, i)M(ℓ)k V (ℓ)(:, i)

T.

B(:, j) =

RN∑

k=1

⊙3ℓ=1V

(ℓ)M(ℓ)k V (ℓ)(:, j)

T,

Cholesky decomposition (ε-approximation)

B := mat(B) = [bµν,κλ] ≈ LLT , L ∈ RN2b×RB ,

with RB ∼ Nb.

Representation complexity of B using the quantized tensor format can be reduced to O(NbN2orb)

(instead of O(N3b )). (Nb ∼ 10Norb).

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 29 / 39

Page 30: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

HF Solver II: standard scheme Core Hamiltonian

Laplacian in Gaussian basis

[VKH, Andrae, Khoromskij, CPC’12]

For a function in Gaussian basis {gk (x)}1≤k≤Nb, x ∈ R3, the 3D Laplace operator

Ag = {akm} ∈ RNb×Nb with akm = 〈∆gk (x), gm(x)〉.

The discete 3D Laplace operator ∆3 ∈ Rn3×n3

∆3 = ∆(1)1 ⊗ I (2) ⊗ I (3) + I (1) ⊗∆

(2)1 ⊗ I (3) + I (1) ⊗ I (2) ⊗∆

(3)1 ,

where ∆1 = 1htridiag{−1, 2,−1}.

Given Gk = G(1)k ⊗ G

(2)k ⊗ G

(3)k , Ag ≈ AG = {akm},

akm = 〈∆1G(1)k ,G

(1)m 〉〈G (2)

k ,G(2)m 〉〈G (3)

k ,G(3)m 〉

+ 〈G (1)k ,G

(1)m 〉〈∆1G

(2)k ,G

(2)m 〉〈G (3)

k ,G(3)m 〉

+ 〈G (1)k ,G

(1)m 〉〈G (2)

k ,G(2)m 〉〈∆1G

(3)k ,G

(3)m 〉

= 〈∆3Gk ,Gm〉.Complexity (O(n)).

Quantized tensor approximation of O(log n) complexity introduced in [Khoromskij ’09,’11]

is used for quantized tensor calculation of the Laplacian in [Kazeev, Khoromskij, ’12],

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 30 / 39

Page 31: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

HF Solver II: standard scheme Core Hamiltonian

Laplacian in Gaussian basis

[VKH, ’13]

p 15 16 17 18 19 20n3 = 23p 327673 655353 1310713 2621433 5242873 10485753

err(AG ) 0.0027 6.8 · 10−4 1.7 · 10−4 4.2 · 10−5 1.0 · 10−5 2.6 · 10−6

RE - 1.0 · 10−5 8.3 · 10−8 2.6 · 10−9 3.3 · 10−10 0

time (sec) 12.8 17.4 25.7 42.6 77 135

∆a11 49 12 3 0.7 0.19 0.0480RE - 0.3 0.0014 3.3 · 10−5 3.3 · 10−5 3.3 · 10−5

3D grid-based quantized tensor calculations for the water molecule (H2O):accuracy and times vs 3D grid size for the Laplace Galerkin matrix err(AG )

(discretized basis of Nb = 41 Cartesian Gaussians).

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 31 / 39

Page 32: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

HF Solver II: standard scheme Core Hamiltonian

Tensor-based nuclear potential

[VKH, Andrae, Khoromskij, CPC’12]

[VKH, ’13]

Vc (x) = −M∑

α=1

‖x − aα‖, Zα > 0, aα ∈ R

3, Pc =M∑

α=1

ZαPc,α,

vkm =

R3Vc(x)gk (x)gm(x)dx ≈ 〈Gk ⊙ Gm,Pc〉, 1 ≤ k,m ≤ Nb.

Vc for ethanol molecule (C2H5OH) at two levels: z = 0 and z = 0.75 au,

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 32 / 39

Page 33: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

HF Solver II: standard scheme Core Hamiltonian

Tensor-based Core Hamiltonian

Laplace and nuclear potential calculations for CH4, (Nb = 55).Difference between the 3D grid-based and analytical calculations in Galerkin matrices

Er(AG ) =‖Ag − AG ‖

‖Ag‖, Er(VG ) =

‖Vg − VG‖‖Vg‖

.

N3 = 23p 81923 163843 327683 655363 1310723

h(in au) 0.0036 0.0018 8.9 · 10−4 4.4 · 10−4 2.2 · 10−4

Er(AG ) 0.02 0.052 0.0013 3.2 · 10−4 8 · 10−5

RE - 2.6 · 10−4 0 2.0 · 10−6 1.7 · 10−8

Er(VG ) 0.012 0.0029 7.0 · 10−4 1.7 · 10−4 4.3 · 10−5

RE - 2.6 · 10−4 2.0 · 10−5 3.0 · 10−6 1.2 · 10−7

Note: here the finest mesh-size h is 2.2 · 10−4au = 1.164 · 10−4A = 11.64 femtometers (10−15 m), which is ∼ to size of atomic radii in a molecule.

(Atomic radius of Oxygen is 60 pm, Hydrogen 25 pm.)

1fm = 10−15 m, 1pm = 10−12 m, 1◦A= 10−10 m.

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 33 / 39

Page 34: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

HF Solver II: standard scheme “Ab-initio“ black-box HF solver

Self-consistent iteration for nonlinear EVP

[VKH, ’13, preprint]

[VKH, Khoromskij ’13]

EVP algorithm for black-box solver:

F (C)C = SCΛ, F = H0 + J(C) − K(C),

Initial guess for J = 0, K = 0, F (0) = H0.

solve EVP [H0 + J(C) − K(C)]C = SCΛ .

Update of J(C) and K(C):

⊲ Coulomb matrix: given D = vec(D),

vec(J) = BD ≈ L(LTD).

⊲ HF exchange: using D = 2CCT and B = LLT ,

K(D)µν = −Norb∑

i=1

RB∑

k=1

(∑

λ

LµλkCλi )(∑

κ

CκiLκνk ),

[Lµνk ] = reshape(L, [Nb,Nb,RB ]) is the Nb × Nb × RB -folding of the Cholesky fact. L.

DIIS for providing convergence.

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 34 / 39

Page 35: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

HF Solver II: standard scheme “Ab-initio“ black-box HF solver

TEI based nonlinear 3D EVP solver

[VKH, 2013]

DIIS iteration for amino acids glycine (C2 H5N O2) with TEI on n3 = 1310723

and alanine (C3H7N O2) with TEI on n3 = 327683.

10 20 30 40 50 60 7010

−10

10−5

100

Glycine, TEI with 131k

err in LambdaResidualError in E0

10 20 30 40 50 60 7010

−10

10−5

100

Alanine, TEI with n=32k

err in LambdaResidualError in E0

10 20 30 40 5010

−10

10−5

100

err−LambdaResidualError−E0

10 20 30 40 50−95

−90

−85

−80

−75

−70

−65

−60

−55

−50

E0grid−based

E0Molpro

5 10 15 20 25−76.033

−76.032

−76.031

−76.03

−76.029

−76.028

−76.027

−76.026

−76.025

H2O: iteration with core Hamiltonian on 1310723; convergence in energy; last k + 27 iterations.

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 35 / 39

Page 36: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Grid-based extended and periodic systems

Grid-based calculations of large extended/periodic systems

Main ingredients in tensor approach:

Computing large lattice sums of the Newton kernels.

Lattice-structured TEI computation.

Block-structured representation of the Fock matrix.

Fast diagonalisation of the Fock matrix.

x

y

z

A0.74 o

Figure: The periodic structure of the size 4.5 × 4.5 × 1.5◦A3in the box [−b, b]3, with b = 16 au (∼ 8.5

◦A).

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 36 / 39

Page 37: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Grid-based extended and periodic systems

Examples of extended systems (3D clusters of H atoms)

5 10 15 20

−2

−1.5

−1

−0.5

0

5 10 15 20

−2

−1.5

−1

−0.5

0

The nuclear potential for 8× 8× 1 cluster of H atoms. The negative part of spectra λi for themodel systems of the size 16× 2 and 8× 4.

0 500 1000 1500 20000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

grid size n300 400 500 600 700 800 900 1000 1100

0

0.01

0.02

0.03

0.04

0.05

0.06

grid size n

Tensor agglomeration of the nuclear potentials along one variable (16 atoms).Lines show the vectors of the canonical low-rank representation.

(Right figure: zoom of the left corner).Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 37 / 39

Page 38: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Outline

The talk is based on:

1 V. Khoromskaia and B.N. Khoromskij. Grid-based Lattice Summation of Electrostatic Potentials by Low-rank Tensor Approximation.Preprint MIS MPI 116/2013, 2013.

2 V. Khoromskaia. Black-Box Hartree-Fock Solver by the Tensor Numerical MethodsPreprint 90/2013, Comp. Methods in Applied Math., accepted, 2013.

3 V. Khoromskaia and B.N. Khoromskij. Møller-Plesset (MP2) Energy Correction using Tensor Factorization of the Grid-Based Two-ElectronIntegrals. Comp. Phys. Communications, doi:10.1016/j.cpc.2013.08.004, 2013.

4 V. Khoromskaia, B.N. Khoromskij, and R. Schneider.Tensor-structured factorized calculation of two-electron integrals in a general basis.SIAM J. on Sci. Comp., vol. 35, no. 2, A987-A1010, 2013.

5 V. Khoromskaia, D. Andrae and B.N. Khoromskij.Fast and accurate tensor calculation of the Fock operator in a general basis.Comp. Phys. Communications, 183 (2012) 2392-2404.

6 B. Khoromskij, V. Khoromskaia, R. Schneider.QTT Representation of the Hartree and Exchange Operators in Electronic Structure Calculations.Comp. Methods in Applied Math., Vol. 11 (2011), No 3, pp.327-341.

7 T. Blesgen, V. Gavini and V. Khoromskaia.Approximation of the Electron Density of Aluminium Clusters in Tensor-product Format,J Comp. Phys., 231 (2012), 2551-2564.

8 B. Khoromskij, V. Khoromskaia, H.-J. Flad.Solution of the Hartree-Fock Equation by the Tensor-Structured Methods.SIAM J. on Sci. Comp., 33(1), 45-65 (2011).

9 V. Khoromskaia.Numerical Solution of the Hartree-Fock Equation by Multilevel Tensor-Structured Methods.Dissertation, TU Berlin, 2010.

10 V. Khoromskaia.Computation of the Hartree-Fock Exchange by the Tensor-structured Methods.Comp. Methods in Applied Math., Vol. 10(2010), No 2, pp.204-218.

11 B. N. Khoromskij and V. Khoromskaia.Multigrid Accelerated Tensor Approximation of Function Related Multi-dimensional Arrays.SIAM J. on Sci. Comp., vol. 31, No. 4, pp. 3002-3026, 2009.

12 B. N. Khoromskij, V. Khoromskaia, S.R. Chinnamsetty and H.-J. Flad.Tensor Decomposition in Electronic Structure Calculations on 3D Cartesian Grids.J Comp. Phys., 228(2009), pp. 5749-5762, 2009.

13 B. N. Khoromskij and V. Khoromskaia.Low Rank Tucker-Type Tensor Approximation to Classical Potentials.Central European Journal of Mathematics v.5, N.3, 2007, pp.523-550.

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 38 / 39

Page 39: Grid-basedtensornumericalmethods inelectronicstructurecalculations · 2014. 11. 9. · Venera Khoromskaia Seminar at the Mathematics Institute UnTensor methods in quantum chemistryiversity

Outline

Thank you for attention

Development of the tensor-structured numerical methods resulted in a“black box” solver for the Hartree-Fock equation in a general basis.

Tensor-structured numerical methods are based on separable representation of functionsand operators on n × n × n 3D Cartesian grids.

Complexity of calculation of 3D integral and differential operators is of the order ofO(n log n) and O(n), and is reduced to O(log n).

Tensor methods provide algebraic approximate separability of variables at any step ofcalculations.

Grid-based calculation of 3D integral operators with linear scaling in 1D (is substitutedby 1D Hadamard and scalar products and 1D convolutions).

Huge grids (n3 ∼ 1015, mesh size h ≈ 10−4◦A) provide high resolution for problems in

quantum chemistry.

Generic bases are applicable, including any physically relevant functions (local finiteelement, AO, Slater, truncated plane waves, etc.)

Robust tensor rank reduction algorithms (C2T+T2C, ACA+QR, etc.).

Numerical tests for compact molecules confirm efficiency of algorithms.

Tensor methods are applicable in electronic structure calculations for periodic and latticestructures.

http://personal-homepages.mis.mpg.de/vekh/

Venera Khoromskaia Seminar at the Mathematics Institute University of Warwick, 23.01.2014 ()Tensor methods in quantum chemistry 39 / 39