greg challis department of chemistry

40
Greg Challis Department of Chemistry Lecture 2: Methods for experimental identification of cryptic biosynthetic gene cluster products Microbial Genomics and Secondary Metabolites Summer School, MedILS, Split, Croatia, 25-29 June 2007

Upload: kaveri

Post on 15-Jan-2016

28 views

Category:

Documents


1 download

DESCRIPTION

Lecture 2: Methods for experimental identification of cryptic biosynthetic gene cluster products. Microbial Genomics and Secondary Metabolites Summer School, MedILS, Split, Croatia, 25-29 June 2007. Greg Challis Department of Chemistry. Overview. Overview of available approaches - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Greg Challis Department of Chemistry

Greg Challis

Department of Chemistry

Lecture 2: Methods for experimental identification of cryptic biosynthetic gene cluster products

Microbial Genomics and Secondary Metabolites Summer School, MedILS, Split, Croatia, 25-29 June 2007

Page 2: Greg Challis Department of Chemistry

Overview

• Overview of available approaches

• Identification of a S. coelicolor cryptic NRPS product

prediction of properties, gene KO / metabolic profiling

• Identification of S. coelicolor cryptic type III PKS products

gene KO / metabolic profiling

• Identification of a S. coelicolor cryptic terpene synthase product

in vitro reconstiution

Page 3: Greg Challis Department of Chemistry

Overview of approaches

Corre and Challis, Chem. Biol. (2007) 14, 7-9

Page 4: Greg Challis Department of Chemistry

Gene knockout / comparative metabolic profiling

X wild type

mutant

H2NNH

O

N

O

OH

NH

ONH2

NOH

O

NHO

O

O OH

H H

OH

O

O

HO

Lautru, Deeth, Bailey and Challis, Nat. Chem. Biol. (2005) 1, 265-269

Song et al., J. Am. Chem. Soc. (2006), 128, 14754

Page 5: Greg Challis Department of Chemistry

Expression of pathway specific activator / comparative metabolic profiling

host + activator

host - activator

O

NH

OH

O

OH

R

aspyridones

Bergman et al., Nat. Chem. Biol. (2007) 3, 213-217

Page 6: Greg Challis Department of Chemistry

Heterologous gene expression / comparative metabolic profiling

host

host + genes

host - genes

NH

OO

O Cl

OMe

OOHOH

O

MeO

Hornung et al., ChemBioChem (2007) 8, 757-766

Page 7: Greg Challis Department of Chemistry

Prediction of physicochemical properties

predicted precursors h

NH

OO

OH

O OH

HO OH

OH

CO2HMeNH2N

NH

Banskota et al., J. Antibiot., (2006) 59, 533-542

Page 8: Greg Challis Department of Chemistry

“Genomisotopic” approach

labelled predicted precursor

** * *

NH

HNNH

O

NH

NH

HN

NH

NH

O

O

OO

OO

O

O

OH

HO

O OH

orfamides

Gross et al. Chem. Biol. (2007) 14, 53-63

Page 9: Greg Challis Department of Chemistry

In vitro pathway reconstitution

predicted precursors

purifiedenzymes

epi-isozizaene

Lin, Hopson and Cane, J. Am. Chem. Soc. (2006) 128, 6022-6023

Page 10: Greg Challis Department of Chemistry

H. Vlamakis, P. Straight, M. Fischbach

Addition of a soil metabolite to Streptomyces avermitilis induces it to produce a cryptic metabolite

Ueda et al., J. Antibiotics, 2000

Diffusible compound from a soil organism induces another organism to generate a new antibiotic activity

Supernatant of soil organism A

(stimulating compound)

Soil organism B(antibiotic producer)

• Paper discs containing extracts from the culture broth of organism A were placed adjacent to inoculated spots of organism B

• Organism B grew for 1 – 3 days

• Soft agar containing spores of Bacillus subtilis was overlain to indicate antibiotic production

Page 11: Greg Challis Department of Chemistry

Example 1: isolation of a novel cryptic NRPS product

Page 12: Greg Challis Department of Chemistry

A new S. coelicolor NRPS gene cluster

cchAcchBcchH

Flavin-dependent monooxygenase (cchB)

Non-ribosomal peptide synthetase (cchH)

Formyl-tetrahydrofolate-dependent formyl transferase (cchA)

MbtH-like protein (cchK)

Esterase (cchJ)

Challis and Ravel FEMS Microbiol. Lett. (2000) 187, 111-114

Export functions

Ferric-siderophore import

cchJcchI

Page 13: Greg Challis Department of Chemistry

Prediction of substrates and possible products for the S. coelicolor cryptic NRPS

O

NHNH2

OH

HN

OH

O

H

O

NOH

O

NH2

OH O

NHNH2

OH

HN

OH

O

H

O

HN

N

O

OHH

Challis and Ravel FEMS Microbiol. Lett. (2000) 187, 111-114

A E C A E C A

SO

HN

H2NO

N

H2N

OHO

H

S

Module 1 Module 2 Module 3

O

NH2HOH

S

OH

Page 14: Greg Challis Department of Chemistry

Gene KO / comparative metabolic profiling targeting predicted properties

cchH

X

-20

180

380

580

0 5 10 15 20 25 30 35 40

Retention time / min

Mutant

Wild type

-20

180

380

580

A4

35

/ n

m

Page 15: Greg Challis Department of Chemistry

408

+2 H

408+2H

307+2H

H2NNH

OOH

N

O

OH

NH

ONH2

NOH

O

NHO

O

O OH

H H

m/z

Mass spectrometric analysis of coelichelin

ESI-FTICR-MS

ESI-MS-MS

C21H39N7O11

Page 16: Greg Challis Department of Chemistry

NMR analysis of Ga-coelichelin complexAssignment H C

hfOrn1-C1 - 168.5 hfOrn1-C2 3.97, dd, 3.0 Hz, 3.0 Hz hfOrn1-C3 1.91, m; 1.50, m hfOrn1-C4 1.42, m; 1.50, m hfOrn1-C5 3.41, m; 3.51, m hfOrn1-NH2 - - hfOrn1-C(O)H 8.17, s 153.5 Thr2-C1 - 162.5 Thr2-C2 4.59, dd, 9.0 Hz, 9.0 Hz 58.0 Thr2-C3 3.82, m 66.0 Thr2-C4 1.14, d, 5.5 Hz 21.0 Thr2-NH 8.75, d, 9.0 Hz - Thr2-OH 5.08, d, 6.2 Hz - hOrn3-C1 - 173 hOrn3-C2 4.24, dd, 8.5 Hz, 11.0 Hz hOrn3-C3 1.76, m; ? hOrn3-C4 1.83, m; 1.83, m hOrn3-C5 3.45, m; 3.93, m hOrn3-NH 7.57, d, 8.5 Hz - hfOrn4-C1 - 170 hfOrn4-C2 4.15, dd, 11.0 Hz, 1.9 Hz hfOrn4-C3 1.64, m; 2.29, m hfOrn4-C4 1.96, m, 1.76, m hfOrn4-C5 3.76, m; ? hfOrn4-C(O)H 8.22, s 153.5 hfOrn4-NH2 - -

H2NNH

OOH

N

O

O

N

ONH2

NO

O

NO

O

Ga

O OH

H

H H

12

3

4

5

12

34

1

2345

12

3

4

5

hfOrn1Thr2

hOrn3

hfOrn4

Page 17: Greg Challis Department of Chemistry

2D-NMR analysis of Ga-coelichelin complex

H2NN

OOH

N

O

O

N

ONH2

NO

O

NO

O

Ga

O OH

H

H

HH

HH

H H

1

2

34

5

6

7

1

2

3

4

5

6 7

1

2 3

5

6

4

H2NN

O

N

O

O

N

ONH2

NO

O

NO

O

Ga

O OH

H

H

HH

HH

H H

H

HOH

H1

2

3

H

4

5

6

HMBC

ROESY

Page 18: Greg Challis Department of Chemistry

Molecular modelling of Ga-coelichelin

2.45

2.52

2.06d

H2NN

O

N

O

O

N

ONH2

NO

O

NO

O

Ga

O OH

H

H

HH

H

H H

HO H

2.58

1.83

2.46

Page 19: Greg Challis Department of Chemistry

Structure of coelichelin

H2NNH

O

N

O

OH

NH

ONH2

NOH

O

NHO

O

O OH

H H

OH

H2NNH

OOH

N

O

OH

NH2

NOH

O

O OH

H

proposedstructure

Page 20: Greg Challis Department of Chemistry

Assembly of a tetrapeptide by a trimodular NRPS

cchH

CchJH2N

NH

OOH

N

O

OH

NH

ONH2

NOH

O

NHO

O

O OH

H

H H

A E C A E C A

SH SO

N

HN

HOO

NHHOO

N

NH2

HO O

H

H

ON

H2N

HO

HO

SH

Module 1 Module 2 Module 3

cchJ

Page 21: Greg Challis Department of Chemistry

Heterologous expression of the cch cluster in Streptomyces fungicidicus

-50

350

750

1150

1550

-50

350

750

1150

1550

S. fungicidicus

S. fungicidicus + cch cluster

-50

350

750

1150

1550

S .coelicolor M145

Lautru, Deeth, Bailey and Challis, Nat. Chem. Biol. (2005) 1, 265-269

Page 22: Greg Challis Department of Chemistry

Example 2: isolation of novelproducts of a cryptic iterative PKS

Page 23: Greg Challis Department of Chemistry

Archetypal type III PKS products from bacteria

HO OH

O

SCoA

OH

OAmycolatopsis

orientalis

DpgA4 x Me

O O

O

NH

O HN

O

NH

O

NHMe

Cl

O

HN

H

OH

NH

OCl

OH

NHO

OHHO

H

HO2C

HOH

O

HOHO

O

OH

OH2N

HO Me

NH2

O

HO OH

O

OHH2N

Page 24: Greg Challis Department of Chemistry

Mechanism of 3,5-DHPA-CoA assembly by DpgA

-O

O

SCoA

O

DpgA

-S

-O

O

SCoA

O

DpgA

S

O

-O

O

O

SCoA

O

DpgA

-S

-O

O

O

SCoA

OOOO

-O

O

SCoAHO

O O

O

SCoA

HO OH

3,5-DHPA-CoA

Tseng, McLoughlin, Kelleher and Walsh Biochemistry (2004) 43, 970-980

Page 25: Greg Challis Department of Chemistry

Type III polyketide synthases

Page 26: Greg Challis Department of Chemistry

In vitro investigation of the products formed by Sco7221 from acyl thioesters + malonyl CoA

R SCoA

O

SCoA

O

HO

O+

purifiedrecombinant

Sco7221O

O

HO R'

Moore, Noel and coworkers, unpublished

Page 27: Greg Challis Department of Chemistry

Identification of a new S. coelicolor type III PKS products by genome mining

sco7221

0 5 10 15 20 25 Time [min]0.0

0.5

1.0

1.5

2.0

6x10Intens.

7221_EtOAc_72_01_511.d: EIC 197 +All MS, Smoothed (0.3,1, GA)7221_EtOAc_72_01_511.d: EIC 183 +All MS, Smoothed (0.3,1, GA)WTM145_7_01_1360.d: EIC 183 ±All MS, Smoothed (1.1,1, GA)WTM145_7_01_1360.d: EIC 197 ±All MS, Smoothed (1.1,1, GA)

EIC 197 sco7221

EIC 183 sco7221

EIC 197 M145

EIC 183 M145

X

Page 28: Greg Challis Department of Chemistry

Structures of the products

O

O

HO

O

O

HO

Germicidin A(MW = 196)

Germicidin B(MW = 182)

O

O

HO

Isogermicidin B*(MW = 182)

O

O

HO

Isogermicidin A*(MW = 196)

O

O

HO

Germicidin C(MW = 182)

Song, Barona-Gomez, Corre, Xiang, Udwary, Austin, Noel, Moore and Challis, J. Am. Chem. Soc. (2006), 128, 14754Petersen, Zahner, Metzger, Freund and Hummel, J. Antibiot. (1993) 46, 1126-1138

O

O

HO

Isogermicidin C*(MW = 182)

Page 29: Greg Challis Department of Chemistry

Biosynthetic origins of germicidin A in S. coelicolor

OO

OH

NH2 O

OH

O

OH D

DD

DD/H

D

D D

D D

D D

[U-13C]Isoleucine [2H7]butyrate

0 5 10 15 Time [min]0.0

0.5

1.0

1.5

2.0

2.58x10

Intens.

D7GerBcollection_2_01_2303.d: EIC 197 +All MS, Smoothed (0.4,1, GA)D7GerBcollection_2_01_2303.d: EIC 202 +All MS, Smoothed (0.4,1, GA), Smoothed (0.4,1, GA), Smoothed (0.4,1, GA)

0 5 10 15 Time [min]0

2

4

6

87x10

Intens.

C13Gercollection_10_01_2311.d: EIC 197 +All MS, Smoothed (0.4,2, GA)C13Gercollection_10_01_2311.d: EIC 202 +All MS, Smoothed (0.4,2, GA)

196.93

201.95

213.91 223.92

+MS, 21.00-21.07min #(3004-3014)

0

2

4

6

8

7x10Intens.

180 190 200 210 220 m/z

196.93

201.94

218.91

223.93

+MS, 20.13-20.24min #(2884-2899)

0

1

2

3

7x10Intens.

180 190 200 210 220 m/z

EIC 202EIC 197

Page 30: Greg Challis Department of Chemistry

Proposed mechanism 1 for germicidin assembly

SCoA

O

GcsA

HS

-O

O

SCoA

O

GcsA

S

O

R2

SCoA

O

GcsA

HS

R2

R1R2

R1

R1

O

-O

O

SCoA

O

GcsA

S

OO

R2

R1

R4

R2

R1

O O O

R4

SCoA

O

O

R4

R1R2 OH

R3 R3

R3

R3 R3 R3

-CO2-CoASH -CoASH

-CO2 -CoASH

Page 31: Greg Challis Department of Chemistry

Proposed mechanism 2 for germicidin assembly

SCoA

O

FabH

HS

-O

O

S

O

FabH

S

O

R2

S

O

GcsA

HS

R2

R1R2

R1

R1

O

-O

O

SCoA

O

GcsA

S

OO

R2

R1

R4

R2

R1

O O O

R4

SCoA

O

O

R4

R1R2 OH

R3 R3

R3

R3 R3 R3

FabC FabC

-CO2

-CO2

-CoASH

-CoASH

-FabC-SH

Page 32: Greg Challis Department of Chemistry

Heterologous expression of sco7221 in Streptomyces venezualae ISP5230

0 2 4 6 8 10 12 14 16 Time [min]0

1

2

3

4

7x10Intens.

newSV5d_2_01_3370.d: EIC 183 +All MS, Smoothed (0.4,1, GA)newSV5d_2_01_3370.d: EIC 197 +All MS, Smoothed (0.4,1, GA)Svenezualaenew_2_01_2361.d: EIC 183 +All MS, Smoothed (0.4,1, GA), Smoothed (0.4,1, GA), Smoothed (0.4,1, GA)Svenezualaenew_2_01_2361.d: EIC 197 +All MS, Smoothed (0.4,1, GA), Smoothed (0.4,1, GA), Smoothed (0.4,1, GA)

EIC 197 ISP5230 + sco7221

EIC 183 ISP5230 + sco7221

EIC 197 ISP5230

EIC 183 ISP5230

gcs (sco7221)

PermE*

Page 33: Greg Challis Department of Chemistry

Fatty acid biosynthesis in Streptomyces coelicolor and E. coli compared

SCoA

O

-O

O

S

O

S

O

R2

R1R2

R1

OR3 R3

ACP ACP+

R1R2

R3

OH

O

Sc-FabH

R1 = R2 = Me, R3 = H

R1 = H, R2= R3 =H

R1 = Me, R2 = R3 = H

R1 = R3 = H, R2 = Me

SCoA

O

-O

O

S

O

S

OO

ACP ACP+Ec-FabH

O

OH

Page 34: Greg Challis Department of Chemistry

Analysis of germicidin production in S. coelicolor YL/ecFabH

EIC 197 YL/ecFabH

EIC 183 YL/ecFabH

EIC 197 M511

EIC 183 M511

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 Time [min]0

2

4

6

7x10Intens.

PSE2SMMmedium_3_01_3234.d: EIC 183 +All MS, Smoothed (0.4,1, GA)PSE2SMMmedium_3_01_3234.d: EIC 197 +All MS, Smoothed (0.4,1, GA)M145SMMmedium_4_01_3235.d: EIC 183 +All MS, Smoothed (0.4,1, GA)M145SMMmedium_4_01_3235.d: EIC 197 +All MS, Smoothed (0.4,1, GA)

O

O

HO

O

O

HO

fabD aac(3)IV fabC fabBoriT ecfabH+

OH

O

OH

O

OH

O

PermE*

Page 35: Greg Challis Department of Chemistry

Proposed mechanism for germicidin assembly

SCoA

O

FabH

HS

-O

O

S

O

FabH

S

O

R2

S

O

GcsA

HS

R2

R1R2

R1

R1

O

-O

O

SCoA

O

GcsA

S

OO

R2

R1

R4

R2

R1

O O O

R4

SCoA

O

O

R4

R1R2 OH

R3 R3

R3

R3 R3 R3

FabC FabC

-CO2

-CO2

-CoASH

-CoASH

-FabC-SH

Page 36: Greg Challis Department of Chemistry

X-ray structure of germicidin synthase

Ser

Cys

Gcs

AcpP

Page 37: Greg Challis Department of Chemistry

Example 3: a novel product of a cryptic sesquiterpene synthase

Page 38: Greg Challis Department of Chemistry

Cryptic sesquiterpene synthases of S. coelicolor

Page 39: Greg Challis Department of Chemistry

In vitro investigation of the product formed by Sco5222 from farensyl pyrophosphate

Lin, Hopson and Cane, J. Am. Chem. Soc. (2006) 128, 6022-6023

O

P

O

O O-

P

O-O O-

Sco5222

-PPi

epi-isozizaene

sco5222 overexpressed in E. coli with N-terminal His6 and purified from CFE

sco5222 sco5223

Sesquiterpene synthase Cytochrome P-450

Sco5223?

O

albaflavenone

Streptomyces albidoflavus

O2-H2O

Page 40: Greg Challis Department of Chemistry

Conclusions

• Several different approaches for the identification of the products of cryptic biosynthetic gene clusters have been developed in recent years

• Several novel bioactive metabolites have been discovered from well-studied microbes by these approaches

• Activation of silent cryptic gene clusters is a challenge that awaits generic solutions

• Genome mining is a promising approach for new bioactive metabolite discovery