greenhouse gas emissions in the production cycle of bioethanol from sugarcane: what we know and what...

32
Agrobiologia

Upload: ctbe-brazilian-bioethanol-scitech-laboratory

Post on 25-May-2015

708 views

Category:

Documents


7 download

DESCRIPTION

Presentation of Robert Boddey for the "2nd Workshop on the Impact of New Technologies on the Sustainability of the Sugarcane/Bioethanol Production Cycle"Apresentação de Robert Boddey realizada no "2nd Workshop on the Impact of New Technologies on the Sustainability of the Sugarcane/Bioethanol Production Cycle "Date / Data : Novr 11th - 12th 2009/ 11 e 12 de novembro de 2009 Place / Local: CTBE, Campinas, Brazil Event Website / Website do evento: http://www.bioetanol.org.br/workshop5

TRANSCRIPT

Page 1: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Page 2: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Sugarcane in Brazil 2008 - 2009

•  Harvested area 2009 – 8.7 million ha (Mha) •  Planted area 2009 – 9.8 Mha •  Total cane production 2009 = 690 million tonnes. •  Mean cane yield – 79.5 ton./ha •  Ethanol prodution (2008) - 27 billion litres (5.4 bi

exported) •  Ethanol prodution per ha - 6500 litres

Page 3: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

The Contribution of Fossil Energy In all stages of sugarcane production and its processing to

produce ethanol there are inputs of conventional (fossil) energy

For example: 1.  Diesel oil for sub-soiling, ploughing, spraying. 2.  Fertilizer manufature (natural gas) and its transport and

application (diesel oil). 3.  Harvest and transport of cane to factory (diesel oil). 4.  Construction of factories/distilleries (cement, steel etc.)

and manufacture of field machinery (tractors, ploughs harvesting machines) and factory equipment.

Page 4: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Emissions of other greenhouse gases Apart from CO2 there are two other gases which which also

absorb infra-red radiation (heat). : Nitrous oxide (N2O) and methane (CH4)

•  Nitrous oxide is emitted when nitrogen (in fertilizers and residues) is applied to the soil; the emissions being higher when the soil is at high moisture content.

•  The quantities are small (typically 1% or less of the added N) but N2O is approximately 300 times more active than CO2 in absorption of infra-red radiation.

•  Methane is liberated when the cane trash is burned or when vinasse (distillery waste) is added to the soil.

•  Methane is approximately 25 times more active than CO2 in the absorption of infra-red radiation.

Page 5: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Evaluation of the mitigation of greenhouse gas (GHG) emissions in the full cycle of bio-ethanol production

from sugarcane Phase 1: Calculate the ratio between the energy in the ethanol produced

and the energy derived from fossil fuels utilized in the production process. This ratio is known as the “Energy Balance” of the bio-fuel.

In this study an inventory was made of the fossil energy in:

1.  fuels (principally diesel oil) utilized by tractors, trucks and other machinery used in the field and in transport of the cane and other inputs to the factory/plantation.

2.  manufacture of inputs, vehicles, machines, structures and buildings utilizd in the production of ethanol from the cane.

Page 6: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Energy balance for ethanol production from sugarcane*

*Source: Boddey et al., 2008, Bio-ethanol production in Brazil. Chapter 13, In: Pimentel, D., (ed.), Biofuels, Solar and Wind as Renewable Energy Systems: Benefits and Risks. Springer, New York pp 321-356.

Page 7: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Page 8: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

The vehicle running ethanol from sugarcane emits only 20 % of the GHGs which it would emit using pure gasoline OR The use of Brazilian bioethanol promotes a mitigation of 80 % of the GHGs emitted when the same distance is covered using pure gasoline

*S10 Chevrolet pickup

*

Page 9: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Circular Técnica 27

www.cnpab.embrapa.br/publicacoes/download/cit027.pdf

Luis Henrique Soares Bruno J.R. Alves Segundo Urquiaga Robert M. Boddey

Page 10: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Less soot and smoke – less health problems. Soil surface protected – less erosion and evaporation

Impact of the change from manual harvesting of burned cane to mechanical harvesting of green cane

Page 11: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Comparison of emissions of GHGs from the manual harvesting of burned cane with the mechanized harvest of green (unburned) cane

a Based on IPCC (2006) methodology for the burning of 13.1 Mg ha-1 of agricultural residues at 80 % efficiency (2.7 kg CH4 Mg-1 burned).

b Based on IPCC (2006) methodology for 13.1 Mg ha-1 of sugarcane residues (0.07 kg N2O Mg-1 burned). -------------------------------------------------------------------------------------------------------------------------------------------------------

At present ~60% of cane is burned for manual harvest. If burning is completely replaced by mechanized green cane harvesting the mitigation

of GHG emissions increases from 80 to 87%

Page 12: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Impact on soil C stocks of change from burned cane to green-cane harvesting

Usina Cruangi, Timbauba, PE*

*Resende et al., 2006, Plant Soil 281: 337-349

Increase in soil C stocks on change to green cane harvesting = ~300 kg C ha-1 yr-1 over 16 years

Page 13: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Field N budget for a typical cane variety growing in São Paulo State

•  Yield 84 tonnes/ha •  Total N (kg N /ha/yr) in: •  Cane stems ……………………… 42 kg •  Trash/senescent leaves*………. 52 kg •  Flag leaves (left in field) ………. 62 kg •  Total aerial tissue ………………156 kg

•  Removed by burning and exported to mill … 94 kg •  Added as N fertilizer 65 kg N/ha •  Balance = minus 29 kg N ha (not counting leaching, volatilization and

erosion losses) •  Rainfall and dry deposition inputs estimated for Piracicaba as <9 kg N/ha*

* Krusche et al., 2003, Environ. Pollution 121: 389-399

Page 14: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Impact of GHG emissions of biological nitrogen fixation

Page 15: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Metodologia Câmara estática fechada

Emissões de óxido nitroso principalmente associadas as aplicações de fertilizante nitrogenado

Page 16: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Page 17: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Menores emissões em Latossolos estariam relacionadas a alta drenagem e as condições de evapotranspiração em regiões tropicais

Infiltração de água em Latossolo Vermelho, Sto Antonio de Goiás

Após quase 1 dia sob inundação, o potencial redox reduz ao ponto do NO3

- ser consumido de forma mais significativa (Sposito, 1989).

Page 18: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Soil N2O-N fluxes after vinasse and urea application on sugarcane crop growing on a Cambisol of Campos dos Goytacazes

Page 19: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Soil N-N2O emission from a sugarcane crop treated with vinasse and urea and from a non-fertilized control area, used to calculate

emission factors for both N sources

Page 20: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Uso do solo Ciclo de

avaliação1 (dias)

N-Fertilizante (fonte kg N ha-1) Tipo de solo

FE baseado em área de

referência (%)

Londrina, PR Latossolo Vermelho

distroférrico Milho SP rotação (ano 1 e 2) 136/141 Uréia – 80 0,05/0,04 Milho PD rotação (ano 1 e 2) 136/141 Uréia – 80 0,09/0,03

Passo Fundo, RS

Latossolo Vermelho

escuro

Trigo PD rotação 137 Uréia – 40 0,13 Soja/trigo PD (ano 1 e 2) 1 ano Fert+Res –

120/116 0,56/0,81

Soja/trigo PC (ano 1 e 2) 1 ano Fert+Res – 126/133

0,47/0,52

Milho/trigo PD 1 ano Fert+Res – 162 0,41 Milho/trigo PC 1 ano Fert+Res – 141 0,70 Sorgo/trigo PD 1 ano Fert+Res – 193 0,24 Sorgo/trigo PC 1 ano Fert+Res – 193 0,29

Santo Antônio de Goiás, GO Latossolo Vermelho

Escuro

Milho PD sucessão 140 Uréia – 80 0,22 Arroz sequeiro PD (ano 1 e 2) 133/132 Uréia – 90 0,13/0,14 Feijão irrigado PD 149 Uréia – 80 0,12

Seropédica, RJ Milho SP 120 Uréia – 50 0,16 Milho SP 120 Uréia – 100 Argissolo

Vermelho Amarelo

0,35 Milho SP 120 Uréia – 150 0,33 Capim elefante 180 Uréia – 40 0,18 Capim elefante 180 Uréia – 80 0,22 Capim elefante 180 Uréia – 120 0,22 Capim elefante 180 Uréia – 160 0,37

Fator de emissão de N2O obtido de estudos feitos pela

equipe da Embrapa Agrobiologia em solos

agrícolas

Fator de emissão direta IPCC

1% (0,3 – 3%)

Fator de emissão direta Dados medidos no Brasil

Média geral 0,30 % (0,20 – 0,47%)

Page 21: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Impacto nas emissões de GEEs da expansão da área utilizada para a produção de etanol da cana-de-açúcar

Duas perguntas:

1.  Quais terras estão sendo convertidas para a produção de etanol?

Resposta: Principalmente pastagens de baixa produtividade e alguma área de lavoura

2. Qual é a diferença das emissões de GEEs no uso atual da terra comparado com a substituição da produção de etanol da cana.

Page 22: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Principais emissões de GEEs em pastagens

1.  Metano ruminal: para uma pastagem de baixa produtividade (0,7 UA/ha) = 120 g CH4 ou 2.500 kg CO2eq/ha/ano.

2.  Óxido nitroso da urina 240 g N2O ou 74 kg CO2eq/ha/ano 3.  Outras emissões =~260 kg CO2eq/ha/ano

TOTAL 2.840 kg CO2eq/ha/ano ____________________________________________________________

Principais emissões de GEEs em soja/milho 1.  Adubos e operações de campo = 810 a 1017 kg CO2eq/ha/ano 2.  Óxido nitroso do N dos resíduos e N fertilizante = 0,55 a 0,80 kg

N2O ou 270 a 390 kg CO2eq/ha/ano Para 75 % soja e 25 % milho estima se uma emissão de

TOTAL 1160 kg CO2eq/ha/ano

Page 23: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Mudança nas emissões de GEEs na conversão de lavoura (soja/milho), ou pastagem de baixa produtividade, para

a produção de etanol

1.  Soja/milho: 1.160 para 3.244 kg CO2eq/ha/ano – maior emissão de GEEs, quase 2000 kg CO2eq/ha/ano a mais.

2.  Pastagem 2.840 para 3.244 kg CO2eq/ha/ano – pouco mudança em emissões.

MAS! o etanol produzido de 1 ha de cana (6.500 litros) pode substituir 4.500 litros de gasolina que emitiria 16.425 kg CO2eq/ha/ano. Os 6.500 litros de etanol só emite 3.244 kg CO2eq/ha/ano de GEEs.

CONCLUSÃO: Se o etanol substitui a gasolina pura, 1 ha de cana substituirá 13,2 toneladas de CO2 fóssil. Qualquer emissão devido a mudança do uso da terra é

pequena em comparação.

Page 24: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Mudanças no Uso da Terra Indiretas ILUC

? - No momento o EPA/USA – Considera inviável o etanol brasileiro devido a - As negociações com a Europa ainda vão começar

Desmatamento (ha) Aumento na área da cana (ha)

Page 25: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Com a passagem dos anos as melhorias no manejo da lavoura da cana vem aumentando gradualmente o

rendimento de etanol/ha com apenas pequenos aumentos no uso de insumos não renováveis.

A prática de queima da cana com a colheita manual está sendo substituída pela colheita mecanizada de

cana crua, que aumenta a poder de mitigação da etanol da cana-de-açúcar.

Só o plantio de florestas ou de capim elefante para uso para produção de energia por combustão pode ser mais efetivo por hectare do que o etanol da cana na

mitigação do aquecimento do planeta

Page 26: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

A EQUIPE Bruno J.R. Alves

Segundo Urquiaga

Ednaldo da Silva Araújo

Luis Henrique de B. Soares

Robert M. Boddey [email protected]

Page 27: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Page 28: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

  Vinhaça • Principal subproduto da indústria sucroalcooleira • Composição variada • Ferti-irrigação • Efeitos no solo • Efeitos no ambiente

Fotos: Fernando Zuchello

Page 29: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Fotos: Fernando Zuchello

Page 30: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

Foto: Fernando Zuchello

Câmaras ao longo do canal de vinhaça

Page 31: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

• As análises de gases serão realizadas utilizando os cromatógrafos da Embrapa Agrobiologia.

• Caracterização da vinhaça:  pH;  Potencial redox;  Temperatura;  Acetato;

Page 32: Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

Agrobiologia

60oC

52oC 37oC

25oC

Foto: Fernando Zuchello

Entrada de vinhaça

4,5 gCH4.m-2.h-1

20,9 gCH4.m-2.h-1

Canal de distribuição

185,5 gCH4.m-2.h-1

Fluxos de metano em diferentes pontos de uma lagoa de vinhaça