grb afterglow spectra daniel perley astro 250 19 september* 2005 * international talk like a pirate...

49
GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Post on 19-Dec-2015

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

GRB Afterglow Spectra

Daniel Perley

Astro 250

19 September* 2005

* International Talk Like a Pirate Day

Page 2: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Background

Daniel Perley 19 September 2005GRB Afterglow Spectra

The GRB Standard Model

ISM

Shocked Gas

Earth

SH

OC

KS

HO

CK

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 3: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Background

Daniel Perley 19 September 2005GRB Afterglow Spectra

Relativistic Shock

SH

OC

KS

HO

CK

ISM

Γ

number density

no

energy density

Eo = no mp c2

energy per particle

Eo/no = mp c2

From Brian’s lecture…

n′ = 4 no

E′ = 4 2no mp

c2

E′/n′ = mp c2

= Γ √2

>Compression< by 4

Energy Increase by factor

Deceleration by factor √ 2

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 4: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Energy Deposition

Where does the energy go?

energy per particle

Eo/no = mp c2E′/n′ = mp c2 Energy Increase

by factor

• Protons

• Electrons

• Magnetic field

• Other particles?

Ep = εp E′

Ee = εe E′

B = εB E′

Energy DepositionBackground GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 5: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Energy Deposition

Daniel Perley 19 September 2005GRB Afterglow Spectra

Proton/Electron Energy

SH

OC

KS

HO

CK

ISMShocked Gas

Γ

e

Extreme (relativistic) ‘temperature’ of shocked gas described by p, e

Bulk motion of shocked gas relative to observer

Particle energy deposited in random motions.

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 6: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Proton Energy

Not particularly interesting on its own.

Protons necessarily drag electrons with them at the same bulk velocity.

Share energy with electrons: electron factors necessarily much higher.

Energy DepositionBackground GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 7: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Electron Energy

Faster-moving electrons will radiate more efficiently by all important processes.

e

Energy DepositionBackground GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 8: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Electron Energy Distribution

Q: How is electron energy distributed?

A:

?

Hypothesis: Power-law? (Seen in SNe, NR shocks)

Energy DepositionBackground GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 9: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Log

N

Log

N α -p

N α [Complicated]

Model as power-law:

Energy Deposition Electron Energy DistributionBackground GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 10: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Electron Energy Distribution

Simplify: cut-off power law at minimum energy

Log

N

Log

N α -

p

N α [Complicated]

m

Minimum energy

Energy DepositionBackground GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 11: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Electron Energy Distribution

Mimimum energy determined by total energy density:

n = ∫ Ne de Ee = me c2 ∫ e Ne

de

= C m1-p = me c2 C m

2-p

Infinite if p<2

N

e

e-p

m

n

eN

e

m

e1-p

E

11-p

C = (1-p) mp-1 n

12-p

= me c2 m n1-p2-p

m p-2p-1

Ee

n me c2

p-2p-1

mp

me εe ≈ 610 εe

Energy DepositionBackground GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 12: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Magnetic Energy

Strong post-shock magnetic field expected from equipartition.

Generation mechanism unknown/complicated – various plasma effects

B2

8π= εB E′

= εB 4 2no mp c2

= 32π εB 2no mp

c2

B2

B = 32π εB no mp c

≈ (0.4 gauss) εB1/2 ( )1/2

no

cm-3

B

Energy DepositionBackground GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 13: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Emission Mechanisms

How does it cool?

Bremsstrahlung

P α e3/2 n2

Inverse Compton

P = σTcβ2e2Uph

SynchrotronP = σTcβ2e

2UB

Uncooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

43

43

Page 14: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Relativistic Cyclotron

Relativistic modification to cyclotron frequency:

ωcyc = e B

m c

Most emission is not at this frequency.

Uncooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 15: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Synchrotron Beaming

Emission is highly pulsed – we see emission for only 1/2 of total emission time.

ωcyc = e B

m c

E

t

1/ωcyc

1/2ωcyc

- One factor of from beaming angle

- Additional factor of from "Doppler" boost 1/

1/

Uncooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 16: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

1e- Synchrotron Spectrum

E

t

1/ωcyc

1/2ωcyc

= E

t

δ(t-n/ωcyc)

=

Uncooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 17: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

1e- Synchrotron Spectrum

E

t

= E

t

δ(ω-nωcyc)^

^

Fourier transformed:

ωcyc

2ωcyc

2ωcyc

2ωcyc

2ωcyc

Uncooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 18: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

1e- Synchrotron Spectrum

log

P

1/3 e-/ωcyc 1/2

pk log

More precisely…

Shocked frame:

α e2

α e2

α const

Total Power: P = σTcβ2e2UB

Peak Freq.: pk ≈ e2ωcyc / 2π

Peak Power: Ppk ≈ P / pk

43

Uncooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 19: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

1e- Synchrotron Spectrum

log

P

log

1/3 e-/ωcyc 1/2

pk pk

Shocked frame:

α e2

α e2

α const

Total Power: P = σTcβ2e2UB

Peak Freq.: pk ≈ e2ωcyc / 2π

Peak Power: Ppk ≈ P / pk

43

Uncooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 20: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

1e- Synchrotron Spectrum

log

P

log

1/3 e-/ωcyc 1/2

pk pk

Total Power: P = σTcβ2e22UB

Peak Freq.: pk ≈ e2ωcyc / 2π

Peak Power: Ppk ≈ P / pk

Observer frame:

α e22

α e2

α

43

Uncooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 21: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Uncooled Multi-e- Spectrum

log

P

log

1/3

pk

exp

Material contains many electrons at different velocities (e) – true spectrum is a combination of individual spectra, according to electron energy distribution.

log

N

log e

-p

m

Electron distributionElectron spectrum

Uncooled Sychrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 22: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Uncooled Multi-e- Spectrum

Can just do a weighted sum (convolution) – but need to convert x-axis from e to pk.

log

N

log e

-p

m

Electron distribution

From before,

pk α e2

log

N

log pkm

e- distribution:

Nα e-p

Solve:

N = N

α e-p e

-1

α -(p+1)/2

dd

dd α e

-(p-1)/2

Sign error??

Uncooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 23: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Uncooled Multi-e- Spectrum

Electron distribution

log

N

log pkm

-(p-1)/2

log

P

log

1/3

pk

exp

Electron spectrum

Total Spectrum

Uncooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 24: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Uncooled Multi-e- Spectrum

log

N

log pkm

-(p-1)/2

log

P

log

1/3

pk

exp

log

P

1/3

Daniel Perley 19 September 2005GRB Afterglow Spectra

-(p-1)/2

m

Uncooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 25: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Uncooled Multi-e- Spectrum

Daniel Perley 19 September 2005GRB Afterglow Spectra

"Broken" Power law:

• Below m, emission dominated by low- e-

• Above m, emission from electrons with peak() = m

log

P

1/3 -(p-1)/2

m log pk

Uncooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 26: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Cooled Synchrotron Characteristic Cooling Time

Daniel Perley 19 September 2005GRB Afterglow Spectra

This analysis is too simplistic for GRBs.

Calculate characteristic cooling time:

log

P

1/3 -(p-1)/2

m

tcool = E / P = mec / σTcβ22UB

≈ 4 × 10-3 s ( )-2 -1

43

Bgauss

Potentially much shorter than time since GRB (shock passage)

log pk

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 27: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Cooled Synchrotron

Daniel Perley 19 September 2005GRB Afterglow Spectra

Cooling e- Spectrum

If an electron's energy changes significantly over the time since the energy injection, use an "averaged" spectrum for that electron.

e = Initial electron energy (at injection)

c ≡ Final electron energy (after cooling) ≈ Energy of the highest-e- that hasn't cooled

Determined by observational timescale: tobs = cmec / σTcβ2c

2UB

c =

43

6π mecσTB2tobs

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 28: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Cooled Synchrotron

Daniel Perley 19 September 2005GRB Afterglow Spectra

Cooling e- Spectrum

Electron radiates as it cools, with a simple synchrotron spectrum corresponding to the instantaneous energy i .

e = Initial electron energy

c ≡ Final electron energy

log

P

log

1/3

pk

exp

Instantaneous spectrum

i

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 29: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Cooling e- Spectrum

Peak power radiated at each i is the same:

log

P

log

1/3

pk(i)

exp

Instantaneous spectrum

e = Initial electron energy

c ≡ Final electron energy

i P(i) = const

log

P

ec

Electron evolution

log i

Cooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 30: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Cooling e- Spectrum

From before,

pk α e2

Power distribution:

P= const

Solve:

P = P

= -1

= -1/2

dd

dd α e

log

P

ec

Another convolution - need to transform e to pk.

log

P

c

Electron evolution

const

-1/2

e log i

Cooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 31: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Cooling e- Spectrum

log

P

ec

log

P

log

1/3

pk

exp

Instantaneous spectrum Electron evolution

-1/2

Cooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 32: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Cooling e- Spectrum

log

P

ec

log

P

log

1/3

pk

exp

Instantaneous spectrum Electron evolution

log

P

1/3 -1/2

Daniel Perley 19 September 2005GRB Afterglow Spectra

-1/2

Cooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 33: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Cooling e- Spectrum

Daniel Perley 19 September 2005GRB Afterglow Spectra

log

P

1/3-1/2

c e

Broken power law:

• > e : Exponential cut-off (model as no emission)

• c < < e : Instantaneous emission when electron passed through appropriate

• < c : Post-cooling emission

log

Cooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 34: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Cooling e- Spectrum

Daniel Perley 19 September 2005GRB Afterglow Spectra

log

P

1/3-1/2

m e

Higher initial energy simply extends the curve to higher frequencies.

log

Cooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 35: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Cooling Regimes

Two possibilities for multi-electron spectra:

log

N

log e

-p

m

log

N

log e

-p

m

c < m

c

c

c > m

ALL electrons will cool on given timescale :Fast cooling

SOME electrons will cool on given timescale :Slow cooling

Cooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 36: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Fast Cooling

log

N

log e

-p

m

c < m

c

ALL electrons will cool on given timescale :Fast cooling

Cooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 37: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Fast Cooling

log

N

log e

-(p-1)/2

mc

log

P

1/3-1/2

Cooled synchrotron spectrum Electron distribution

Sum for multi-e- using the new spectrum:

-p/2

c e

Fractionof N >

log

P

1/3 -1/2

log

Daniel Perley 19 September 2005GRB Afterglow Spectra

c m

-1/2

-(p-2)/2 ??

Cooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 38: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Fast Cooling

log

P

1/3 -1/2

c m

-p/2

Broken power law:

• > m : Emission from electrons with e > , during passage through appropriate

• c < < m : Emission from all electrons, during passage through appropriate

• < c : Emission from all electrons at all times

log

Cooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 39: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Slow Cooling

log

N

log e

-p

m c

c > m

SOME electrons will cool on given timescale :Slow cooling

Cooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 40: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Slow Cooling

Fast-cooling electrons have fast-cooling spectrum, but with effective m → c (no -1/2 segment)

log

N

log e

-p

m c

-p/2

1/3

c

log

P

log

Cooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 41: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Slow Cooling

Non-cooling electrons have an uncooled-population spectrum, but cut off at c.

log

N

log e

-p

m c1/3

-(p-1)/2

m c log

log

P

Cooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 42: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Slow Cooling

By their powers combined…

log

N

log e

-p

m c1/3

m c

-(p-1)/2

-p/2

1/3

1/3-(p-1)/2

-p/2 log

P

log

Cooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 43: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Slow Cooling

log

P

1/3 -(p-1)/2

m c

-p/2

Broken power law:

• > c : Emission from cooling electrons with e > during passage through appropriate

• m < < c : Emission from slow electrons with initial (constant) energy

• < m : Emission from slow electrons with min. m

log

Cooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 44: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Daniel Perley 19 September 2005GRB Afterglow Spectra

Cooling Comparison

log

P

1/3 -(p-1)/2

m c

-p/2

log

P

1/3 -1/2

c m

-p/2

Fast cooling

Slow cooling

log

log

Cooled Synchrotron

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 45: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Cooled Synchrotron

Daniel Perley 19 September 2005GRB Afterglow Spectra

Synchrotron Self-Absorption

Photon can be re-absorbed to excite an electron in a magnetic field (inverse of synchrotron emission.)

Synchrotron emission/absorption will be in equilibrium below a certain frequency a: below this point the shocked gas is optically thick and will radiate as a blackbody (P α 2)

1/3

log

P

log

2

a

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 46: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Synchrotron Summary

Daniel Perley 19 September 2005GRB Afterglow Spectra

Complete Comparison

log

P

1/3 -(p-1)/2

m c

-p/2

log

P

1/3 -1/2

c m

-p/2

Fast cooling

Slow cooling

2

2

log

log

a

a

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 47: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Observing

Daniel Perley 19 September 2005GRB Afterglow Spectra

Theory vs. Observations

GRB970508 – Galama et al. 1998 tburst = 12.1 days

-0.6

0.44>1.1

-1.12

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 48: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Subject

Daniel Perley 19 September 2005GRB Afterglow Spectra

Observable Parameters

An instantaneous spectrum gives several key pieces of information:

a

c

m

p Fpk

z

εe εB no

E'

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Page 49: GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day

Subject

Daniel Perley 19 September 2005GRB Afterglow Spectra

Intervening ISM Effects

Cosmological redshift will not affect power-law - all radiation scaled down by (1+z)

Will see deviation from power-law in some frequency ranges in some cases:

Galactic extinction (can be calculated/removed)

Host extinction (similar to Galactic, but at higher frequencies, and cannot be estimated independently of GRB)

Hydrogen absorption features (associated with high-z)

Background GRB Standard Model Relativistic Shock

Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy

Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e- Spectrum Multi-e- Spectrum

Cooled Synchrotron Cooling Time 1e- Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison

Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects