gravitational wave interferometry

62
23/05/06 VESF School 1 Gravitational Wave Interferometry Jean-Yves Vinet ARTEMIS Observatoire de la Côte d’Azur Nice (France)

Upload: eshe

Post on 11-Jan-2016

32 views

Category:

Documents


0 download

DESCRIPTION

Gravitational Wave Interferometry. Jean-Yves Vinet ARTEMIS Observatoire de la Côte d’Azur Nice (France). Summary. Shot noise limited Michelson Resonant cavities Recycling Optics in a perturbed space-time Thermal noise Sensitivity curve. 0.0 Introduction. Virgo principle - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Gravitational Wave Interferometry

23/05/06 VESF School 1

Gravitational Wave Interferometry

Jean-Yves VinetARTEMIS

Observatoire de la Côte d’AzurNice (France)

Page 2: Gravitational Wave Interferometry

23/05/06 VESF School 2

Summary

• Shot noise limited Michelson

• Resonant cavities

• Recycling

• Optics in a perturbed space-time

• Thermal noise

• Sensitivity curve

Page 3: Gravitational Wave Interferometry

23/05/06 VESF School 3

0.0 Introduction

Resonant cavity

splitter

photodetectorr

Laser recycler 3km

20W

1kW

20kWRecyclingcavity

Virgo principle(LIGO as well)

Page 4: Gravitational Wave Interferometry

23/05/06 VESF School 4

0.1 Introduction

R. Weiss Electromagnetically coupled broadband gravitational antenna.

Quar. Prog. Rep. in Electr., MIT (1972), 105, 54-76

R.L. Forward Wideband laser-interferometer gravitational-radiation experiment. Phys. Rev. D (1978) 17 (2) 379-390

J.-Y. Vinet et al. Optimization of long-baseline optical interferometers for gravitational-wave detection. Phys. Rev. D (1988) 38 (2) 433-447

B.J. Meers Recycling in a laser-interferometric gravitational-wave detector. Phys. Rev. D (1988) 38 (8) 2317-2326

The firstidea

The firstExperiment

theory

MIT

Hughes

Page 5: Gravitational Wave Interferometry

23/05/06 VESF School 5

1.1 Shot noise

Detection of a light flux (power P) by a photodetector

Integration time : t

Number of detected photons : .P t

nh

In fact, n is a random variable, of statistical moments

00[ ]

P tE n n

h

0[ ]V n n

The photon statistics is Poissonian

Page 6: Gravitational Wave Interferometry

23/05/06 VESF School 6

We can alternatively consider the power P(t) as a randomProcess,

of moments

0[ ]E P P2 2

0 0[ ] [ ]P t P hh h

V P V nt t h t

( )( )

n t hP t

t

t May be viewed as the inverse of the bandwidth of the photodetector

0[ ]V P P h

0P h Is the spectral density of power noise

1.2 Shot noise

Page 7: Gravitational Wave Interferometry

23/05/06 VESF School 7

1.3 Shot noise

In fact, the « one sided spectral density » is

0( ) 2PS f P h

(white noise)

The « root spectral density » is 1/ 2

0( ) 2PS f P h

P=20W, = 1.064 m

1/ 2 9 -1/2( ) 2.7 10 W.HzPS f

Page 8: Gravitational Wave Interferometry

23/05/06 VESF School 8

1.4 Michelson

Light source

Mirror 2

Mirror 1

Split

ter

photodetector

a

b

1r

2r

, s sr tA

B

Page 9: Gravitational Wave Interferometry

23/05/06 VESF School 9

1.5 Michelson

Amplitude reaching the photodetector:

2 21 2

ika ikbs sB Ar t re r e

Detected power:

2 2 2 21 2 1 22 cos 2 ( - )out in s sP P r t r r r r k a b

Assume 0 ( )a a x t with | ( ) |x t

Linearization in x

2 /k

( )x t

( )out DCP P P t

Page 10: Gravitational Wave Interferometry

23/05/06 VESF School 10

1.6 Michelson

2 21 2 1 2

1( 2 cos )

4DC inP P r r r r

1 2( ) sin ( )inP t r r P kx t

02 ( )k a b

: tuning of the output fringe.

0 : bright fringe : dark fringe

2 1

2 1

contrastbright

dark

P r r

P r r

Page 11: Gravitational Wave Interferometry

23/05/06 VESF School 11

1.7 Michelson

The signal must be larger than the shot noise fluctuations of of spectral density:

( )P t

DCP

2 21 2 1 2

1( ) ( 2 cos )

2DCP inS f P h r r r r

Spectral density of signal:2 2 2 2 2

1 2( ) sin ( ) ( )P in xS f r r P k S f Signal to noise ratio:

2 2 21 2( ) 2 ( ) ( )

DC

inPx

P

PSf r r F k S f

S h

2

2 21 2 1 2

sin( )

2 cosF

r r r r

Page 12: Gravitational Wave Interferometry

23/05/06 VESF School 12

1.8 Michelson1 1 2

1 2

min( , )cos

max( , )opt

r r

r r

( )F 21 21/ min( , )r r

Page 13: Gravitational Wave Interferometry

23/05/06 VESF School 13

1.9 Michelson

The interferometer must be tuned near a dark fringe.

The optimal SNR is now

2( ) 2 ( )inx

Pf k S f

h

The shot noise limited spectral sensitivity in x correspondsto SNR=1:

1/ 2 2( )

4xin

S fP

For 20W incoming light power and a Nd:YAG laser :1/ 2 17 -1/2( ) 1.2 10 m.HzxS f

Page 14: Gravitational Wave Interferometry

23/05/06 VESF School 14

1.10 Michelson

For detecting GW:

( ) ( )x t L h t (L : arm length, 3 km)

1/ 2 2( )

4hin

S fL P

1/ 2 21 -1/2( ) 3.8 10 HzhS f

Increase L ?Increase ? inP

Page 15: Gravitational Wave Interferometry

23/05/06 VESF School 15

2.1 Resonant cavities

Relative phase for reflection and transmission

1

RT

2 21R T p ,R T Z

A B

RA TB TA RB

2 2 2 2(1 )RA TB TA RB p A B

Arg( ) Arg( ) / 2R T

, , ,R ir T t r t

Page 16: Gravitational Wave Interferometry

23/05/06 VESF School 16

2.2 Resonant cavities

The Fabry-Perot interferometer

1 1 1, ,r t p 2 2,r pL

A

B

E1 1 2 exp(2 )E t A r r ikL E

2 /k

Intracavity amplitude: 21 2

1

1 ikLE A

r r e

Reflected amplitude: 21 1 2

ikLB ir A it r e E iFA

21 1 2

21 2

(1 )

1

ikL

ikL

r p r eF

r r e

resonances

Page 17: Gravitational Wave Interferometry

23/05/06 VESF School 17

2.3 Resonant cavities2

/E A

linewidth

FreeSpectralRange

= FSR/Full width at half maxFinesse :

1 2

1 21

r r

r r

F=

f

Page 18: Gravitational Wave Interferometry

23/05/06 VESF School 18

2.4 Resonant cavities

Assume 0

Free spectral range (FSR):2FSR

c

L

2FWHM

c

L

FLinewidth

with FSR 0 Being a resonance,

Reduced detuning / FWHMf

Total losses : 1 2p p p /p FCoupling coeff.

2

2

(2 )1

1 4F

f

1 12

Arg( ) tan tan 21

fF f

Page 19: Gravitational Wave Interferometry

23/05/06 VESF School 19

2.5 Resonant cavities

A

B

Fabry-Perot cavity

2/B A Arg( / )B A

f f

Page 20: Gravitational Wave Interferometry

23/05/06 VESF School 20

2.6 Resonant cavities

if 1 and 1f Arg( ) 4F f

0 02 2

FWHM

L Lf

c c

FSR

F FF

8Arg( )

dF

d L

F

Instead of 4 /d

d L

For a single round trip

2 /n F //Effective number of bounces

Page 21: Gravitational Wave Interferometry

23/05/06 VESF School 21

2.7 Resonant cavities

Gain factor at resonance for length

2L

50F=

100 kmeffectiveL

8d

d L

F

f

Arg( / )B A

effective actual(2 / )L F L

Page 22: Gravitational Wave Interferometry

23/05/06 VESF School 22

Perfectly symmetricalinterferometer

MicT

MicR b

( )(1 ) cos ( ) .ik a bMic sR i p e k a b F

F

F

,s s sr t psplitter

At the black fringe and cavity resonance:

2 2 2(1 ) (1 ) 1 2( )Mic s sR p p

3.1 Recycling

a

Page 23: Gravitational Wave Interferometry

23/05/06 VESF School 23

3.2 Recycling

Mic

, ,r r rr t p

Recycling mirror

2 2

2 2

1

1 (1 )1

r r rrec in

r sr Mic

t p rP P

r pr R

inP recP

Recycling cavity

Recycling cavityat resonance:

Optimal value of :rr 1rOPT r sr p p

Optimal power recycling gain: ,

1

2( )R OPTr s

gp p

Recycling gain Rg

Page 24: Gravitational Wave Interferometry

23/05/06 VESF School 24

3.3 Recycling

The cavity losses are likely much larger than other losses

22 ( )inputmirror endmirrorp p

F

Recycling gain limited by1

2Rg

New sensitivity to GW1/ 2 1/ 2

, ,

1 1h NEW h OLD

R

S Sn g

50501/ 2 23 -1/2( ) 10 HzhS f

Page 25: Gravitational Wave Interferometry

23/05/06 VESF School 25

3.4 Recycling

The spectral sensitivity is not flat (white). Efficiency is expectedto decrease when the GW frequency is larger than the cavitylinewidth.

Rough argument : for high GW frequencies, the round tripduration inside the cavity may become comparable to the GWperiod, so that internal compensation could occur.

Necessity of a thorough study of the coupling betweena GW and a light beam.

The heuristic (naive) preceding theory is not sufficient.

Page 26: Gravitational Wave Interferometry

23/05/06 VESF School 26

4.1 Optics in a perturbed Space Time

rt

t

2 /

2 1( )

2

t

r t L c

Lt t h u du

c

L

One Fourier component of frequency : / 2

2sinc / cos ( / )r

L hLt t L c t L c

c c

( ) cos( )h t h t

Page 27: Gravitational Wave Interferometry

23/05/06 VESF School 27

If the round trip is a light ray’s

4.2 Optics in a perturbed Space Time

t

rt( )A t

( )B t( ) ( )rB t A t

( ) i tA t Ae

( ) ( )0 1 2

1 1( )

2 2i t i t i tB t B e hB e hB e

if

then

Creation of 2 sidebands

Page 28: Gravitational Wave Interferometry

23/05/06 VESF School 28

4.3 Optics in a perturbed Space Time

20 0

2 ( ) (2 )1 1 0

2 ( ) (2 )1 2 0

sinc /

sinc /

ikL

i k K L i k K L

i k K L i k K L

B e A

LB e A i L c e A

cL

B e A i L c e Ac

Assume

0 1 2( , , )A A AA= 0 1 2( , , )B B BB

Round trip

GW

A B

Linear transformation

1

Page 29: Gravitational Wave Interferometry

23/05/06 VESF School 29

4.4 Optics in a perturbed Space Time

0 00 0

1 10 11 1

2 20 22 2

. .

.

.

B O A

B O O A

B O O A

Operator « round trip »

Any optical element can be given an associated operator ofthis type.

. .

. .

. .

r

r

r

M =Example: reflectance of a mirror

Page 30: Gravitational Wave Interferometry

23/05/06 VESF School 30

4.5 Optics in a perturbed Space Time

0 00 0

1 10 11 1

2 20 22 2

. .

.

.

B O A

B O O A

B O O A

Transmissionof already existingsidebands

New contributionto sidebands : GW!

Page 31: Gravitational Wave Interferometry

23/05/06 VESF School 31

4.6 Optics in a perturbed Space Time

Evaluation of the signal-to-noise ratio for any optical setupamounts to a linear algebra calculation leading to the overalloperator of the setup.

The set of all operators having the structure

00

10 11

20 22

O

O O

O O

form a non-commutative field (all properties of R except commutativity)

Page 32: Gravitational Wave Interferometry

23/05/06 VESF School 32

4.7 Optics in a perturbed Space Time

Example of a Fabry-Perot cavity

F

G F

G F

F=1 2 ( )

1 2 ( )g

g

i f fF

i f f

1 2

1 2

ifF

if

2 2

(1 2 ) 1 2 ( )g

LG i

if i f f

F

/ FWHMf : reduced frequency detuning (wrt resonance)

/g GW FWHMf : reduced gravitational frequency

Page 33: Gravitational Wave Interferometry

23/05/06 VESF School 33

4.8 Optics in a perturbed Space Time

In particular, at resonance

2

4 1| |

1 4 g

LG

f

F

Showing the decreasing efficiency at high frequency

Page 34: Gravitational Wave Interferometry

23/05/06 VESF School 34

4.9 Optics in a perturbed Space Time

Computing the SNRGW

carrier Carrier + 2 sidebandsS

Shot noise : proportional to

A B

B=SA00

10 11

20 22

S

S S

S S

S

00S

Signal : proportional to 00 0iS S (root spectral density)

Page 35: Gravitational Wave Interferometry

23/05/06 VESF School 35

4.10 Optics in a perturbed Space Time

Computing the SNR

10 00 20 00

00

( ) ( )2

inP S S S SSNR f h f

S

Shot noise limited spectral sensitivity:

00

10 00 20 00

2( )

in

Sh f

P S S S S

General recipe: compute 00 10,S S

Page 36: Gravitational Wave Interferometry

23/05/06 VESF School 36

4.11 Optics in a perturbed Space Time

SNR for a Michelson with 2 cavities:

2

8 1 / 2( ) (1 ) ( )

21 4( / )in

Mic s

FWHM

PLSNR f p h f

f

F

SNR for a recycled Michelson with 2 cavities

1 (1 ) 1r

Micr s

tSNR SNR

r p

Optimal recycling rate:

,OPT (1 )(1 )(1 ) 1 ( )r r s r sr p p p p

Page 37: Gravitational Wave Interferometry

23/05/06 VESF School 37

4.12 Optics in a perturbed Space Time

Spectral sensitivity : (SNR=1)

1/ 2 2 2( ) 1 (2 / )

8h FWHMin

S f fL P

F

Page 38: Gravitational Wave Interferometry

23/05/06 VESF School 38

1/ 2 ( )h gS

(Hz)g

4.13 Optics in a perturbed Space Time

Spectral sensitivity of a power recycled ITF

50F=

100F=

Page 39: Gravitational Wave Interferometry

23/05/06 VESF School 39

4.14 Optics in a perturbed Space Time

Increasing the finesse leads to

A gain in the factor 8 /L F

A narrowing of the linewidth of the cavitya lower cut-off

An increase of the cavity losses /p F /

There is an optimal value depending on the GW frequency

Optimizing the finesse

(0)2 2gFSR

g L

F

But increasing the finesse is not only an algebrical game!(Thermal lensing problems)

Page 40: Gravitational Wave Interferometry

23/05/06 VESF School 40

4.15 Optics in a perturbed Space Time1/ 2 ( )h gS

(Hz)g

50F=

150F=

With optimal recycling rate

Page 41: Gravitational Wave Interferometry

23/05/06 VESF School 41

Reasons for readingThe

VIRGO PHYSICS BOOK

(Downloadable from the VIRGO site)

Page 42: Gravitational Wave Interferometry

23/05/06 VESF School 42

4.15 Optics in a perturbed Space Time

Other types of recycling: signal recycling (Meers)

Powerrecycler

Signalrecycler

FP

FP

Signal extraction (Mizuno)

FP

FP

Ringcavity

SynchronousRecycling(Drever)

Narrowing the bandwidth

broadband Resonant (narrowband)

Page 43: Gravitational Wave Interferometry

23/05/06 VESF School 43

All these estimations of SNR were done in the « continuousdetection scheme » .

In practice, one uses a modulation-demodulation scheme

ITF

USO

modulator

sidebands

GW

detector

demodulator

Low pass filtersignal

« video »+« audio »sidebands

4.16 Optics in a perturbed Space Time

Page 44: Gravitational Wave Interferometry

23/05/06 VESF School 44

5.0 Thermal noise

Mirrors are hanging at the end of wires. The suspension systemIs a series of harmonic oscillators.

At room temperature, each degree of freedom is excited withEnergy (k : Boltzmann constant)1

2 kT

Pendulum motionViolin modesof wires

ElastodynamicModes of mirrors

Page 45: Gravitational Wave Interferometry

23/05/06 VESF School 45

5.1 Thermal noise

m

x(t)

20

( )kT

xm

A few 1510 m

Harmonic oscillator

Dissipation due to viscous damping:

2202

( ) /d x dx

x F t mdt dt

Damping factor Resonance freq. Langevin force

Page 46: Gravitational Wave Interferometry

23/05/06 VESF School 46

5.2 Thermal noise

Fourier transform:

2 20

1 ( )( )

Fx

m i

Spectral density:

22 2 2 20

1 1( ) ( )x FS f S f

m

( )FS f A constant (white noise) is determined by the condition

200

( )x

kTS f df

m

2 f

Page 47: Gravitational Wave Interferometry

23/05/06 VESF School 47

5.3 Thermal noise

0

2 222 2 0

0 2

4( )x

kTS f

mQQ

0 0 /Q

Quality factor

1/ : damping time

30

40 : ( )x

kTS f

mQ

0 30

4 : ( )x

kTQS f

m

04

4 : ( )x

kTS f

mQ

Spectral density concentrated on the resonance.Increase the Q!

Page 48: Gravitational Wave Interferometry

23/05/06 VESF School 48

5.4 Thermal noise

1/ 2 ( )xS f

(Hz)f

Q=10

Q=10000

Viscoelastic RSD of thermal noise

200

( )x

kTS f df

m

Const at low f

2f

Page 49: Gravitational Wave Interferometry

23/05/06 VESF School 49

5.5 Thermal noiseThermoelastic damping

1 2T T2T

By thermal conductanceHeat flux

M

TE oscillator

Gazspring

M

x

'x x

equibrium

Page 50: Gravitational Wave Interferometry

23/05/06 VESF School 50

Thermoelastic dampingIn suspension wires

1T2 1T T

Thermoelastic dampingIn mirrors

5.6 Thermal noise

Page 51: Gravitational Wave Interferometry

23/05/06 VESF School 51

5.7 Thermal noise

The Fluctuation-dissipation (Callen-Welton) theorem

Let Z be the mechanical impedance of a system described by the

degree of freedom x, i.e.

v /Z FWhere F is the driving force. Then

2

4( ) ( )x

kTS f e Z

In the viscous damping case, we had 2 20

/i mZ

i

Page 52: Gravitational Wave Interferometry

23/05/06 VESF School 52

5.8 Thermal noise

The FD theorem allows to treat the case of the thermo-elasticalDamping (the most likely).

In a not too low frequency domain we have:

2 20( ) (1 ) ( ) ( ) /x i x F m

: loss angle, analogous to 1/Q

We dont know much about ( )FS f

20

22 2 4 20 0

1( )e Z

m

But:

Page 53: Gravitational Wave Interferometry

23/05/06 VESF School 53

5.9 Thermal noise

Following the FD theorem:

20

22 2 4 20 0

4( )x

kTS f

m

20

40 : ( )x

kTS f

m

0 30

4: ( )x

kTS f

m

20

5

4: ( )x

kTS f

m

Page 54: Gravitational Wave Interferometry

23/05/06 VESF School 54

5.10 Thermal noise

1/ 2 ( )xS f

(Hz)f

thermoelastic RSD of thermal noise

1.2f

2.5f

Page 55: Gravitational Wave Interferometry

23/05/06 VESF School 55

5.11 Thermal noise

Main limitation to GW interferometers: Elastodynamic modesOf mirrors.

Coupling betweenSurface and light beam

Surface equation: ( , , )zz u t x y

Reflected beam:

A

2( , ) ( , )zikuB x y e A x y2, 1 2 ( , ) ( , , )ziku

zB A AAe ds ik I x y u t x y dx dy ( ) ( , ) ( , , )zz t I x y u t x y dx dyEquivalent displ:

Page 56: Gravitational Wave Interferometry

23/05/06 VESF School 56

5.12 Thermal noiseDirect approach:

Find the resonances of the solid by solving the elastodynamicalproblem. No exact solution.

Page 57: Gravitational Wave Interferometry

23/05/06 VESF School 57

5.13 Thermal noise

Interaction energy:( ) ( )F t z tE

or( , , ) ( ) ( , )zu t x y F t I x y dxdy E

( , , ) ( ) ( , )p t x y F t I x yIs analogous to a pressure of gaussian profile

2 2

22

2

2( , ) e

x y

wI x yw

For finding the mechanical impedance, we can regardzu As resulting from the pressure p

Heuristic point of view

Page 58: Gravitational Wave Interferometry

23/05/06 VESF School 58

5.14 Thermal noise

( ) ( , ) ( , , )zz t I x y u t x y dx dyAssume an oscillating force

-i t( ) eF t F If is much lower than the resonances of the solid, and if

( , )zu x y is the surface distortion caused by the pressure . ( , )F I x y

We have ( , , ) e ( , )i t iz zu t x y u x y

(One neglects the inertial forces). is the thermo elastical loss angle.

v( ) e ( , ) ( , )izi u x y I x y dxdy

2

( , ) ( , )e ( )

zu x y FI x y dxdyZ

F

Page 59: Gravitational Wave Interferometry

23/05/06 VESF School 59

5.15 Thermal noise

1( , ) ( , )

2 zu x y FI x y dxdy WW : elastical energy stored in the solid under pressure.

2/U W F : energy for a pressure normalized to 1 N

2

4 4( ) 2z

kT kTS f U U

f

The problem amounts to compute U

Result due to Levin

Page 60: Gravitational Wave Interferometry

23/05/06 VESF School 60

5.16 Thermal noise

For an infinite half space:

21

2U

Yw

Poisson ratio

Young modulus

Beam width

Fused silica: 10 -27.3 10 NmY 0.17

Input mirror: 0.02 mw1/ 2

1/ 2 18 -1/21 Hz( ) 10 m.HzzS f

f

BHV solution

Page 61: Gravitational Wave Interferometry

23/05/06 VESF School 61

The sensitivity curve (Virgo)

pendulum

Shot noise

mirrors

Page 62: Gravitational Wave Interferometry

23/05/06 VESF School 62