graphene fundamentals and emergent applications

7

Click here to load reader

Upload: ponczek

Post on 01-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Graphene Fundamentals and Emergent Applications

8/9/2019 Graphene Fundamentals and Emergent Applications

http://slidepdf.com/reader/full/graphene-fundamentals-and-emergent-applications 1/7

GrapheneFundamentals and Emergent Applications

Jamie H. Warner

Department of Materials

University of Oxford

Oxford, UK

Franziska Schaffel

Department of Materials

University of Oxford

Oxford, UK

Alicja BachmatiukIFW Dresden

Helmholtzstrafte 20

Dresden, Germany

Mark H. Rummeli

IFW Dresden

Helmholtzstrafte 20

Dresden, Germany

ELSEVIER

AMSTERDAM • WALTHAM • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGOSAN FRANCISCO • SYDNEY • TOKYO

Page 2: Graphene Fundamentals and Emergent Applications

8/9/2019 Graphene Fundamentals and Emergent Applications

http://slidepdf.com/reader/full/graphene-fundamentals-and-emergent-applications 2/7

Page 3: Graphene Fundamentals and Emergent Applications

8/9/2019 Graphene Fundamentals and Emergent Applications

http://slidepdf.com/reader/full/graphene-fundamentals-and-emergent-applications 3/7

C vi 3 Contents

3.1.3. Transport Experiments in Graphene 64

References 71

3.2. Chemical Properties of Graphene 733.2.1. Introduction 73

3.2.2. Covalent Functionalisation of Graphene 74

3.2.3. Noncovalent Functionalisation

of Graphene 80

3.2.4. Summary 83

References 84

3.3. Electron Spin Properties of Graphene 86

3.3.1. Introduction 86

3.3.2. Spin and Magnetism in Graphite 87

3.3.3. Magnetism and Spin in Graphene 88

3.3.4. Summary 95

References 97

3.4. The Mechanical Properties of Graphene 99

3.4.1. Elastic Properties and Intrinsic Strength 99

3.4.2. Adhesion, Tearing and Cracking of Graphene 102

3.4.3. The Role of Defects and Structural Modificationon the Mechanical Properties 103

3.4.4. Graphene Derivatives 104

3.4.5. Graphene-based Composites 110

References 1113.5. The Thermal Properties of Graphene 114

3.5.1. Thermal Conductivity 114

References 125

4. Methods for Obtaining Graphene 129

4.1. Mechanical

Exfoliation129

4.1.1. Introduction to Mechanical Exfoliation 129

4.1.2. Micromechanical Exfoliation 130

4.1.3. Mechanical Cleavage of Graphite 134

4.1.4. Mechanical Milling of Graphite 135

4.1.5. Summary 135References 136

4.2. Chemical Exfoliation 137

4.2.1. Introduction to Chemical Exfoliation 137

4.2.2. Review of Chemical Exfoliation 138

4.2.3. Different Types of Graphite 147

4.2.4. Different Types of Solvents 148

4.2.5. Different Types of Sonication 150

4.2.6. How to Characterise Chemically Exfoliated

Graphene 1514.2.7. Other 2D Crystals 1534.2.8. Summary 153References 154

Page 4: Graphene Fundamentals and Emergent Applications

8/9/2019 Graphene Fundamentals and Emergent Applications

http://slidepdf.com/reader/full/graphene-fundamentals-and-emergent-applications 4/7

Contents

4.3. Reduced Graphene Oxide

4.3.1. Graphene Oxide

4.3.2. Chemical Reduction of Graphene Oxide

4.3.3. Heat Treatment of Graphene Oxide

4.3.4. Electrochemical Reduction of Graphene Oxide

4.3.5. SummaryReferences

4.4. Bottom-up Synthesis of Graphene from MolecularPrecursors

4.4.1. Introduction

4.4.2. Solution-based approaches4.4.3. Sol utilisation Strategies4.4.4. Solvothermal Synthesis and sonication

4.4.5. Chemothermal-based Approaches4.4.6. Self-assembly of Graphene Oxide Nanosheets

References

4.5. Chemical Vapour Deposition Using Catalytic Metals

4.5.1. introduction

4.5.2. CVD Basics

4.5.3. Substrate Selection

4.5.4. Substrate Pretreatment

4.5.5. Graphene Over Ni and Cu

4.5.6. Early Growth

4.5.7. The Role of Hydrogen in The CVD Reaction

4.5.8. Graphene-other Metals and Alloys4.5.9. Segregation routes

References

4.6. CVD Synthesis of Graphene Over Nonmetals

4.6.1. Introduction

4.6.2. Aspects

to Consider with Nonmetal

Catalysts4.6.3. Non-metals as Catalysts for CVD-grownGraphene

4.6.4. Metal-assisted Routes

4.6.5. Non-metals as Catalysts for Carbon NanowallFabrication (vertical graphene)

4.6.6. The Basics of Plasma-Enhanced Chemical

Vapour Deposition4.6.7. Nanowall or Nanosheet Synthesis4.6.8. Substrate-free PECVD

Synthesis of

GrapheneSheets4.6.9. Graphene Formation from Solid-carbon Sources

on Surfaces

References

4.7. Epitaxial Growth of Graphene on SiC4.7.1. Introduction

4.7.2. Reaction Protocol

4.7.3. Nucleation and Growth

GD

155

155

156

159

159

160

162

163

163

163

164

166

167

170

171

173

173

173

174

175

176

177

183

184

186

187

189

189

190

191

195

195

196

197

198

198

201

204

204

205

206

Page 5: Graphene Fundamentals and Emergent Applications

8/9/2019 Graphene Fundamentals and Emergent Applications

http://slidepdf.com/reader/full/graphene-fundamentals-and-emergent-applications 5/7

Page 6: Graphene Fundamentals and Emergent Applications

8/9/2019 Graphene Fundamentals and Emergent Applications

http://slidepdf.com/reader/full/graphene-fundamentals-and-emergent-applications 6/7

Contents GD

5.5.3. Determining the Graphene Topography 284

5.5.4. Determination of Stacking Order and Identificationof Rotational Stacking Faults 287

5.5.5. Low-energy Electron Diffraction 292

References 294

5.6. Scanning Tunnelling Microscopy 296

5.6.1. Introduction to Scanning Tunnelling Microscopy 296

5.6.2. STM Studies of Graphite 298

5.6.3. STM of Graphene on Metals 299

5.6.4. STM of Graphene on Insulators 304

5.6.5. Summary 306

References 307

5.7. AFM as a Tool for Graphene 3095.7.1. Introduction 309

5.7.2. Graphene on Different Surfaces 310

5.7.3. AFM Studies on GO 313

5.7.4. AFM as a Tool to Investigate and Engineer Physical

Properties 313

References 319

5.8. Hall Mobility and Field-effect Mobility 3215.8.1. Introduction to the Hall Effect 321

5.8.2. Measurement of the Hall Mobility on GrapheneSamples 322

5.8.3. Measurement of the Field-effect Mobilityin Graphene 325

5.8.4. Maximising Mobility 326

5.8.5. Summary 331

References 331

6. Applications of Graphene 333

6.1. Electronic Devices 333

6.1.1. Introduction 333

6.1.2. Metal-Oxide-Semiconductor Field Effect Transistors

(MOSFETs) 333

6.1.3. The Graphene MOSFET 336

6.1.4. Opening a Band Gap 338

6.1.5. Strain Engineering a Band Gap 338

6.1.6. Field Induced Band

Gap in

Bilayer Graphene 338

6.1.7. Graphene Nanoribbons 339

6.1.8. Further Techniques 340

6.1.9. The Optimisation of Mobility 340

6.1.10. Deposition of a High-K Gate Dielectric and

Low-Resistance Metal Contacts 3416.1.11. The Viability of Graphene in CMOS 342

6.1.12. Radio-Frequency (RF) Electronics 343

6.1.13. Novel Field Effect Transistor Designs 344

Page 7: Graphene Fundamentals and Emergent Applications

8/9/2019 Graphene Fundamentals and Emergent Applications

http://slidepdf.com/reader/full/graphene-fundamentals-and-emergent-applications 7/7