gprsivar

44
General Packet Radio Serv ice (GPRS) Mobile Telematics 2004 Ivar Jørstad

Upload: mohabarca

Post on 07-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 1/44

General Packet Radio Service(GPRS)

Mobile Telematics 2004

Ivar Jørstad

Page 2: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 2/44

References

Ganz et. al. (Release 5)

3GPP TS 23.060 (Service Description,Stage 2, Release 6)

3GPP TS 43.051 (Radio Access Network,

Overall Description, Stage 2, Release 6)

GPRS Protocol Stack White Paper 

(Vocal Technologies Ltd. http://www.vocal.com)

Page 3: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 3/44

Introduction

Packet switched data on top of GSM network

Goals of GPRS: ± Efficient bandwidth usage for bursty data traffic

(e.g. Internet)

 ± Higher data rates

 ± New charging models Initially specified by ETSI

Specifications handed over to 3GPP

Page 4: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 4/44

Architecture Overview

 A lot of releases (R97, R98, R99, R4 etc.)

 A *lot* of specifications...

Considered in this overview:

 ± Release 5 (Ganz) / 6 (most recent TS at 3GPP)

Page 5: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 5/44

GPRS Release 5/6

Two modes determined by generation of 

core network: ± 2G core => A/Gb

 ± 3G core => Iu

Iu interface added in rel. 5 to align with

UMTS

Page 6: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 6/44

GERAN Reference Architecture

GSM/UMTSCore Network

GERAN

Gb

 A

Iu

MSUm

Iur-g

BSC

BTS

BTS

BSS

BSS

MS

Iur-g

UTRAN

RNC3GPP TS 43.051 (Release 6)

Page 7: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 7/44

A /Gb mode

Class A: MS can operate simultaneous

packet switched and circuit switched services Class B: MS can operate either one at one

time

 ± Most common for handsets today

Class C: MS can operate only packet

switched services

 ± E.g. expansion cards for laptops

Page 8: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 8/44

Iu mode

CS/PS mode: Same as Class A in A/Gb

mode PS mode: MS can only operate packet

switched services

CS mode: MS can only operate circuit

switched services

Page 9: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 9/44

User Plane Protocol Architecture

PHY

RLC

PDCP

LLC

SNDCP

PHY

RLC

PDCP

SNDCP

LLC

BSSGP

Netwo  

k

Se  

v¡ 

ce

Iu-ps

Gb

Um

MS

Relay

GERAN SGSN

/ Ack UnackRLC

MACMAC

/ Ack UnackRLC

Common protocols

Iu influenced protocols

Gb influenced protocols

FRIP

L2FR

BSSGP

Netwo¢   k

Se¢   v £  ce

IP

L2

L1L1L1

GTP-U

L2

UDP/IP

L1

GTP-U

L2

UDP/IP

As defined in

Iu Specs.

As defined in

Iu Specs.

Page 10: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 10/44

Control Plane Protocol Architecture

RR

PHY

RLC

LLC

GMM/SM

PHY

RLC

RRC

GMM/SM

LLC

BSSGP

Network

Service

Iu ¤  ps

Gb

Um

MS

Relay

GERAN SGSN

 Ack/UnackRLC

MACMAC

 Ack/UnackRLC

Common p¥   otocols

¦  u in§   luenced p ¥   otocols

Gbin §   luenced p ¥   otocols

FRIP

L2FR

BSSGP

Network

Service

IP

L2

L1L1

LAPDm LAPDm

RRRRC

RR

PHY

RLC

LLC

GMM/SM

PHY

RLC

RRC

GMM/SM

LLC

BSSGP

Network

Service

Iu  ̈ ps

Gb

Um

MS

Relay

GERAN SGSN

 Ack/UnackRLC

MACMAC

 Ack/UnackRLC

Common p©   otocols

  u in   luenced p ©   otocols

Gbin    luenced p ©   otocols

FRIP

L2FR

BSSGP

Network

Service

IP

L2

L1L1

LAPDm LAPDm

RRRRC

L2

L1

RANAP

SCCP

As Defined

in Iu Specs.

L3

L2

L1

RANAP

SCCP

As Definedin Iu Specs.

L3

Page 11: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 11/44

Service Types

Point-to-Point

 ± Internet access by user 

Point-to-Multipoint

 ± Delivery of information (e.g. news) to multiple

locations or interactive conference applications

Page 12: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 12/44

Internet (IP) Multimedia Subsystem

New in Release 5

Simultaneous access to multiple differenttypes of real-time and non-real-time traffic

IMS provides synchronization between such

components

Page 13: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 13/44

Radio Interface Protocols

User plane and Control Plane

Three layers ± Layer 1; Physical (PHY)

 ± Layer 2; Data Link, Media Access Control (MAC),

Radio Link Control (RLC) and Packet Data

Convergence Protocol (PDCP) ± Layer 3; Radio Resource Control (RRC) for Iu

mode and Radio Resource (RR) for A/Gb mode

Page 14: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 14/44

Physical Layer 

Combined Frequency Division Multiple Access

(FDMA) and Time Division Multiple Access (TDMA)(GSM)

Channel separation: 200 kHz

Power output control; find minimum acceptable level

Synchronization with base station Handover 

Quality monitoring

Page 15: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 15/44

Release 5 Protocol Arch.

Physical Channels

Logical, Control and Traffic Channels Media Access Control and Radio Link

Control

Radio Resource Control and Radio Resource

Page 16: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 16/44

Physical Channels

Defined by timeslot (0-7) and radio frequency

channel Shared Basic Physical Sub Channel

 ± Shared among several users (up to 8)

 ± Uplink Stage Flag (USF) controls multiple access

Dedicated Basic Physical Sub Channel

 ± One user 

Page 17: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 17/44

Physical Channels

Packet Data Channel (PDCH)

 ± Dedicated to packet data traffic from logicalchannels (next slide)

Control

User data

Page 18: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 18/44

Logical Channels

Page 19: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 19/44

Logical Channels

Mapped by the MAC to physical channels

Control channels for control, synchronizationand signaling

Common

Dedicated

Broadcast

Packet Traffic channels ± Encoded speech

 ± Encoded data

Page 20: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 20/44

Control Channels

Packet Common Control Channel (PCCCH)

 ± Paging (PPCH) ± Random Access (PRACH)

 ± Grant (P AGCH)

 ± Packet Notification (PNCH)

Page 21: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 21/44

Control Channels

Packet Dedicated Control Channel (PDCCH)

 ± Operations on DBPSCH Slow Associated Control Channel (SACCH)

 ± Radio measurements and data

 ± SMS transfer during calls

Fast Associated Control Channel (FACCH)

 ± For one Traffic Channel (TCH)

Stand-alone Dedicated Control Channel (SDCCH)

Page 22: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 22/44

Control Channels

Packet Broadcast Control Channel (PBCCH)

 ± Frequency correction channels ± Synchronization channel (MS freq. vs. BS)

 ± Broadcast control channel for general information

on the base station

 ± Packet broadcast channels Broadcast parameters that MS needs to access network

for packet transmission

Page 23: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 23/44

Packet Traffic Channels

Traffic Channels (TCH)

Encoding of speech or user data

Channels are either predetermined multiplexed or multiplexing determined by MAC

Full rate/half rate

On both SBPSCH and DBPSCH

Modulation techniques ± GMSK

 ± 8-PSK

Page 24: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 24/44

Media Access Control (MAC)

Connection oriented

Connections are called Temporary Block Flows(TBF)

 ± Logical unidirectional connection between two MAC entities

 ±  Allocated resources on PDCH(s)

 ± One PDCH can accomodate multiple TBFs

 ± Temporary Flow Identity (TFI) is unique among concurrentTBFs in the same direction

 ± Global_TFI to each station

Page 25: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 25/44

MAC: TBF Establishment

MS initiated

 ± OneP

hase Access, or  ± Two Phase Access

MS BSS MS BSS

P  ACKET CHANNEL REQUESTPRACH

P ACKET UPLINK ASSIGNMENT P AGCH

TBF Est. By MS: One Phase Access

P  ACKET CHANNEL REQUESTPRACH

P  ACKET RESOURCE REQUESTP ACCH

P ACKET UPLINK ASSIGNMENT P ACCH

TBF Est. By MS: Two Phase Access

P ACKET UPLINK ASSIGNMENT P AGCH

Page 26: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 26/44

MAC: TBF Establishment

Network initiated

MS BSS

P ACKET P AGING REQUEST PPCH

P  ACKET CHANNEL REQUESTPRACH

P ACKET P AGING RESPONSEP ACCH

P ACKET DOWNLINK ASSIGNMENT P ACCH or P AGCH

TBF Est. By Network

P  ACKET IMMEDIATE ASSIGNMENT P AGCH

Page 27: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 27/44

MAC: Channel Access & Resource

Allocation

Slotted Aloha

 ± Used inP

RACH MSs send packets in uplink direction at the beginning of 

a slot

Collision: Back off -> timer (arbitrary) -> re-transmit

Time Division Multiple Access (TDMA)

 ± Predefined slots allocated by BSS ± Contention-free channel access

 ±  All logical channels except PRACH

Page 28: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 28/44

MAC: Resource Allocation

Mechanisms

Uplink State Flag (USF, 3bits) associated with an assignedPDCH (USF on each downlink Radio Block)

USF_ GRANULARITY assigned during TBF est. Dynamic Allocation

1. MS finds it¶s USF in RLC/MAC PDU header. On the next uplinkblock:

2. If USF_ GRANULARITY=0, transmit one radio block

3. If USF_ GRANULARITY=1, transmit four cons. radio blocks

Extended Dynamic Allocation ± Same as Dynamic, except the four radio blocks are transmitted

on different PDCHs

Exclusive Allocation

Page 29: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 29/44

Radio Link Control

Can provide reliability for MAC transmissions

Transparent mode ± No functionality

 Acknowledged mode ± Selective Repeat ARQ

 ± Sender: Window

 ± Receiver: Uplink ACK/NACK or Downlink ACK/NACK

Unacknowledged mode ± Controlled by numbering within TBF

 ± No retransmissions

 ± Replaces missing packets with dummy information bits

Page 30: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 30/44

Radio Resource Control/Radio

Resource

Radio resource management

RRC in Iu mode ± Broadcasts system information

 ± Considers QoS requirements and ensures allocation of resources

RR in A/Gb mode ± Maintains at least one PDCH for user data and control

signaling

 Allocates new DBPSCHs

Intracell handover of DBPSCHs

Page 31: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 31/44

QoS Support

End-to-end QoS may be specified by Service Level Agreements

 Assumes that IP multimedia applications are able to ± Define their requirements

 ± Negotiate their capabilities

 ± Identify and select available media components

GPRS specifies signaling that enable support for 

various traffic streams ± Constant/variable bit rate

 ± Connection oriented/connection less

 ± Etc.

Page 32: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 32/44

QoS Profile for GPRS Bearers

Describes applications characteristics and QoSrequirements

4 parameters: ± Service precedence

3 classes

 ± Reliability parameter 

3 classes

 ± Delay parameters

4 classes

 ± Throughput parameter 

Maximum and mean bit rates

Page 33: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 33/44

QoS Profile for GPRS Bearers

QoS profile is included in Packet Data

Protocol (PDP) context Negotiation managed through PDP 

procedures (activation, modification and

deactivation)

Page 34: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 34/44

Packet Classification and Scheduling

TBF tagged with TFI

TFI different for each TBF Packet scheduling algorithms are not defined by the

standard; defined and implemented by GPRS

network designers and carriers

GPRS *can* enable per-flow quantitative QoS

services with proper packet classification and

scheduling algorithms...Hmmm.

Page 35: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 35/44

Mobility Management

Two procedures:

 ± GPRS Attach/Detach (towards SGSN/HLR) Makes MS available for SMS over GPRS

Paging via SGSN

Notification of incoming packet

 ± PDP Context Activation/Deactivation

 Associate with a GGSN

Obtain PDP address (e.g. IP)

Page 36: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 36/44

GPRS Mobile ³Station´ States

GPRS protocol stack (MS) can take on 3different states

 ± IDLE

 ± STANDBY

 ±  ACTIVE/READY

Data can only be transmitted in the ACTIVEstate

Page 37: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 37/44

Routing to MS

IDLE state

 ± No logicalP

DP

context activated ± No network address (IP) registered for the terminal

 ± No routing of external data possible

 ± Only multicast messages to all GPRS handsets

available

Page 38: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 38/44

Routing to MS

STANDBY state

 ± Only routing area is known RA is defined by operator => allows individual

optimizations

 ± When downlink data is available, packet paging

message is sent to routing area

 ± Upon reception, MS sends it's cell location to theSGSN and enters the ACTIVE state

Page 39: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 39/44

Routing to MS

 ACTIVE state

 ± SGSN knows the cell of the MS

 ± PDP contexts can be activated/deactivated

 ± Can remain in this state even if not data istransmitted (controlled by timer)

Page 40: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 40/44

PDP Contexts

Packet Data Protocol (PDP)

 ± Session

 ± Logical tunnel between MS and GGSN

 ±  Anchored GGSN for session

PDP activities

 ±  Activation

 ± Modification

 ± Deactivation

Page 41: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 41/44

PDP Context Procedures

MS initiated

MS BSS SGSN GGSN

 ActivatePDP Context Request

Create PDP ContextRequest

CreateP

DP

ContextResponse

 ActivatePDP Context Accept

Page 42: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 42/44

PDP Context Procedures

GGSN initiated

MS BSS SGSN GGSN

 ActivatePDP Context RequestCreate PDP ContextRequest

Create PDP Context

Response ActivatePDP Context Accept

Packets from ext. nw.

PDU notification req.

PDU notification resp.

Request PDP Context activation

Page 43: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 43/44

Secondary PDP Contexts

Used when the QoS requirements differ from

Primary PDP Context ± Same IP address

 ± Same APN

E.g., for IMS; signaling on primary PDP 

context and user data on secondary PDP context

Page 44: GPRSIVAR

8/6/2019 GPRSIVAR

http://slidepdf.com/reader/full/gprsivar 44/44

The end... (a bit sudden?)

Thanks for listening on our ?SBPSCH? ;)