gpcr_farmol_2012.ppt

46
G-protein linked receptors

Upload: abnerdnero

Post on 12-Nov-2014

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GPCR_farmol_2012.ppt

G-protein linked receptors

Page 2: GPCR_farmol_2012.ppt
Page 3: GPCR_farmol_2012.ppt
Page 4: GPCR_farmol_2012.ppt

Diversity of GPCRs

Page 5: GPCR_farmol_2012.ppt

IV G12 activates chloride channel G13 activates Na+/H+ exchanger pathways

activates small G protein Rho family, leading to actin cytoskeletal reorganization

Page 6: GPCR_farmol_2012.ppt

extra-cellular

G-protein-linked receptors; functionally diverse but sharea common structure

Ligand binding

Page 7: GPCR_farmol_2012.ppt

G-protein-linked receptors function through trimeric G-proteins

G-protein-linked receptors mediate their intracellular actionsthrough target ion channels or enzymes. pathway always involves activation of one or more guanine nucleotide-binding regulatory proteins (trimeric G proteins).

trimeric G proteins consist of three protein subunits; alpha, beta and gamma. The G alpha binds a guanyl nucleotide.Various types, each specific for a set of serpentine receptors and for a particular downstream target, but they all operate the same way.

Page 8: GPCR_farmol_2012.ppt
Page 9: GPCR_farmol_2012.ppt

Ligand binding (1)-conformational change in thereceptor -separates TMs.-separation of the TMs may open a crevice for binding to G.

Receptor binds to G protein (2)

Receptor, inactive G-proteins,and adenylyl cyclase are withinshouting distance in the cellmembrane.

Page 10: GPCR_farmol_2012.ppt

Receptor activation results in activation of adenylyl cyclase.-indirect-stimulates a trimeric G-protein-trimeric G-proteins dissasemblewhen activated.

Receptor binds to G-proteininduces conformational change (3)GDP is replaced by GTPG dissociates from G

G then binds to adenylyl cyclase (4),activating synthesisof cAMP

The binding site for adenylyl cyclase is unmasked.

A single hormone/receptor complexstimulates the productionof many molecules of Gs

Page 11: GPCR_farmol_2012.ppt

Binding of G toadenylyl cyclasecauses a conformationchange in G andGTP is hydrolyzed toGDP. This causesG to dissociate fromadenylyl cyclaseand re-bindG

The binding of the Gs

subunit to adenylyl cyclase

activates the enzyme to

produce many molecules of cAMP.

signal amplification

Page 12: GPCR_farmol_2012.ppt

Terminating the response

The hormone/receptor complex must be deactivated to return to

the unstimulated state.

-phosphorylation events on the carboxy terminal tail of the receptor

lead to the inactivation of the receptor.Hydrolysis of GTP leads to inactivation of the trimeric G-protein.

-enhanced by RGS proteins (regulator of G-protein signaling).

Page 13: GPCR_farmol_2012.ppt

Functionally couple the G-protein-linked receptors to their target enzymes or ion channels.

GTPases that function as molecular switches-flip between two states: active and inactive.-Inactive; trimer bound to GDP through G-Active; G bound to GTP

A G-protein which acts to stimulate a target enzyme is called a G stimulatory (Gs).

Gi is inhibitory.

The trimeric GTP-binding proteins act as molecularswitches

active

inactive

two conformation states

Page 14: GPCR_farmol_2012.ppt

Mammalian RGS proteins activate the GTPase activities of G-protein alpha subunits

RGS proteins are GAPs (GTPase activating proteins).-no effect on the time course of nucleotide binding-but they stimulate the rate of GTP hydrolysis.

MODEL: RGS proteins accelerate GTP hydrolysis by preferentially binding to and stabilizing G proteins in their transition state for the hydrolysis reaction.

GTP hydrolysis

RGS protein

GDP

GTP

/

Page 15: GPCR_farmol_2012.ppt

Inhibitory G proteins

While the beta-adrenergic

receptors are functionally

coupled to G-stimulatory

proteins, the alpha-2

adrenergic receptors are

coupled to inhibitory G

proteins.

Gi can contain the same beta/gamma subunits as Gs, but the alpha subunits are different.

Gi inhibits adenylyl cyclase in an indirect manner.

Page 16: GPCR_farmol_2012.ppt

Hormone-induced activation and inhibition of adenylyl cyclase is mediated by G-s and G-i

Page 17: GPCR_farmol_2012.ppt
Page 18: GPCR_farmol_2012.ppt
Page 19: GPCR_farmol_2012.ppt
Page 20: GPCR_farmol_2012.ppt
Page 21: GPCR_farmol_2012.ppt

PLC-

PIP2 DAG+IP3

Ras/Raf

MEK

MAPK

AC

ATP cAMP

PKC activation

[Ca+2]i

mobilizationproliferation

Rho

actin cytoskeletal rearrangement

cell cycle progression

AC

ATP cAMP

Gs

PI3K

AKT Rac

survival

out

in

GPCR-mediated Signaling Pathways

membrane

Page 22: GPCR_farmol_2012.ppt

GPCR Classes

Class A: Rhodopsin likeClass B: Secretin likeClass C: Metabotropic glutamate / pheromoneClass D: Fungal pheromoneClass E: cAMP receptors

Frizzled/Smoothened family

Putative families: * Ocular albinism proteins * Insect odorant receptors * Plant Mlo receptors * Nematode chemoreceptors * Vomeronasal receptors (V1R & V3R) * Taste receptors T2R

Orphans: * Putative / unclassified GPCRs

non-GPCR families: * Class Z: Archaeal/bacterial/fungal opsins

Page 23: GPCR_farmol_2012.ppt

GPCR Classes* Class A Rhodopsin like o Amine o Peptide o Hormone protein o (Rhod)opsin o Olfactory o Prostanoid o Nucleotide-like

o Cannabinoid o Platelet activating factor o Gonadotropin-releasing hormone o Thyrotropin-releasing hormone & Secretagogue o Melatonin o Viral o Lysosphingolipid & LPA (EDG) o Leukotriene B4 receptor o Class A Orphan/other

* Class B Secretin like o Calcitonin o Corticotropin releasing factor o Gastric inhibitory peptide o Glucagon o Growth hormone-releasing hormone o Parathyroid hormone o PACAP o Secretin o Vasoactive intestinal polypeptide o Diuretic hormone o EMR1 o Latrophilin o Brain-specific angiogenesis inhibitor (BAI) o Methuselah-like proteins (MTH) o Cadherin EGF LAG (CELSR) o Very large G-protein coupled receptor

* Class C Metabotropic glutamate / pheromone o Metabotropic glutamate o Calcium-sensing like o Putative pheromone receptors o GABA-B o Orphan GPRC5 o Orphan GPCR6 o Bride of sevenless proteins (BOSS) o Taste receptors (T1R)

* Class D Fungal pheromone o Fungal pheromone A-Factor like (STE2,STE3) o Fungal pheromone B like (BAR,BBR,RCB,PRA) o Fungal pheromone M- and P-Factor

* Class E cAMP receptors

* Frizzled/Smoothened family o frizzled o Smoothened

Putative families:

* Ocular albinism proteins * Insect odorant receptors * Plant Mlo receptors * Nematode chemoreceptors * Vomeronasal receptors (V1R & V3R) * Taste receptors T2R

Orphans:

* Putative / unclassified GPCRs

non-GPCR families:

* Class Z Archaeal/bacterial/fungal opsins

Page 24: GPCR_farmol_2012.ppt

GPCR Ligands Rhodopsin family: amine receptors Acetylcholine (muscarinic) Adrenaline Dopamine Histamine Serotonin Octopamine Trace amine

Rhodopsin family: peptide receptors Angiotensin Apelin Bombesin Bradykinin C5a anaphylatoxin CC Chemokine CXC Chemokine CX3C Chemokine C Chemokine Cholecystokinin Endothelin fMet-Leu-Phe Galanin Ghrelin KiSS1-derived peptide Melanocortin Motilin Neuromedin U Neuropeptide FF Neuropeptide S Neuropeptide Y Neuropeptide W / neuropeptide B Neurotensin Orexigenic neuropeptide QRFP Opioid Orexin Oxytocin Prokineticin Somatostatin Tachykinin Urotensin II Vasopressin Protease-activated (thrombin) Adrenomedullin (G10D) GPR37 / endothelin B like Chemokine receptor like Melanin-concentrating hormone Follicle stimulating hormone Lutropin-choriogonadotropic hormone Thyrotropin

Rhodopsin family: other receptors Rhodopsin Olfactory Prostaglandin Prostacyclin Thromboxane Adenosine Purine / pyrimidine Cannabinoid Platelet activating factor Gonadotropin-releasing hormone Thyrotropin-releasing hormone

Melatonin Lysosphingolipid and LPA (EDG) Leukotriene B4 receptor SREB Mas proto-oncogene & Mas-related (MRGs) RDC1 EBV-induced Relaxin LGR like Free fatty acid G protein-coupled bile acid Nicotinic acid GPR GPR45 like Cysteinyl leukotriene Putative / unclassified Class A GPCRs

Secretin family Calcitonin Corticotropin releasing factor Gastric inhibitory peptide Glucagon Growth hormone-releasing hormone Parathyroid hormone PACAP Secretin Vasoactive intestinal polypeptide EMR1 Latrophilin Brain-specific angiogenesis inhibitor (BAI) Methuselah-like proteins (MTH) Cadherin EGF LAG (CELSR) Putative / unclassified Class B GPCRs

Metabotropic glutamate family Glutamate (metabotropic) Extracellular calcium-sensing GABA-B Pheromone (V2R) Taste receptors (T1R) Orphan GPRC5 Orphan GPCR6 Bride of sevenless proteins (BOSS) Putative / unclassified Class C GPCRs

Other families Frizzled / Smoothened family Ocular albinism proteins Vomeronasal receptors (V1R) Taste receptors (T2R) Insect odorant receptors Nematode chemoreceptors Plant Mlo receptors Fungal pheromone cAMP (Dictyostelium) Bacterial rhodopsin

Page 25: GPCR_farmol_2012.ppt

G protein-based disease

pituitary tumor

GHRH--Growth-hormone-releasing hormone

GH--Growth-hormone

GHRHGHRH

Pituitary

GHRH Receptor

GsαGsα(+)

cAMPcAMP GH secretionGH secretion(-)

somatostatinsomatostatin

GiGi

Page 26: GPCR_farmol_2012.ppt

mechanism

Gs gene mutation

GTPase activity

Persistent activation of Gs

Persistent activation of AC

cAMP

Acromegaly or Gigantism

Pituitary proliferation and secretion

Page 27: GPCR_farmol_2012.ppt

Cholera Toxin

cholera toxin enzyme that catalyzes the transfer of ADP ribose from

intracellular NAD+ to alpha s. The ADP ribosylation alters the alpha s so that it can no

longer hydrolyze its bound GTP. Thus, alpha s continues to stimulate adenylyl cyclase to produce cAMP.

The prolonged production of cAMP in the intestinal epithelial cells causes a large efflux of Na+ and water into the gut, and is responsible for the severe diarrhea that is characteristic of cholera.

Page 28: GPCR_farmol_2012.ppt

Effect of choleratoxin

Persistent activation of adenylyl cyclase

Page 29: GPCR_farmol_2012.ppt

Reseptor Asetilkolin Muskarinik

Page 30: GPCR_farmol_2012.ppt
Page 31: GPCR_farmol_2012.ppt
Page 32: GPCR_farmol_2012.ppt
Page 33: GPCR_farmol_2012.ppt
Page 34: GPCR_farmol_2012.ppt

Nestler et al, 2001 Molecular Neuropharmaclogy

Page 35: GPCR_farmol_2012.ppt

Reseptor Asetilkolin Muskarinik

Page 36: GPCR_farmol_2012.ppt
Page 37: GPCR_farmol_2012.ppt

Reseptor Adrenergik

Page 38: GPCR_farmol_2012.ppt

Receptors and signal transduction in the ANS

Adrenergic Receptors

1A

1 2

1B 1D 2A 2B 2C 1 2 3

Page 39: GPCR_farmol_2012.ppt

Direct acting adrenergic receptor agonists: 1 receptors

• Phenylephrine (Neosynephrine)

• Methoxamine (Vasoxyl)

• Oxymetazoline (Visine)

Phenyleph r in e

HO

CH CH2 NH CH3

OH

NH 3

COOH

G q

Phospho -lipase C

(+)

PIP 2

IP 3 Diacylglycerol

Increase Ca 2+ Activate ProteinKinase C

Response

Page 40: GPCR_farmol_2012.ppt

Direct acting adrenergic receptor agonists: 2 receptors

• Clonidine (Catapres)• Methyldopa (Aldomet)• Guanabenz (Wytensin)• Guanfacine (Tenex)• Tizanidine (Zanaflex)

Clon id ine

NH 3

COOH

G I

(-)

ATP cAMP

Reduce cAMP -DependentProtein Kinase Activity

Response

X(+)K +

Adenylate Cyclase

N

NH

HN

Cl

Cl

Page 41: GPCR_farmol_2012.ppt

Reseptor Dopamin

Page 42: GPCR_farmol_2012.ppt

Nestler et al, 2001 Molecular Neuropharmaclogy,

Page 43: GPCR_farmol_2012.ppt
Page 44: GPCR_farmol_2012.ppt
Page 45: GPCR_farmol_2012.ppt

OBAT YANG BEKERJA PADA SISTEM DOPAMINERGIK

Page 46: GPCR_farmol_2012.ppt