good4send

Upload: pankaj-dayani

Post on 08-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 good4send

    1/10

    Video Segment

    Robotic Reconnaissance Team,University of Minnesota,ICRA 2000 video proceedings

    Dynamics

    Newton-Euler Formulation

    Articulated Multi-Body Dynamics

    Rigid Body Dynamics

    Explicit Form

    Recursive Algorithm

    Lagrange Formulation

    MA23

  • 8/7/2019 good4send

    2/10

    ( ) ( , ) ( )M q q V q q G q+ + =

    Joint Space Dynamics

    Centrifugal and Coriolis forces( , ) :V q q

    ( ) :G q Gravity forces

    : Generalized forces

    ( ) :M q Mass Matrix - Kinetic Energy Matrix

    :q Generalized Joint Coordinates

    Kinetic Energy:

    Potential Energy

    Kii

    Generalized Coordinates

    q VM G + + =

    FormulationsNewton-Euler Lagrange

    -ni+1

    -fi+1Link i-ni

    -fi

    Eliminate Internal Forces

    ii

    T

    i

    i

    T

    i

    n Zf Z

    = RST

    ..

    revoluteprismatic

    1

    2

    TK q qM=

    Newton:Euler:

    i ii C i i C iN I I = +

    Cm F=v

    Ni Fi

    -ni

    CiImi

    n f

    1

    2

    3

    n f

    -f-n

    link 3n3

    f3

    -n1

    -f1

    -f2

    -n2

    n1

    f1

    link 1

    -n3

    f2

    n2link 2

    -f3

    Link i

    Pi+1

    ni fi

    -fi+1-ni+1

    Ni Fi

    CiImi

    Recursive Equationsf F f

    n N n F f

    i i i

    i i i C i i ii

    = +

    = + + + +

    + + +

    1

    1 1 1p p

    ii i

    i i

    n Z

    f Z=

    RST

    .

    .

    revolute

    prismatic

    Newton-Euler Algorithm

    Velo

    cities

    , acce

    l

    and Inertialforces

    forces

    erations

  • 8/7/2019 good4send

    3/10

    Newtons Law

    F ma=

    Fm

    a

    a particle

    inertialFrame

    v

    d

    dtmv F( ) =

    Linear Momentum

    rate of change of thelinear momentum is equalto the applied force

    0

    mv=

    Angular Momentum

    m Fv =take the moment /0

    p v p = m F

    d

    dtm m m m( ) p v p v v v p v = + =

    N

    ( )d

    m Nd t

    =p v

    applied moment

    angular momentum

    =0

    Fm

    inertialFrame

    mv

    p

    0

    p mv=

    Rigid Body

    Rotational Motion

    Angular Momentum

    mi

    v pi i=

    = p vi i ii

    m

    = mi i ii

    p p( )

    m dvi

    ( : )density

    ip

    ( )V

    p p dv =

    = z[ ]pp dvV

    I=

    Inertia Tensor

    p p p p = ( ) ( )

    ( )V

    p p dv =

    I=

    Euler Equation

    = N

    I I N + =

    ( )

    d

    I Nd t =

    d

    dtmv F( ) =

    Newton Equation

    Angular MomentumLinear Momentum

    F=

    mv=

    ma F=

    Inertia Tensor

    I dvV

    = z pp ( ) ( ) = pp p p ppT TI3I I dvT T

    V

    = z[( ) ]p p pp3 p =

    L

    N

    MM

    M

    O

    Q

    PP

    P

    x

    y

    z

    ; p pT

    x y z= + +2 2 2

    ( ) ( )p p

    T

    I x y z32 2 2

    1 0 0

    0 1 00 0 1

    = + +

    F

    HGG

    I

    KJJ

    ppTx

    y

    z

    x y z

    x xy xz

    xy y yz

    xz yz z

    =

    L

    N

    MMM

    O

    Q

    PPP

    =

    L

    N

    MMM

    O

    Q

    PPP

    a f

    2

    2

    2

    y z xy xz

    xy z x yz

    xz yz x y

    2 2

    2 2

    2 2

    +

    +

    +

    L

    N

    MMM

    O

    Q

    PPP

    ( ) =pp

  • 8/7/2019 good4send

    4/10

    I

    I I I

    I I I

    I I I

    xx xy xz

    xy yy yz

    xz yz zz

    =

    L

    N

    MMM

    O

    Q

    PPP

    I y z dxdydz

    I z x dxdydz

    I x y dxdydz

    I xy dxdydz

    I xz dxdydz

    I yz dxdydz

    xx

    yy

    zz

    xy

    xz

    yz

    = +

    = +

    = +

    =

    =

    =

    zzzzzzzzzzzzzzzzzz

    ( )

    ( )

    ( )

    2 2

    2 2

    2 2

    Moments ofInertia

    Products ofInertia

    Inertia Tensor Parallel Axis theorem

    p

    pc

    {A}

    x

    y

    z

    c

    c

    c

    RS|

    T|

    UV|

    W|

    3[( ) ]T T

    A C C C C C I I m I = + p p p p2 2( )A zz C zz C C

    A xy C xy C C

    I I m x y

    I I m x y

    = + +

    = +

    mI dv

    V

    = z pp( ) ( ) = pp p p pp

    T TI3

    Example 22 2

    2

    ( )

    a

    zzC

    a

    I x y dxdydz

    = +

    5;

    1

    6Cz zI a=

    2

    6Cxx Cyy Czz

    maI I I= = =

    A

    c

    A

    c

    A

    cx y za

    = = =2

    m a= 3

    222

    2 3Axx Ayy Azz Czz

    maI I I I ma= = = + =

    2

    4A x y A x z A y z m aI I I= = =

    {A}

    a

    {C}

    Newton-Euler Algorithm

    Veloc

    ities,

    accel

    and Inertialforces

    forces

    erations

    Newton-Euler Equations

    Translational Motion

    Cm F=v

    Rotational Motion

    C CI I N + =

    m FC. v =m

    CI

    Angular Acceleration

    {i}

    +1

    i i i+ += +1 1

    i i iZ+ + +=1 1 1

    i i i i i i iZ Z+ + + + += + +1 1 1 1 1b g

  • 8/7/2019 good4send

    5/10

    Linear Acceleration

    ZZ+1

    x+1

    x

    p+1a

    1 1 1i i i i iv v p V + + += + +V d Z

    i i i+ + +=1 1 1

    P a x d Z i i i i i+ + += +1 1 1

    ( )i i i i i i i+ + += + + 1 1 1 v v p p

    + ++ + + +2 1 1 1 1 d Z d Z i i i i i

    v v p pi i i i i i iV+ + + += + + +1 1 1 1

    Velocity and Accelerationat center of mass

    +1 vCi+1Ci+1

    pCi+1

    vi+

    1{i+1}

    v v pC i i C i i+ += + + +1 11 1

    ( )v v p pC i i C i i C i i i+ + += + + + + + +1 1 11 1 1 1

    Dynamic forces on Link i

    nifi

    +fi 1 +ni 1

    m vi Ci

    Ci i i Ci iI I +

    Link i

    m forcesi Civ =

    /i i i i i iC CI I moments c + = Inertial forces/moments

    F mi i Ci

    = v

    i i i i i iC CN I I = +

    ni

    fi

    +fi 1 +ni 1

    pi+1

    pCi

    Fi

    Ni

    F f f

    N n n f f

    i i i

    i i i C i i C ii i

    =

    = + + +

    + + +

    1

    1 1 1( ) ( ) ( )p p p

    Newton-Euler Algorithm

    Velo

    cities

    , acce

    l

    and Inertialforces

    forces

    erations

    Recursive Equations

    i i i+ += +1 1 = + + + i i iZ

    1 1

    ( )

    ( )

    i i i i i i i

    i i i i i i i i i i i i

    C i i C i i C

    Z Z

    d Z d Z

    i i i

    + + + + +

    + + + + + + +

    + + + +

    = + +

    = + + + +

    = + + + + +

    1 1 1 1 1

    1 1 1 1 1 1 1

    1 1 1 1

    2

    1 1 1

    v p p

    v p p

    where

    f F f

    n N n F f

    i i i

    i i i C i i ii

    = +

    = + + +

    +

    + + +

    1

    1 1 1p p

    i

    i i

    i i

    n Z

    f Z=

    RST

    .

    .

    revolute

    prismatic

    F mi i Ci= vwithi i i i i iC CN I I = +

  • 8/7/2019 good4send

    6/10

    i

    i i

    i i

    i i

    i

    i

    i

    i i

    i i

    i i

    i i

    i

    i

    i i i

    i

    i

    i

    i i

    i i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    C

    i

    i

    i

    C

    i

    i

    i

    i

    i

    C

    R Z

    R R Z Z

    R

    i i i

    ++

    ++

    ++

    ++

    + + ++ + +

    ++

    ++

    ++ +

    + ++

    + ++

    ++

    +

    = +

    = + +

    = + +

    = + + +

    1

    1

    1

    1

    1

    1

    1

    1

    1 1 1

    1 1 1

    1

    1

    1

    1

    1

    1 1

    1 1

    1

    1 1

    1

    1

    1

    1

    1 1

    ( ( ) )

    (

    v p p v

    v p p+

    +

    + +

    +

    =

    = +

    ++

    ++ +

    +

    ++ +

    ++

    ++ +

    ++

    1

    1

    1 1

    1

    1

    1

    1 1

    1

    1

    1 1

    1

    1

    1

    1 1

    1

    1

    )

    i

    i

    i

    i i

    i

    C

    i

    i

    C

    i

    i

    i

    i

    i

    C

    i

    i

    i

    F m

    N I I

    i

    i i

    v

    v

    Outward iterations: i : 0 5

    Inward iterations: i : 6 1i

    i i

    i i

    i

    i

    i

    i

    i

    i

    i i

    i i

    i

    i

    C

    i

    i

    i

    i i

    i i

    i

    i

    i

    i

    T i

    i

    f R f F

    n N R n F R f

    n Z

    i

    = +

    = + + +

    =

    ++

    +

    ++

    + + ++

    +

    1

    1

    1

    1

    1

    1 1 1

    1

    1p p

    0

    0 1v = GGravity: set

    Video Segment

    Space Rover, EPFL, Switzerland,ICRA 2000 video proceedings

    Lagrange Equations

    ( )d L L

    dt q q

    =

    L UK=

    ( )U

    q

    d K K

    dt q q

    + =

    Inertial forces Gravity vector

    ( )U U q=

    Kinetic Energy

    Potential Energy

    Lgrangian

    Since

    Lagrange Equations

    ( ) ;d K K

    dt q

    UG G

    qq

    = =

    Inertial forces

    ( ) ( , ) ( )M q q V q q G q+ =

    Inertial forces1

    ( )2

    TK q M q q=

    ( ) ( )d K d

    M q M q M qdt q dt

    = = +

    1[ ( ) ]2

    TKq M q q

    q q

    =

    ( )d K K

    dt q qG

    =

    11

    2

    T

    T

    n

    Mq q

    q

    Mq

    Mq q

    q

    M q

    =

    +

    ( )M q q=

    ( , )M q V q q+ ( )d K K

    dt q q

    =

  • 8/7/2019 good4send

    7/10

    KM q

    q

    =

    K MT=

    1

    2

    ( q q)q

    K K v

    q v q

    =

    1/ 2M v Mq= =

    M KT= =

    1

    2

    1 2 /v q v v

    vv v v( )

    1

    2

    T = M1 2/

    2 21 1; ( )

    2 2K mx mx mx

    x

    = =

    Equations of Motion

    11

    2

    T

    T

    n

    Mq q

    q

    Mq

    Mq q

    q

    M q

    =

    +

    ( , )M q V q q+ ( )d K K

    dt q q

    =

    ( ) ( , ) ( )M q q V q q G q + =+

    (( )) ,M V q qq 1

    2( ):

    TM q qMqK=

    Equations of Motionvc

    ii

    Pci

    Link i

    KTotal Kinetic Energy:

    1

    2Lin iT

    kMqK K q=

    Kinetic Energy

    Work done by external forces tobring the system from rest to itscurrent state.

    21

    2K mv=

    CI

    1

    2

    T

    CK I =

    Fvm

    Equations of Motion

    1 ( )2 i i

    T T

    i i C C i C i iK m v v I = +

    1

    n

    i

    i

    K K=

    =

    vci

    i

    Pci

    Link i

    Explicit Form

    Total Kinetic Energy

    Equations of Motion

    Generalized Coordinatesq

    Kinetic EnergyQuadratic Form ofGeneralized Velocities

    1

    1(

    1

    2)

    2 i i

    nT T

    i C C i C i i

    T

    i

    m v vq M q I =

    +

    q

    1

    2

    Tq qK M=

    vci

    i

    Pci

    Link i

    Explicit Form

    Generalized Velocities

  • 8/7/2019 good4send

    8/10

    Equations of Motion

    i ivCJv q=

    1

    1( )

    2 i i i iT T

    v v

    nT T

    i C i

    i

    m q q qJ J J J I q =

    = +

    Explicit Formvc

    ii

    Pci

    Link i

    iiCJq

    =

    1

    1(

    1

    2)

    2 i i i

    nT T

    i C C i C i

    T

    i

    m v vq M q I =

    = +

    Equations of Motionvc

    ii

    Pci

    Link i

    Explicit Form

    1

    2

    Tq qM

    1

    ( )1

    2 i i i i

    nT T

    i v

    i

    T

    v C imq J J J J qI =

    =

    +

    1

    ( )i i i i

    nT T

    i v v C i

    i

    M m J J J I J =

    +=

    Equations of Motion

    1 2

    [ 0 0 0]ii

    i iCC C

    i

    v

    p p

    qJ

    q

    p

    q

    =

    vci

    i

    Pci

    Link i

    Explicit Form

    i ivCJv q=

    iiCJq

    =

    [ ]1 1 2 2 0 0 0i i iz zJ z

    =

    ( )

    11 12 1

    21 22 2

    1 2

    ( )n n

    n

    n

    n n nn

    m m m

    m m mM q

    m m m

    =

    VectorV( , )q q Centrifugal & Coriolis Forces

    1 1 1 111 12

    12 22 2 2 2 2

    q v gm m

    m m q v g

    + + =

    VectorV( , )q q

    V MM

    M

    m m

    m m

    m m

    m m

    m m

    m m

    T

    q

    T

    q

    T

    T

    = L

    NM

    O

    QP =

    FHG

    IKJ

    FHG

    IKJ

    FHG

    IKJ

    L

    N

    MMMM

    O

    Q

    PPPP

    qq q

    q qq

    q q

    q q

    1

    2

    1

    2

    1

    2

    11 12

    12 22

    111 121

    121 221

    112 122

    122 222

    11 111 1 112 2m m q m q= +

    M

    q1

    11

    1

    m

    q

    22

    2

    m

    q

    2111 111 111 122 122 2211

    2

    2211 211 112 222 222 222

    1 1( ) ( )

    2 2( , )

    1 1( ) ( )

    2 2

    m m m m m mq

    Vq

    m m m m m m

    + +

    = + +

    q q

    ++

    +

    LNM

    OQP

    m m m

    m m mq q

    112 121 121

    212 221 122

    1 2

  • 8/7/2019 good4send

    9/10

    Christoffel Symbolsb m m mijk ijk ikj jki= +

    1

    2( )

    m

    q

    ij

    k

    Vb b

    b b

    q

    q

    b

    bq q=

    L

    N

    MO

    Q

    PL

    N

    MO

    Q

    P +L

    N

    MO

    Q

    P111 122

    211 222

    1

    2

    2

    2

    112

    212

    1 2

    2

    2

    C( )q B ( )q

    B

    b b b

    b b b

    b b b

    q q

    q q

    q qn

    n n n n

    n n

    n n

    n n n n n n n

    ( ) [ ]

    (

    ( )) (

    ( ))

    , , ,(

    , , ,(

    , , ,( (

    q qq

    =

    L

    N

    MMMM

    O

    Q

    PPPP

    L

    N

    MMMM

    O

    Q

    PPPP

    1

    2

    1

    21

    2 2 2

    2 2 2

    2 2 2

    1 12 1 13 1 1)

    2 12 2 13 2 1)

    12 13 1)

    1 2

    1 3

    1)

    C

    b b b

    b b b

    b b b

    q

    q

    q

    n n n

    nn

    nn

    n n n nn n

    ( )[ ]

    ( ) ( )

    , , ,

    , , ,

    , , ,

    q q

    =

    L

    N

    MMMM

    O

    Q

    PPPP

    L

    N

    MMMM

    O

    Q

    PPPP

    2

    1 11 1 22 1

    2 11 2 22 2

    11 22

    1

    2

    2

    2

    2

    1

    Potential Energy

    hip

    Ci

    Link iCi

    mi

    g

    U m g h U i i i= +0 0

    U m gi iT

    Ci= ( );p U Ui

    i

    = G

    U

    qm g

    qj

    j

    i

    T C

    ji

    n

    i= = =

    ( )

    p

    1

    Gravity Vector

    G J J J

    m g

    m g

    m g

    v

    T

    v

    T

    v

    T

    n

    n=

    F

    H

    GGGG

    I

    K

    JJJJ

    1 2

    1

    2

    d i

    Gravity Vector

    G J m g J m g J m gvT

    v

    T

    v

    T

    nn= + + +( ( ) ( ) ( ))

    1 21 2

    m2g

    c2

    m1g

    c1mng

    cnm3g

    c3g

    1

    l1y0

    1CI

    2CI

    m1

    m2

    d2

    x0

    1 1 1 1 1 2 2 2 2 21 2

    T T T T

    v v C v v C M m J J J I J m J J J I J = + + +

    Matrix M

    Jv1 Jv2and : direct differentiation of the vectors:

    0

    1 1

    1 1

    0

    2 1

    2 11 2

    0 0

    p pC C

    l c

    l s

    d c

    d s=

    L

    N

    MMM

    O

    Q

    PPP

    =

    L

    N

    MMM

    O

    Q

    PPP

    ; and

    In frame {0}, these matrices are:

    1 2

    1 1 2 1 1

    0 0

    1 1 2 1 1

    0

    0 ; and

    0 0 0 0

    v v

    l s d s c

    J l c J d c s

    = =

    This yields

    m J Jm l

    m J Jm d

    mv

    T

    v v

    T

    v1

    0 0 1 1

    2

    2

    0 0 2 2

    2

    21 1 2 2

    0

    0 0

    0

    0( ) ( )=

    LNM

    OQP =

    LNM

    OQP; and

    g

    1

    l1

    y01C

    I

    2CI

    m1

    m2

    d2

    x0

    The matrices and are given byJ1 J2J J

    1 21 1 1 1 2 20= = = z z zand

    Joint 1 is revolute and joint 2 is prismatic:

    1 2

    1 1

    0 0

    0 01 0

    J J

    = = And

    1 1 1 2 2 2

    1 21 1 1 1 1 10 0

    ( ) ; and ( )0 0 0 0

    zz zzT T

    C C

    I IJ I J J I J

    = =

    Finally,

    Mm l I m d I

    m

    zz zz=+ + +L

    NM

    OQP

    1 1

    2

    1 2 2

    2

    2

    2

    0

    0

    g

    1

    l1

    y0 1CI

    2CI

    m1

    m2

    d2

    x0

  • 8/7/2019 good4send

    10/10

    Centrifugal and Coriolis Vector V

    b m m mi jk ijk ikj jki, = + 1

    2c h

    where mm

    qijk

    ij

    k

    =

    ; withb b i jiii iji= = >0 0and for

    For this manipulator, only m11is configuration dependent- function of d2. This implies that only m112is non-zero,

    m m d112 2 22= .

    Matrix B

    Matrix C

    Matrix V

    Bb m d

    =LNM

    OQP

    =LNM

    OQP

    2

    0

    2

    0

    112 2 2.

    Cb

    b m d=

    LNM

    OQP

    =

    LNM

    OQP

    0

    0

    0 0

    0

    122

    211 2 2

    .

    Vm d

    dm d d

    =LNM

    OQP

    +

    LNM

    OQPL

    NM

    O

    QP

    2

    0

    0 0

    0

    2 2

    1 2

    2 2

    1

    2

    2

    2

    .

    g

    1

    l1

    y01C

    I

    2CI

    m1

    m2

    d2

    x0

    Vector V

    Vm d

    dm d d

    =LNM

    OQP

    +

    LNM

    OQPL

    NM

    O

    QP

    2

    0

    0 0

    0

    2 2

    1 2

    2 2

    1

    2

    2

    2

    .

    The Gravity Vector G

    G g g= +J m J mvT

    v

    T

    1 21 2 .

    In frame {0}, and the gravity vector is0 0 0g = g

    Ta f

    0 1 1 1 1

    1

    2 1 2 1

    1 1

    2

    0

    0 0 0

    0

    0

    0

    0

    0

    0

    G = L

    NMOQP

    L

    N

    MMM

    O

    Q

    PPP

    L

    NMOQP

    L

    N

    MMM

    O

    Q

    PPP

    l s l cm g

    d s d c

    c sm g

    0 1 1 2 2 1

    2 1

    G =+L

    NM

    OQP

    m l m d gc

    m gs

    b gand

    Equations of Motion

    m dd

    m d d

    2 2

    1 2

    2 2

    1

    2

    2

    2

    2

    0

    0 0

    0+

    LNM

    OQP

    +

    LNM

    OQPL

    NM

    O

    QP

    ++L

    NM

    OQP =

    LNM

    OQP

    m l m d gc

    m gs

    1 1 2 2 1

    2 1

    1

    2

    b g

    .

    m l I m d I

    m d

    zz zz1 1

    2

    1 2 2

    2

    2

    2

    1

    2

    0

    0

    + + +LNM

    OQPL

    NM

    O

    QP

    g

    1

    l1

    y01C

    I

    2CI

    m1

    m2

    d2

    x0