gonzalo a. palma · gonzalo a. palma first step: the background features of heavy physics in the...

38
PASCOS 2011 - Cambridge Gonzalo A. Palma DFI - U. de Chile Subodh Patil (LPTEN & CPTH) WITH Ana Achucarro (Leiden) Jinn-Ouk Gong (Leiden & CERN) Sjoerd Hardeman (Leiden) Based on: 1005.3848 & 1010.3693 Features of heavy physics in the CMB power spectrum

Upload: others

Post on 23-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

PASCOS 2011 - Cambridge

Gonzalo A. PalmaDFI - U. de Chile

Subodh Patil (LPTEN & CPTH)

WITH

Ana Achucarro (Leiden)Jinn-Ouk Gong (Leiden & CERN)

Sjoerd Hardeman (Leiden)

Based on: 1005.3848 & 1010.3693

Features of heavy physics in the CMB power spectrum

Page 2: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

In this talkFeatures of heavy physics in the CMB power spectrum

PASCOS 2011

What are their effects on the power spectrum and bispectrum?

The status of heavy physics during inflation

The role of heavy physics during inflation

Under which circumstance may we ignore heavy degrees of freedom during inflation?

01

Page 3: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

The status of heavy physicsFeatures of heavy physics in the CMB power spectrum

Common lore: If heavy degrees of freedom are sufficiently massive, then we can ignore them...

How massive? M H

They become quickly suppressed on super horizon scales

1 2 3 4 5

60

40

20

20

40

60

1 2 3 4 5

60

40

20

20

40

60

02

M2 = 5H

2M2 = 0

PASCOS 2011

Ignored = Truncated

Page 4: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. PalmaFeatures of heavy physics in the CMB power spectrum

In inflation the v.e.v.’s of massive fields vary as the inflaton evolves!

03PASCOS 2011

The status of heavy physics

Instead of truncating them, we should integrate them out

But:

Difficult (if not impossible) to obtain vacuum expectation values of massive fields independent of the inflaton

Example: SUGRA

ΦM = Φ0(φ)

Page 5: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Multi-field inflationFeatures of heavy physics in the CMB power spectrum

S = √

−g d4x

M2

Pl

2R− 1

2γabg

µν∂µφa∂νφb − V (φ)

04

I will not focus on any specific model

PASCOS 2011

Instead, I will ask myself what happens to adiabatic modes under general “turns” of the inflationary trajectory

V (φ1,φ2)

φ1

φ2

Page 6: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

First step: The backgroundFeatures of heavy physics in the CMB power spectrum

D

dtφ

a0 + 3Hφ

a0 + V

a = 0 DXa = dXa + ΓabcX

bdφc

φ1

φ2

Flat valley

05PASCOS 2011

Page 7: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

First step: The backgroundFeatures of heavy physics in the CMB power spectrum

D

dtφ

a0 + 3Hφ

a0 + V

a = 0 DXa = dXa + ΓabcX

bdφc

φ1

φ2

Flat valley

Real trayectory

PASCOS 2011 05

Page 8: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

First step: The backgroundFeatures of heavy physics in the CMB power spectrum

D

dtφ

a0 + 3Hφ

a0 + V

a = 0 DXa = dXa + ΓabcX

bdφc

φ1

φ2 Na

T a

Flat valley

Real trayectory

PASCOS 2011 05

Page 9: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

First step: The backgroundFeatures of heavy physics in the CMB power spectrum

D

dtφ

a0 + 3Hφ

a0 + V

a = 0 DXa = dXa + ΓabcX

bdφc

Tangent and normal vectors

T a ≡ φa0

φ0Na ≡ −

γbc

DT b

dt

DT c

dt

−1/2DT a

dt

φ1

φ2

Flat valley

Real trayectoryNa

T a

PASCOS 2011 05

Page 10: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

First step: The backgroundFeatures of heavy physics in the CMB power spectrum

D

dtφ

a0 + 3Hφ

a0 + V

a = 0 DXa = dXa + ΓabcX

bdφc

Tangent and normal vectors

T a ≡ φa0

φ0Na ≡ −

γbc

DT b

dt

DT c

dt

−1/2DT a

dt

φ1

φ2 Na

T aNa

T a

Flat valley

Real trayectory

PASCOS 2011 05

Page 11: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

First step: The backgroundFeatures of heavy physics in the CMB power spectrum

D

dtφ

a0 + 3Hφ

a0 + V

a = 0 DXa = dXa + ΓabcX

bdφc

Tangent and normal vectors

T a ≡ φa0

φ0Na ≡ −

γbc

DT b

dt

DT c

dt

−1/2DT a

dt

φ1

φ2

T aNaNa

T aNa

T a

Flat valley

Real trayectory

PASCOS 2011 05

Page 12: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

First step: The backgroundFeatures of heavy physics in the CMB power spectrum

ηa ≡ − 1

Hφ0

Dφa0

dt

Slow roll parameters:

ηa = η||Ta + η⊥Na

η|| = − φ0

Hφ0

η⊥ =√

2MPl

κV

φ1

φ2

06PASCOS 2011

≡ − H

H2

Coupling condition

Effects of size ∼ 4η2⊥H

2

M2

See our paper: Achucarro, et. al. (2010)

(Recall talk by Liam McAllister)Groot Nibbelink & van Tent (2000)

Page 13: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

First step: The backgroundFeatures of heavy physics in the CMB power spectrum

ηa ≡ − 1

Hφ0

Dφa0

dt

Slow roll parameters:

ηa = η||Ta + η⊥Na

η|| = − φ0

Hφ0

η⊥ =√

2MPl

κ

06PASCOS 2011

≡ − H

H2

Coupling condition

Effects of size ∼ 4η2⊥H

2

M2

1

See our paper: Achucarro, et. al. (2010)

(Recall talk by Liam McAllister)Groot Nibbelink & van Tent (2000)

V

φ1

φ2

Page 14: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Second step: PerturbationsFeatures of heavy physics in the CMB power spectrum

To make this discussion simple, I consider just two fields:

δφa → (T, N)

07PASCOS 2011

d2T

dτ2+

η⊥τ

dN

dτ+

k2 − 2

τ2+

δ

τ2

T + 2

η⊥τ2

N = 0

d2N

dτ2− η⊥

τ

dT

dτ+

k2 − 2

τ2+

M2

H2τ2

N +

η⊥τ2

T = 0

Page 15: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Second step: PerturbationsFeatures of heavy physics in the CMB power spectrum

To make this discussion simple, I consider just two fields:

δφa → (T, N)

07PASCOS 2011

d2T

dτ2+

η⊥τ

dN

dτ+

k2 − 2

τ2+

δ

τ2

T + 2

η⊥τ2

N = 0

d2N

dτ2− η⊥

τ

dT

dτ+

k2 − 2

τ2+

M2

H2τ2

N +

η⊥τ2

T = 0

Tolley & Wayman (2010)Chen & Wang (2010)Cremonini, Lalak & Turzynski (2011)Baumann & Green (2011)

Page 16: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Second step: PerturbationsFeatures of heavy physics in the CMB power spectrum

To make this discussion simple, I consider just two fields:

δφa → (T, N)

07PASCOS 2011

d2T

dτ2+

η⊥τ

dN

dτ+

k2 − 2

τ2+

δ

τ2

T + 2

η⊥τ2

N = 0

d2N

dτ2− η⊥

τ

dT

dτ+

k2 − 2

τ2+

M2

H2τ2

N +

η⊥τ2

T = 0

Flat direction (adiabatic mode)

Page 17: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Second step: PerturbationsFeatures of heavy physics in the CMB power spectrum

To make this discussion simple, I consider just two fields:

δφa → (T, N)

07PASCOS 2011

d2T

dτ2+

η⊥τ

dN

dτ+

k2 − 2

τ2+

δ

τ2

T + 2

η⊥τ2

N = 0

d2N

dτ2− η⊥

τ

dT

dτ+

k2 − 2

τ2+

M2

H2τ2

N +

η⊥τ2

T = 0

Flat direction (adiabatic mode)

Perpendicula direction(massive mode)

Page 18: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Second step: PerturbationsFeatures of heavy physics in the CMB power spectrum

To make this discussion simple, I consider just two fields:

δφa → (T, N)

07PASCOS 2011

d2T

dτ2+

η⊥τ

dN

dτ+

k2 − 2

τ2+

δ

τ2

T + 2

η⊥τ2

N = 0

d2N

dτ2− η⊥

τ

dT

dτ+

k2 − 2

τ2+

M2

H2τ2

N +

η⊥τ2

T = 0

Flat direction (adiabatic mode)

Perpendicula direction(massive mode)

Page 19: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Second step: PerturbationsFeatures of heavy physics in the CMB power spectrum

To make this discussion simple, I consider just two fields:

δφa → (T, N)

07PASCOS 2011

d2T

dτ2+

η⊥τ

dN

dτ+

k2 − 2

τ2+

δ

τ2

T + 2

η⊥τ2

N = 0

d2N

dτ2− η⊥

τ

dT

dτ+

k2 − 2

τ2+

M2

H2τ2

N +

η⊥τ2

T = 0

Flat direction (adiabatic mode)

Perpendicula direction(massive mode)

Page 20: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Second step: PerturbationsFeatures of heavy physics in the CMB power spectrum

To make this discussion simple, I consider just two fields:

δφa → (T, N)

07PASCOS 2011

d2T

dτ2+

η⊥τ

dN

dτ+

k2 − 2

τ2+

δ

τ2

T + 2

η⊥τ2

N = 0

d2N

dτ2− η⊥

τ

dT

dτ+

k2 − 2

τ2+

M2

H2τ2

N +

η⊥τ2

T = 0

Flat direction (adiabatic mode)

Perpendicula direction(massive mode)

Not possible to truncate N = 0

Page 21: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Artificial exampleFeatures of heavy physics in the CMB power spectrum

To make this discussion simple, I consider just two fields:

08

η⊥(N) =η⊥max

cosh2 [2(N −N0)/∆N ]

PASCOS 2011

η⊥

N

∆N

Page 22: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Features in the primordial spectrumFeatures of heavy physics in the CMB power spectrum

PR(k)

kMpc−1

09

0.002 0.005 0.010 0.020 0.050 0.100

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M2/H

2 = 300 ∆N = 1/4 ηmax = 5

η⊥(N) =η⊥max

cosh2 [2(N −N0)/∆N ]

PASCOS 2011

Page 23: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. PalmaFeatures of heavy physics in the CMB power spectrum

PR(k)

kMpc−1

0.002 0.005 0.010 0.020 0.050 0.100

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M2/H

2 = 300 ∆N = 1/4

η⊥(N) =η⊥max

cosh2 [2(N −N0)/∆N ]

ηmax = 5

∼ 4η2maxH

2

M2

09PASCOS 2011

Features in the primordial spectrum

Page 24: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. PalmaFeatures of heavy physics in the CMB power spectrum

PR(k)

kMpc−1

0.002 0.005 0.010 0.020 0.050 0.100

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M2/H

2 = 300 ∆N = 1/4 ηmax = 5

η⊥(N) =η⊥max

cosh2 [2(N −N0)/∆N ]

∼ 4η2maxH

2

M2

09PASCOS 2011

Features in the primordial spectrum

∼ H∆N

Page 25: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. PalmaFeatures of heavy physics in the CMB power spectrum

PR(k)

kMpc−1

0.002 0.005 0.010 0.020 0.050 0.100

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M2/H

2 = 300 ∆N = 1/4 ηmax = 5

η⊥(N) =η⊥max

cosh2 [2(N −N0)/∆N ]

∼ 4η2maxH

2

M2

09PASCOS 2011

Features in the primordial spectrum

∼ H∆N

More realistic situations:Atal, Céspedes, Palma (2011)

Page 26: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Features in the power spectrum?Features of heavy physics in the CMB power spectrum

Tocchini-Valentini, Douspis & Silk (2004)

0.01 0.015 0.02 0.03 0.05 0.07k !Mpc!1"

0

0.5

1

1.5

P0#k$

10PASCOS 2011

For more recent discussions see: Hlozek et. al. (2011)Aich et. al. (2011)

Page 27: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Effective theoryFeatures of heavy physics in the CMB power spectrum

If the heavy field is very massive we can deduce a single field effective theory encapsulating the effects coming from turns

11

S =12

dτd3x

2

−∇ϕ e−β(τ,−∇2)∇ϕ− ϕ Ω(τ,−∇2)ϕ

Ω(τ, k2) = Ω0(τ)− β

2−

β

2

2

− aHβ(1 + − η||)

Ω0(τ) = −a2H

2(2 + 2− 3η|| − 4η|| − ξ||η|| − 22)

eβ(τ,k2) = 1 +

4η2⊥

M2/H2 − 2 + − η2⊥ + k2/(aH)2

PASCOS 2011

Page 28: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Effective theoryFeatures of heavy physics in the CMB power spectrum

If the heavy field is very massive we can deduce a single field effective theory encapsulating the effects coming from turns

11

S =12

dτd3x

2

−∇ϕ e−β(τ,−∇2)∇ϕ− ϕ Ω(τ,−∇2)ϕ

Ω(τ, k2) = Ω0(τ)− β

2−

β

2

2

− aHβ(1 + − η||)

Ω0(τ) = −a2H

2(2 + 2− 3η|| − 4η|| − ξ||η|| − 22)

eβ(τ,k2) = 1 +

4η2⊥

M2/H2 − 2 + − η2⊥ + k2/(aH)2

PASCOS 2011

Page 29: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Effective theoryFeatures of heavy physics in the CMB power spectrum

If the heavy field is very massive we can deduce a single field effective theory encapsulating the effects coming from turns

11

S =12

dτd3x

2

−∇ϕ e−β(τ,−∇2)∇ϕ− ϕ Ω(τ,−∇2)ϕ

Ω(τ, k2) = Ω0(τ)− β

2−

β

2

2

− aHβ(1 + − η||)

Ω0(τ) = −a2H

2(2 + 2− 3η|| − 4η|| − ξ||η|| − 22)

eβ(τ,k2) = 1 +

4η2⊥

M2/H2 − 2 + − η2⊥ + k2/(aH)2

PASCOS 2011

Page 30: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Effective theoryFeatures of heavy physics in the CMB power spectrum

PR(k)

kMpc−1

12

0.002 0.005 0.010 0.020 0.050 0.100

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Effective theory v/s full theory

PASCOS 2011

If the heavy field is very massive we can deduce a single field effective theory encapsulating the effects coming from turns

Page 31: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Non-GaussianitiesFeatures of heavy physics in the CMB power spectrum

If the heavy field is very massive we can deduce a single field effective theory encapsulating the effects coming from turns

S =12

dτd3x

2

−∇ϕ e−β(τ,−∇2)∇ϕ− ϕ Ω(τ,−∇2)ϕ

eβ(τ,k2) = 1 +

4η2⊥

M2/H2 − 2 + − η2⊥ + k2/(aH)2

13

c2s

1 +

4η2⊥

M2/H2

−1

Generalisation of Tolley & Wyman (2010)

PASCOS 2011

See also: Cremonini, Lalak, Turzynski (2010)

Page 32: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Non-GaussianitiesFeatures of heavy physics in the CMB power spectrum

If the heavy field is very massive we can deduce a single field effective theory encapsulating the effects coming from turns

S =12

dτd3x

2

−∇ϕ e−β(τ,−∇2)∇ϕ− ϕ Ω(τ,−∇2)ϕ

eβ(τ,k2) = 1 +

4η2⊥

M2/H2 − 2 + − η2⊥ + k2/(aH)2

Non Gaussianities?

13

c2s

1 +

4η2⊥

M2/H2

−1

Generalisation of Tolley & Wyman (2010)

PASCOS 2011

See also: Cremonini, Lalak, Turzynski (2010)

Page 33: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Non-GaussianitiesFeatures of heavy physics in the CMB power spectrum

14PASCOS 2011

L ⊃√2

H2

4MPl(3+ 2η2⊥)T

3

Achúcarro et. al. (2011)

We find that the most relevant interaction term is of the form

k2/k1

k3/k1

fNL =15

c3s η2⊥

(Preliminary!)

Squeezed shape for non-Gaussianities

See also: Chen & Wang (2010); Baumann & Green (2011)

0.0

0.5

1.0

0.6

0.8

1.0

0

10

20

Page 34: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Non-GaussianitiesFeatures of heavy physics in the CMB power spectrum

14PASCOS 2011

L ⊃√2

H2

4MPl(3+ 2η2⊥)T

3

Achúcarro et. al. (2011)

We find that the most relevant interaction term is of the form

k2/k1

k3/k1

Squeezed shape for non-Gaussianities

fNL =15

c3s η2⊥

(Preliminary!)

See also: Chen & Wang (2010); Baumann & Green (2011)

0.0

0.5

1.0

0.6

0.8

1.0

0

10

20

Page 35: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Concluding remarksFeatures of heavy physics in the CMB power spectrum

Features might offer a direct insight on heavy physics

Fast turns produce features in the primordial spectrum

These features come together with particular non-Gaussian signatures

15PASCOS 2011

Heavy fields allow fast turns to happen under control

Page 36: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Concluding remarksFeatures of heavy physics in the CMB power spectrum

Features might offer a direct insight on heavy physics

Fast turns produce features in the primordial spectrum

These features come together with particular non-Gaussian signatures

15PASCOS 2011

Heavy fields allow fast turns to happen under controlWhy?

Page 37: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Concluding remarksFeatures of heavy physics in the CMB power spectrum

Features might offer a direct insight on heavy physics

Fast turns produce features in the primordial spectrum

These features come together with particular non-Gaussian signatures

15PASCOS 2011

Heavy fields allow fast turns to happen under controlWhy?

And

Page 38: Gonzalo A. Palma · Gonzalo A. Palma First step: The background Features of heavy physics in the CMB power spectrum ηa ≡− 1 H φ˙ 0 Dφ˙ a 0 dt Slow roll parameters: ηa =

Gonzalo A. Palma

Concluding remarksFeatures of heavy physics in the CMB power spectrum

Features might offer a direct insight on heavy physics

Fast turns produce features in the primordial spectrum

These features come together with particular non-Gaussian signatures

15PASCOS 2011

Heavy fields allow fast turns to happen under controlWhy?

And

Additionally