gms equations from irreversible thermodynamics

20
GMS Equations From Irreversible Thermodynamics ChEn 6603 References E. N. Lightfoot, Transport Phenomena and Living Systems, McGraw-Hill, New York 1978. R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena 2 nd ed., Chapter 24 McGraw-Hill, New York 2007. D. Jou, J. Casas-Vazquez, Extended Irreversible Thermodynamics, Springer-Verlag, Berlin 1996. R. Taylor, R. Krishna Multicomponent Mass Transfer, John Wiley & Sons, 1993. R. Haase, Thermodynamics of Irreversible Processes, Addison-Wesley, London, 1969. 1 Saturday, March 26, 2011

Upload: others

Post on 05-Apr-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GMS Equations From Irreversible Thermodynamics

GMS Equations From Irreversible

ThermodynamicsChEn 6603

References• E. N. Lightfoot, Transport Phenomena and Living Systems, McGraw-Hill, New York 1978.

• R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena 2nd ed., Chapter 24 McGraw-Hill, New York 2007.

• D. Jou, J. Casas-Vazquez, Extended Irreversible Thermodynamics, Springer-Verlag, Berlin 1996.

• R. Taylor, R. Krishna Multicomponent Mass Transfer, John Wiley & Sons, 1993.

• R. Haase, Thermodynamics of Irreversible Processes, Addison-Wesley, London, 1969.

1Saturday, March 26, 2011

Page 2: GMS Equations From Irreversible Thermodynamics

Outline

Entropy, Entropy transportEntropy production: “forces” & “fluxes”• Species diffusive fluxes & the Generalized Maxwell-Stefan Equations

• Heat flux

• Thermodynamic nonidealities & the “Thermodynamic Factor”

Example: the ultracentrifugeFick’s law (the full version)Review

2Saturday, March 26, 2011

Page 3: GMS Equations From Irreversible Thermodynamics

A PerspectiveReference velocities• Allows us to separate a species

flux into convective and diffusive components.

Governing equations• Describe conservation of mass,

momentum, energy at the continuum scale.

GMS equations• Provide a general relationship

between species diffusion fluxes and diffusion driving force(s).

• So far, we’ve assumed:‣ Ideal mixtures (inelastic collisions)

‣ “small” pressure gradients

Goal: obtain a more general form of the GMS equations that represents more physics• Body forces acting differently

on different species (e.g. electromagnetic fields)

• Nonideal mixtures

• Large pressure gradients (centrifugal separations)

3Saturday, March 26, 2011

Page 4: GMS Equations From Irreversible Thermodynamics

EntropyEntropy differential:

Total (substantial/material) derivative:Specific volumev

ρ = 1/v

Dt= −ρ∇ · v ρ

Dωi

Dt= −∇ · ji + σi

DDt≡ ∂

∂t+ v ·∇

Chemical potentialper unit massµi = µi/MiTds = de + pdv −

n

i=1

µidωi

Internal energye

TρDs

Dt= ρ

De

Dt+ pρ

Dv

Dt−

n

i=1

µiρDωi

Dt

TρDs

Dt= ρ

De

Dt− p

ρ

Dt−

n

i=1

µiρDωi

Dt

ρDe

Dt= −∇ · q− τ : ∇v − p∇ · v +

n

i=1

fi · ji

4Saturday, March 26, 2011

Page 5: GMS Equations From Irreversible Thermodynamics

Entropy Transport

chain rule...

∇(αβ) = α∇β + β∇α

TρDs

Dt= −∇ · q− τ : ∇v − p∇ · v +

n

i=1

fi · ji +p

ρρ∇ · v −

n

i=1

µi (−∇ · ji + σi) ,

= −∇ · q− τ : ∇v +n

i=1

fi · ji +n

i=1

µi∇ · ji −n

i=1

µiσi,

ρDs

Dt= −∇ ·

1T

q−

n

i=1

µiji

Transport of s

+q ·∇

1T

n

i=1

ji ·∇

µi

T

− 1

Tτ : ∇v +

1T

n

i=1

fi · ji −1T

n

i=1

µiσi

Production of s

5Saturday, March 26, 2011

Page 6: GMS Equations From Irreversible Thermodynamics

ρDs

Dt= −∇ · js + σsNow let’s write this in the form:

Look at this term(entropy production due to species diffusion)

ρDs

Dt= −∇ ·

1T

q−

n

i=1

µiji

Transport of s

+q ·∇

1T

n

i=1

ji ·∇

µi

T

− 1

Tτ : ∇v +

1T

n

i=1

fi · ji −1T

n

i=1

µiσi

Production of s

js =1T

q−

n

i=1

µiji

σs = q ·∇

1T

n

i=1

ji ·∇

µi

T

− 1

Tτ : ∇v +

1T

n

i=1

fi · ji −1T

n

i=1

µiσi,

= −qT

·∇ lnT −n

i=1

ji ·∇

µi

T

− 1

Tfi

− 1

Tτ : ∇v − 1

T

n

i=1

µiσi

Tσs = −q ·∇ lnT −n

i=1

ji ·∇T,pµi +

Vi

Mi∇p− fi

Λi

−τ : ∇v −n

i=1

µiσi

diffusive transport of entropy

production of entropy

µi

T

=

∂µi

∂T∇

T

T

+

1T

∂µi

∂p∇p +

1T∇T,pµi,

=1T

1

Mi

∂µi

∂p∇p +∇T,pµi

,

=1T

Vi

Mi∇p +∇T,pµi

6Saturday, March 26, 2011

Page 7: GMS Equations From Irreversible Thermodynamics

Part of the Entropy Source Term…Why can we add this “arbitrary” term?What does this term represent?

From physical reasoning (recall di represents force per unit volume driving diffusion) or the Gibbs-Duhem equation,

n

i=1

di = 0

ωi

Mi=

xi

M

φi = ciVi

µi =µi

Mi

ji = ρωi (ui − v)

Vi Partial molar volume.

cRTdi = ci∇T,pµi + (φi − ωi)∇p− ωiρ

fi −

n

k=1

ωkfk

n

i=1

ji ·∇T,pµi +

Vi

Mi∇p− fi

Λi

=n

i=1

ji ·

Λi −1ρ∇p +

n

k=1

ωkfk

n

i=1

ji · Λi =n

i=1

ρωi(ui − v) ·

∇T,pµi +

Vi

Mi− 1

ρ

∇p− fi +

n

k=1

ωkfk

,

=n

i=1

(ui − v) ·

ci∇T,pµi + (φi − ωi)∇p− ρωi

fi −

n

k=1

ωkfk

cRTdi

,

= cRTn

i=1

di · (ui − v),

= cRTn

i=1

1ρωi

di · ji

7Saturday, March 26, 2011

Page 8: GMS Equations From Irreversible Thermodynamics

The Entropy Source Term - Summary

Interpretation of each term???

ρDs

Dt= −∇ · js + σs

From the previous slide:n

i=1

ji · Λi = cRTn

i=1

di · jiρi

js =1T

q−

n

i=1

µiji

cRTdi = ci∇T,pµi + (φi − ωi)∇p− ωiρ

fi −

n

k=1

ωkfk

Tσs = −q ·∇ lnT −n

i=1

ji ·∇T,pµi +

Vi

Mi∇p− fi

Λi

−τ : ∇v −n

i=1

µiσi

= −q ·∇ lnT 1

−n

i=1

cRT

ρidi · ji

2

− τ : ∇v 3

−n

i=1

µiσi

4

8Saturday, March 26, 2011

Page 9: GMS Equations From Irreversible Thermodynamics

σs ∼ Forces ⋅ Fluxes

Fundamental principle of irreversible

thermodynamics:

σs =

α

JαFα

Tσs = −q ·∇ lnT −n

i=1

cRT

ρidi · ji − τ : ∇v −

n

i=1

µiσi

Flux, Jα Force, Fα

q −∇ lnTji − cRT

ρidi

τ −∇v

Lαβ - Onsager (phenomenological) coefficients

Jα = Jα(F1, F2, . . . , Fβ ; T, p, ωi)

Lαβ ≡∂Jα

∂Fβ

Jα =

β

∂Jα

∂Fβ

Fβ +O (FβFγ)

β

LαβFβ

Fluxes are functions of:• Thermodynamic state variables:

T, p, ωi.

• Forces of same tensorial order (Curie’s postulate)‣What does this mean?

‣More soon…

Lαβ = Lβα

9Saturday, March 26, 2011

Page 10: GMS Equations From Irreversible Thermodynamics

Species Diffusive FluxesTensorial order of “1” ⇒ any vector force may contribute.

From irreversible thermo:

Fick’s Law:

Generalized Maxwell-Stefan Equations:

Index form: n-1 dimensional matrix form

DTi - Thermal Diffusivity

Flux: Jα q ji τForce: Fα −∇ lnT − cRT

ρidi −∇v

ρ(d) = −[Bon](j)−∇ lnT [Υ](DT )di = −n

j =i

xixj

ρÐij

jiωi− jj

ωj

−∇ lnT

n

j =i

xixjαTij

αTij =

1Ðij

DT

i

ρi− DT

i

ρj

Dij - Fickian diffusivity

ji = −n

j=1

LijcRT

ρjdj − Liq∇ lnT

ji = −ρn

j=1

Dijdj −DTi ∇ lnT

(j) = −ρ [L] (d) +∇ lnT (βq)

(j) = −ρ[D](d)− (DT )∇ lnT

10Saturday, March 26, 2011

Page 11: GMS Equations From Irreversible Thermodynamics

Constitutive Law: Heat Flux

Choose Lqq=λT to obtain “Fourier’s Law”

“Dufuor” effect - mass driving force can cause heat flux!

Usually neglected.

Tensorial order of “1” ⇒ any vector force may contribute.

Flux: Jα q ji τForce: Fα −∇ lnT − cRT

ρidi −∇v

q = −Lqq∇ lnT −n

i=1

LqicRT

ρidi

The “Species” term is typically included here, even though it does not come from irreversible thermodynamics. Occasionally radiative terms are also included here...

here we have substituted the RHS of the GMS

equations for di.q = −λ∇T

Fourier

+n

i=1

hiji Species

+n

i=1

n

j =i

cRTDT xixj

ρiÐij

jiρi− jj

ρj

Dufour Note: the Dufour effect

is usually neglected.

11Saturday, March 26, 2011

Page 12: GMS Equations From Irreversible Thermodynamics

Observations on the GMS Equations

What have we gained?• Thermal diffusion (Soret/Dufuor)

& its origins.‣ Typically neglected.

• “Full” diffusion driving force‣Chemical potential gradient (rather than

mole fraction). More later.‣ Pressure driving force.‣ When will φi ≠ ωi? More later.

‣ Body force term.‣ Does gravity enter here?

Onsager coefficients themselves not too important from a “practical” point of view.Still don’t know how to get the binary diffusivities.

cRTdi = ci∇T,pµi + (φi − ωi)∇p− ωiρ

fi −

n

k=1

ωkfk

di =n

j=1

xiJj − xjJi

cDij−∇ lnT

n

j=1

xixjαTij

12Saturday, March 26, 2011

Page 13: GMS Equations From Irreversible Thermodynamics

The Thermodynamic Factor, Γ

xi

RT∇T,pµi =

xi

RT

n−1

j=1

∂µi

∂xj

T,p,Σ

∇xj ,

=xi

RT

n−1

j=1

RT∂ ln γixi

∂xj

T,p,Σ

∇xj ,

= xi

n−1

j=1

∂ lnxi

∂xj+

∂ ln γi

∂xj

T,P,Σ

∇xj ,

=n−1

j=1

δij + xi

∂ ln γi

∂xj

T,p,Σ

∇xj ,

=n−1

j=1

Γij∇xj

γ - Activity coefficientMany models available(see T&K Appendix D)

Γij ≡ δij + xi∂ ln γi

∂xj

T,p,Σ

T&K §2.2

µi(T, p) = µi + RT ln γixi

µi = µi(T, p, xj)

∇T,pµi =n−1

j=1

∂µi

∂xj

T,p,

P∇xj

di =xi

RT∇T,pµi +

1ctRT

(φi − ωi)∇p− ρi

ctRT

fi −

n

k=1

ωkfk

di =n−1

j=1

Γij∇xj +1

ctRT(φi − ωi)∇p− ρi

ctRT

fi −

n

k=1

ωkfk

Note: for ideal gas,

p = ctRT

13Saturday, March 26, 2011

Page 14: GMS Equations From Irreversible Thermodynamics

Example: The UltracentrifugeUsed for separating mixtures based on components’ molecular weight.

f = fi = Ω2r

T&K §2.3.3

Ω

depleted in dense species

For a closed centrifuge (no flow) with a known initial charge, what is the equilibrium species profile?

Consider a closed system...

14Saturday, March 26, 2011

Page 15: GMS Equations From Irreversible Thermodynamics

∂ρi

∂t= −∇ · ni + si

∂ni

∂r= 0

ni = ρivr + ji,r = 0 ji,r = Ji,r = 0

Species equations:

GMS Equations:

The generalized diffusion driving force:

di =n−1

j=1

Γij∇xj +1

ctRT(φi − ωi)∇p− ωiρ

ctRT

fi −

n

k=1

ωkfk

di =n

j=1

xiJj − xjJi

cDij= 0

steady, 1D, no reaction

For an ideal gas mixture, φi = xi, and Γij = δij.

We don’t know dp/dr or xi0 (composition at r = 0).

0 =n−1

j=1

Γijdxj

dr+

1

ctRT(φi − ωi)

dp

dr− ωiρ

ctRT

Ω2r −

n

k=1

ωkΩ2r

n−1

j=1

Γijdxj

dr=

1

ctRT(ωi − φi)

dp

dr

dxi

dr=

1

ctRT(ωi − xi)

dp

dr

15Saturday, March 26, 2011

Page 16: GMS Equations From Irreversible Thermodynamics

For species i,

Species mole balance:

rL

0p xi r dr = p∗x∗i

r2L

2Must know p(r) and

xi(r) to integrate this.

Momentum:

at steady state (no flow):

dp

dr= ρ

n

i=1

ωifr,i = ρΩ2r

∂ρv∂t

= −∇ · (ρvv)−∇ · τ −∇p + ρn

i=1

ωifi

We don’t know p0(pressure at r = 0).

Species mole balance constrains the species profile solution(dictates the species boundary condition)

The momentum equation gives the pressure profile,

but is coupled to the species equations through M.dp

dr= ρΩ2r =

pM

RTΩ2r

rL

0cxi2πr dr =

rL

0c∗x∗

i 2πr dr

dxi

dr=

1

ctRT(ωi − xi)

dp

dr

* indicates the initial condition (pure stream).

16Saturday, March 26, 2011

Page 17: GMS Equations From Irreversible Thermodynamics

* indicates the initial condition (pure stream).

c =p

RT

Total mole balance (at equilibrium):

Substitute p(r) and solve this for p0...

VcdV =

Vc∗ dV

rL

0cr dr = c∗

r2L

2 rL

0pr dr = p∗

r2L

2

dV = L2πrdr

Total mole balance constrains the pressure solution(dictates the pressure boundary condition)

dxi

dr=

M

RT(ωi − xi)Ω2rSolve these

equations:

With these constraints:

rL

0pr dr = p∗

r2L

2

rL

0p xi r dr = p∗x∗i

r2L

2

Option A:1. Guess xi0, p0.2. Numerically solve the ODEs for xi, p.3. Are the constraints met? If not,

return to step 1.

Option B:Try to simplify the problem by making approximations.

dp

dr= ρΩ2r =

pM

RTΩ2r Note: M couples all of the

equations together and makes them nonlinear.

Note: for tips on solving ODEs numerically in Matlab, see my wiki page.17Saturday, March 26, 2011

Page 18: GMS Equations From Irreversible Thermodynamics

Approximation Level 1• Approximate M as constant, (MO2+MN2)/2, for

the pressure equation only. This decouples the pressure solution from the species and gives an easy analytic solution for pressure profile.

• Solve species equations numerically, given the analytic pressure profile.

Example: separation of Air into N2, O2.

Approximation Level 2• Approximate M as constant,

(MO2+MN2)/2, for the species and pressure equations.

• Obtain a fully analytic solution for both species and pressure.

• Centrifuge diameter: 20 cm • Air initially at STP

0 0.02 0.04 0.06 0.08 0.1

1e 4

1e 2

1

1e1

r (m)

p (a

tm)

fully numericconstant M

1000 RPM

50,000 RPM

100,000 RPM

150,000 RPM

0 0.02 0.04 0.06 0.08 0.10

0.05

0.1

0.15

0.2

0.25

r (m)

O2 M

ole

Frac

tion

numericapproximate 1approximate 2

1,000 RPM

50,000 RPM

100,000RPM

500,000RPM

18Saturday, March 26, 2011

Page 19: GMS Equations From Irreversible Thermodynamics

Fick’s Law (revisited)

Ignoring thermal diffusion,

How do we interpret each term?When is each term important?

Notes: [D]=[B]-1[Γ]

In the binary case: D11=Γ11Ð12

For ideal mixtures: [Γ]=[I]

di = −n

j=1

xixj

ρDij

jiωi− jj

ωj

−∇ lnT

n

j=1

xixjαTij

= −n

j=1

xjJi − xiJj

cDij−∇ lnT

n

j=1

xixjαTij J = −c[B]−1(d)−∇ lnT (DT )

This is the same [B] matrix as before (T&K eq. 2.1.21-2.1.22)

di =n−1

j=1

Γij∇xj +1

ctRT(φi − ωi)∇p− ρi

ctRT

fi −

n

k=1

ωkfk

(J) = −c[B]−1[Γ](∇x) 1

− ∇p

RT[B]−1 ((φ)− (ω))

2

− ρ

RT[B]−1[ω] ((f)− [ω](f + fn))

3

19Saturday, March 26, 2011

Page 20: GMS Equations From Irreversible Thermodynamics

Review:Where we are, where we’re going…Accomplishments• Defined “reference velocities” and

“diffusion fluxes”

• Governing equations for multicomponent, reacting flow.‣mass-averaged velocity…

• Established a rigorous way to compute the diffusive fluxes from first principles.‣Can handle diffusion in systems of

arbitrary complexity, including:‣ nonideal mixtures, EM fields, large pressure

& temperature gradients, multiple species, chemical reaction, etc.

• Simplifications for ideal mixtures, negligible pressure gradients, etc.

• Solutions for “simple” problems.

Still Missing:• Models for binary diffusivities.‣Given a model, we are good to go!

Roadmap:• Models for binary diffusivities.

(T&K Chapter 4) - we won’t cover this...

• Simplified models for multicomponent diffusion

• Interphase mass transfer (surface discontinuities)

• Turbulence - models for diffusion in turbulent flow.

• Combined heat, mass, momentum transfer.

20Saturday, March 26, 2011