global human body models consortium · •updates responsibilities: ghbmc development status 13 •...

58
GLOBAL HUMAN BODY MODELS CONSORTIUM John Combest, Nissan

Upload: others

Post on 03-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GLOBAL HUMAN BODY MODELS

CONSORTIUM

John Combest, Nissan

Page 2: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

MADYMO Models

2

Page 3: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

MADYMO ATD Models

3

Results in minutes

Through its combined multibody and FE techniques, MADYMO provides dummy models

that meet the most stringent demands for accuracy, robustness and computation speed.

Typical stand-alone MADYMO occupant safety simulations can run within 5-10 minutes.

Benefits

• speed and accuracy

• quality assurance via detailed reports

• easy access to all models

• Works in combination with all crash

codes

• user support

https://www.tassinternational.com/madymo-dummy-models

Page 4: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

MADYMO Human Body Models

4

Our human model database has been validated on segment as well as on full body level,

against an extensive set of volunteer- and PMHS (Post Mortem Human Surrogates) tests.

All models have demonstrated capability to predict kinematics and accelerations and display

realistic thorax compliance.

Benefits

• More biofidelic than crash dummy models

• Validated for multidirectional load/impact

• Passive and active muscle models

• Scalable to different body sizes

• Predicts post-failure response (e.g. leg fracture)

https://www.tassinternational.com/madymo-human-models

Page 5: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

Gordon Moore’s Law

5

Page 6: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GHBMC – Stress in Ribcage

6

Page 7: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

MADYMO – BrIC Evaluation

7

OOI scenario - THOR dummy is modeled with BrIC output.

Pulses can be modified and effect on BrIC can be studied.

Motion prescribed using MOTION.JOINT_ACC input was

derived from crash test video analysis.

For questions/discussion on modelling of this OOI scenario contact Paul Slaats

[email protected]

Page 8: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GHBMC – Deployment Decision

8

SINCAP User Evaluation – PAM Crash

Page 9: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GHBMC – Deployment Decision

9

SINCAP User Evaluation – PAM Crash

Page 10: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

Use of GHBMC Human Body Model

10

** M. Katagiri et al., “Parametric Study for Far Side Occupant Protection using GHBMC Human Body Model”, 2016, SAE GI

Parametric Study for Far Side Occupant Protection **

The HBM showed reductions of lateral excursion due to additional protections.

PT + CC + L-PT + CAB

Page 11: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

11

• Founded in 2006, GHBMC is an international consortium of automakers & suppliers working with research institutes and government agencies to advance human body modeling technologies for crash simulations.

Introduction of GHBMC

• OBJECTIVE: To consolidate world-wide HBM R&D effort into a single global effort

• MISSION: To develop and maintain high fidelity FE human body models for crash simulations

MEMBERS

SPONSOR PARTICIPANTS

Page 12: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GHBMC Centers of Expertise

12

Full Body Model COE

Pelvis & Lower Extremities Model

COE

Thorax Model COENeck Model COE

Abdomen Model COE

Head Model COE

PI: Dr. Duane CroninPI: Dr. Matt Panzer

PI: Dr. Philippe Beillas

PI: Dr. Matt Panzer

Co-PIs: Dr. Scott Gayzik

Dr. Joel Stitzel

PI: Dr. Liying Zhang

FBM COE• CAD and mesh• Full Body Validation

BRM COEs• Regional validation• Suggest model design

modifications• Updates

Responsibilities:

Page 13: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GHBMC Development Status

13

• 13 models to be developed by 2017 (Detailed Pedestrian pending)

• Versions are noted with most mature model being M50-O

• Phase II focus was on F05-O and current model enhancement

• Not shown, detailed pedestrians (M50-P, F05-P, and M95-P)

F05-OSM50-O M50-OSM95-O M95-OSF05-O F05-PS M50-PS M95-PS6YO-PS

v 2.1 v. 4.5 v. 1.1 v. 1.2 v. 1.2v. 1.8.4 v. 1.3 v. 1.3 v. 1.4 v. 1.3

Detailed Simplified

Page 14: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GHBMC M50-O v4.4

14

Upload, Aug. 2015

• Added tibia & fibula cross-

section output

• Improved head

accelerometer local output

• Addressed transform

issue due to conflicting

IDs

Page 15: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

M50-O Example 1, Lateral Plate Impact – 12 m/s

15

Page 16: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GHBMC M50-OS V1.8.4

Latest release: GHBMC M50-OS v1.8.4 on October, 2015

Joint positioning capability (ATD-like)

Currently in progress:

• Addition of femur compliant element to improve the lower leg kinematics.

• Certification tests for M50-OS

-1

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Forc

e (

KN

)

Displacement (mm)

Pendulum - Impact force5.9 KN

5.1 KN

63

.5 m

m

72

.6 m

m

Page 17: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

F05-OS & M95-OS: Morphing and preliminary results

17

M50-OS v1.8.4 M95-OS v1.2F05-OS v1.2

53.1 Kg 77.1 Kg 103.07 Kg

• Radial basis function – thin plate spline method for morphing M50-OS to F05 and M95 habitus

• Other than node locations, all details in M50-OS preserved in morphed models

• Morphed models – tested using the suite of rigid impact simulations

Preliminary results: Thorax – Chest Impact

• Impactor: 23.4 Kg and 152 cm diameter, 6.7 m/s

• Plots against Lebarbe corridors• Note: F05-OS v1-2 and M95-OS

v1-2: Raw Data, Not scaled

Page 18: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

Modular Use Example: M50-OS + Brain

18

05

10152025303540

M50-OS M50 OSBrain

M50-O

Ho

urs

Frontal Sled Impact Simulation Runtime

M50-O v4.4 M50-OS v1.8+Brain

M50-O v4.4 M50-OS v1.8+Brain

Page 19: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GHBMC Large Male (M95-O): v1.1, Aug. 2015

19

Same parts, materials, and element formulations as M50 model

Vavalle, Nicholas "Application of radial basis function methods in the development of

a 95th percentile male seated FEA model." Stapp Car Crash Journal 58 (2014): 361.

Page 20: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

M95-O: IRCOBI 2015

20

1. Evaluate effects of body habitus2. Evaluate the application of mass-normalization to the M95

Page 21: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GHBMC – Sled Test Validation

21

Page 22: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GHBMC – Sled Test NCAP - Frontal

22

Page 23: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GHBMC – Full Vehicle NCAP - Side

23

Page 24: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

24

Page 25: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

Development and Validation of Pedestrian FE Model

25

Component Validation: Knee lateral bending

Full Body Validation: Car-to-pedestrian impact

Head CG Trajectory Sacrum Trajectory

Page 26: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GHBMC pedestrian models accepted by EuroNCAP Pedestrian

Testing Protocol v8.2, Nov. 2015

26

0 ms 36 ms

90 ms 152 ms

Page 27: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GHBMC CAD Deliveries in Phase II

27

M50: 4/30/2014 F05 Ped: 7/30/2014 F05 Occ: 7/30/2014

Note: Not to scale

Davis, M. L., Allen, B. C., Geer, C. P., Stitzel, J. D., & Gayzik, F. S. (2014). A Multi‐Modality Image Set for the Development of a 5th Percentile Female Finite Element Model. In IRCOBI Conference Proceedings.

Page 28: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

Pedestrian CAD

28

• Based on data from the same subjects used for the occupant model development

• Confirmed bone locations with external anthropometry landmarks and external surface data

• Soft tissues developed from medical images in the standing posture

• Posture was adjusted in model for EuroNCAP pedestrian protocol

• Delivery • CAD, April 2014• Simplified pedestrian

model v. 1.0, July 2014

M50 Standing

Organ and Muscle

MRI with pelvis and hip bone outline (red)

Page 29: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

Small Female Detailed Occupant (F05-O v2.1)

29

964 Parts2.5 million elements1.4 million nodesMass = 51.4 kg

F05-O Model Overview

Page 30: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

F05-O CAD Dataset

30

316 Individual CAD Components• 161 Bones• 35 Organs• 90 Muscles• 30 Ligaments,

Tendons, and Cartilage

Davis, M. L., Allen, B. C., Geer, C. P., Stitzel, J. D., & Gayzik, F. S. (2014). A Multi‐Modality Image

Set for the Development of a 5th Percentile Female Finite Element Model. In IRCOBI Conference

Proceedings.

Page 31: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

Comparison of M50 to F05

31

Alpha mesh delivered to GHMBC and BRM COEs on January, 2015

F05-O v2.1 released to the GHMBC on Oct 31, 2015

Currently entering 4th quarter of model development

Comparison of M50 to F05

Page 32: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

Multi-Modality Image Dataset

32

CT Supine MRI Upright MRI

SupineQuasi-Seated

SupineSeated

Standing

In total, over 14,000 medical images were collected

Page 33: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

Organ Volumes

33

• 14 scans from WFU database

• Organs germane to crash induced injuries

Kidneys

Liver

Spleen

Lungs

Heart

Pancreas

Page 34: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

F05-O Head and Neck Regions

34

• 22 parts representing the brain• Brain is a structured hex mesh connected node-to-node with the cranium• 52 explicit muscles of the neck

Page 35: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

F05-O Thoracoabdominal Region

35

273 thoracoabdominal parts included to characterize relevant crash induced injuries

Page 36: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

F05-O Thoracoabdominal Region

36

Page 37: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

F05-O Lower Extremity

37

Cross-section showing muscle

element assignment

• Muscle was developed by using CAD and element assignment techniques

• Origin and insertion sites explicitly mesh and connected to bone

• Cruciate and collateral ligaments modeled using 3D hex elements

Page 38: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

F05-O Latest Iterations

38

F05 v2.0Thickness = 0.75 mm

F05 v2.1 ModifiedThickness Variable

Page 39: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

Cortical Thickness

39

Page 40: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

F05-O v2.1 Full Body Validation

40

All data shown scaled using the Equal Stress Equal Velocity using an Effective Mass Ratio

Preliminary Data: Force Only

CORA Summary Results for Small Female Beta Validation

Phase Magnitude Slope Corridor Total

Hardy Impact Force CORA Results 1.0 0.76 0.99 - 0.90

Bouquet Impact Force CORA Results 1.0 0.48 0.97 - 0.79

Viano Impact Force CORA Results 0.98 0.92 0.99 - 0.96

Cavanaugh Torso Impact Force CORA Results

0.99 0.85 0.94 0.48 0.70

Cavanaugh Pelvis Impact Force CORA Results

1.0 0.65 0.98 0.58 0.72

Kemper Impact Force CORA Results 1.0 0.71 0.94 - 0.87

Page 41: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

AF05-O User Acceptance Testing

41

Severe pulse

simulations

test model

robustness

Average of top 10% most severe frontal NCAP

Frontal NCAP set-up Rear seat set-up

NHTSA Far-Side Oblique Passenger Lateral sled (7 m/s)NHTSA Near-Side Oblique Driver

Page 42: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

Stability – 100 sec run

42

Use Model FBM_v3_BCs_Stability100_revA End Time 100.00

Use Post Soft Visual-Viewer Ver.7.0.0

File Type Entities Ordinates

Graph Glstat Global Data Refer to Graph

Page 43: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

Free Academic Licenses to Institutions of Higher Education

– GHBMC Model Users as of June 30, 2016

43

North America:

1. U. of Toronto (Canada)

2. U. of Waterloo (Canada)

3. California State U. – L.A.

4. Carnegie Mellon University

5. Duke U.

6. George Mason U.

7. Johns Hopkins Med. School

8. Medical College of Wisconsin

9. Ohio State U.

10. Stanford U.

11. Temple U.

12. U. of California Berkeley

13. U. of Michigan

14. U. of Oklahoma

15. U. of Virginia

16. Virginia Tech

17. Wake Forest U.

18. Wayne State U.

Europe:

1. Graz U. of Technology (Austria)

2. CEESAR (France)

3. IFSTTAR (France)

4. INRIA (France)

5. T. U. Berlin (Germany)

6. U. of Munich (Germany)

7. U. of Stuttgart (Germany)

8. Cork Institute of Tech. (Ireland)

9. TESSA-U. of Zaragoza (Spain)

10. Chalmers( Sweden)

11. KTH - (Sweden)

Asia & Australia:

1. Beijing University (China)

2. XiangYa Medicine School, Central

South U. (China)

3. U. of Melbourne (Australia)

4. U. of Western Australia (Australia)

5. Hongik U. (Korea)

6. University of Electronic Science &

Technology of China (China)

7. Sogang U. (Korea)

8. King Mongkut's U. of Technology

(Thailand)

1. Technical University of Munich

2. I.T.M.U. Stuttgart (Germany)

3. T.H. Ingolstadt (Germany)

4. U. of Florence (Italy)

5. University of Portsmouth (UK)

6. University of Mostaganem

(Algeria)

7. Warsaw U. (Poland)

8. Paris Tech U. (France)

9. University Claude Bernard Lyon

1. Tokyo Institute of Technology

(Japan)

2. Nagoya University (Japan)

3. Tongji University (China)

4. CCU of Taiwan (China)

1. Penn State U.

2. Kettering U.

3. CHOP

4. Cooper Union

5. Sherbrooke U.

6. U. of Southern Cal.

7. U. of Colorado

8. Colorado State U.

9. U. of B.C. (Canada)

10. U. of Delaware

11. U. of South FloridaAgreement Sent

Page 44: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

Full Body Model COE Team & Collaborators

44

F Scott Gayzik

WFU CIB

Joel D. Stitzel

WFU CIB

Doron Schwartz

WFU CIB

Simplified M50

Hyung Yun Choi

Hong Ik University

Model Conversion

Jeremy Schap

WFU CIB

Costin Untaroiu

VT CIB

Pedestrian Validation

Wansoo Pak

VT CIB

Pedestrian

Berkan Guleyup

WFU CBI

M50

Bharath Koya

WFU CIB

Full Body Models Co-PIs

Technical Staff

William Decker

WFU CIB

Simplified M50

Craig Hamilton

WFU BME

Imaging

Ashley Weaver

WFU CIB

FBM COE

Nick Williams

WFU CIB

Technical StaffTechnical Staff

C BIC BI

Page 45: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GHBMC Contact Info

45

• Membership & General Inquires

- GHBMC Steering Committee Chairman – Mr. John Combest

([email protected])

- GHBMC Technical Committee Chairman – Dr. Jenne-Tai (J.T.) Wang

([email protected])

- GHBMC Technical Committee Assistant Chairman – Dr. Eric Song

([email protected])

• Model Licenses & User Support

- Elemance, LLC – Dr. Joel Stitzel ([email protected])

- or Dr. F. Scott Gayzik ([email protected])

Page 46: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

This first Users Workshop was held April 11th, 2016 one day prior to the start of the Society of Automotive Engineers World Congress and Exposition.

The second Workshop will be held June, 2017 in conjunction with the 25th ESV

It is being held at the Inn at St. John's, in Plymouth, Michigan, a 25 minute drive from downtown Detroit and easily accessible from various points of interest in the greater Detroit Metro Area.

[email protected]

2nd Annual GHBMC Users Workshop

46

Page 47: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

47

Page 48: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

Questions?

48

Page 49: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

APPENDIX

49

Page 50: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

The 6th International Symposium on “Human Modeling and Simulation in Automotive Engineering” will be held October 20-21, 2016 in Heidelberg, Germany.

The symposium intends to continue and further advance the dialog between researchers, software developers and industrial users of human models.

It is again organized in cooperation with Wayne State University‘s renowned Bioengineering Centre, which has been a pioneer and leading institution in biomechanics research for automotive safety for 75 years.

If you wish to contribute to the Symposium please send information on the author(s) (name, academic title, job title, organization), the presentation title and an abstract (max. 250 words) to [email protected] before March 31, 2016.

If you are younger than 30 years you qualify for the new Young Scientist Award contest. If you want to participate in the contest make a note in your presentation proposal.

Presentations for the 6th “Human Modeling Symposium” should address

• Biomechanical Research

• Development of Human Models and Simulation Software

• Industrial Applications

focusing on the theory, development or application of human simulation models in automotive engineering.

The submitted abstracts will be evaluated by the program committee.

Speakers will be informed of acceptance of their proposed presentations by April 30

REGISTRATION INFORMATION AVAILABLE AT https://www.carhs.de

6th International Symposium on “Human Modeling and Simulation in Automotive Engineering”

50

Page 51: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GHBMC Journal and Peer-Reviewed Publications

1. Evaluation of Kinematics and Injuries to Restrained Occupants in Far-Side Crashes using Full-Scale Vehicle and Human Body Models. Mike W. J. Arun, SagarUmale, John R. Humm, Narayan Yoganandan, Prasanaah Hadagali & Frank A. Pintar. Traffic Injury Prevention 02 Sep 2016

2. Quantitative validation of a human body finite element model using rigid body impacts. Vavalle NA, Davis ML, Stitzel JD, Gayzik FS. Ann Biomed Eng. 2015;43(9):2163–74

3. Age- and Sex-Specific Thorax Finite Element Model Development and Simulation. Schoell S.L, Weaver A.A., Vavalle N., Stitzel, J.D., 2015 Traffic InjuryPrevention, 16:sup1, S57-S65, DOI: 10.1080/15389588.2015.1005208

4. Development of a Computationally Efficient Full Human Body Finite Element Model. Schwarz, D. Guleyupoglu, B., Koya, B., Stitzel, J.D., Gayzik, F. S. 2015Traffic Injury Prevention, 16:sup1, S49-S56, DOI: 10.1080/15389588.2015.1021418

5. Development and Validation of an Older Occupant Finite Element Model of a Mid-Sized Male for Investigation of Age-Related Injury Risk. Schoell, Weaver,Urban, Jones, Stitzel, Reed, Rupp. STAPP Car Crash Journal Volume 59 (November 2015). Pp. 359-383

6. Comparison of Kriging and Moving Least Square Methods to Change the Geometry of Human Body Models. Jolivet, Lafon, Petit, Beillas. STAPP Car CrashJournal Volume 59 (November 2015) pp. 337-357

7. Validation of Shoulder Response of Human Body Finite Element Model (GHBMC) under Whole Body Lateral Impact Condition. Park, Kim, Panzer, Crandall,Annals of Biomedical Engineering 2015

8. The Effect of Pre-Crash Velocity Reduction on Occupant Response Using a Human Body Finite Element Model. B. Guleyupoglu, N.A. Vavalle,J. Schap, K.D.Kusano, F. S. Gayzic Traffic Injury Prevention 2015

9. Development and Preliminary Validation of a 50th Percentile Pedestrian Finite Element Model. Untaroiu, Putnam, Schap, Davis, Gayzik. Proceedings ofISETC/CIE 2015

10. The Application of Radial Basis Function Interpolation in the Development of a 95th Percentile Male Seated FEA Model. Vavalle, Schoell, Weaver, Stitzel,Gayzik, 2015 STAPP Car Crash Journal

11. Abdominal Organ Location, Morphology, and Rib Coverage for the 5th, 50th, and 95th Percentile Males and Females in the Supine and Seated Posture usingMulti-Modality Imaging. Hayes, Gayzik, Moreno, Martin, Stitzel. 2015 Annals of Advances in Automotive Medicine (AAAM)

12. The Effects of Cadaver Orientation on the Relative Position of the Abdominal Organs. Howes, Hardy, Beillas. 2015 Annals of Advances in AutomotiveMedicine (AAAM)

13. A Method to Characterize Average Cervical Spine Ligament Response Based On Raw Data Sets For Implementation Into Injury Biomechanics Models.Mattucci S, Cronin DS. Journal of the Mechanical Behavior of Biomedical Materials. 2015; pp. 251-260 DOI information: 10.1016/j.jmbbm.2014.09.023

14. High Rotation Rate Behavior of Cervical Spine Segments in Flexion and Extension. Barker J, Cronin DS, Chandrashekar, N. Journal of BiomechanicalEngineering, 2014 Dec; 136(12):121004. doi: 10.1115/1.4028107.

15. Evaluation of Biofidelity of Side Impact Computational Surrogates (ES-2re, WorldSID, GHBMC). Park G, Kim T, Crandall JR, Svendsen A. et.al. 2014 SAE WC

GHBMC Journal and Peer-Reviewed Publications

51

Page 52: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GHBMC Journal and Peer-Reviewed Publications

16. Evaluation of Biofidelity of Finite Element 50th Percentile Male Human Body Model (GHBMC) under Lateral Shoulder Impact Conditions, Park G, Kim T, SubitD, Donlon JP, Crandall JR, Svenderson A, Saunders N, and Markusic C. (2014). 2014 IRCOBI Conference, Berlin, Germany.

17. High-rate Mechanical Properties of Human Heel Pad for Simulation of a Blast Loading Condition Gabler, Panzer, and Salzar. 2014 IRCOBI Conference. Park G,

18. Evaluation of Biofidelity of Finite Element 50th Prcentile Male Human Body Model (GHBMC) under Lateral Shoulder Impact Conditions. Kim T, Subit D, et al.IRCOBI; 2014; Berlin, Germany

19. Validation of simulated chest band data in frontal and lateral loading using a human body finite element model. Hayes AR, Vavalle NA, Moreno DP, StitzelJD, Gayzik FS. Traffic Injury Prevention 2014; 15(2): 181-186A

20. A Numerical Investigation on the Variation in Hip Injury Tolerance With Occupant Posture During Frontal Collisions. Yue N and Untaroiu CD., Traffic InjuryPrevention, 2014; 15:5, 513-5221

21. Development of a finite element human head model partially validated with thirty-five experimental cases. Mao H, Zhang L, Jiang B, Genthikatti VV, Jin X,Zhu F, Makwana R, Gill A, Jandir G, Singh A, Yang KH. J Biomechanical Engineering. 2013 Nov;135(11):111002

22. An Evaluation of Objective Rating Methods for Full-Body Finite Element Model Comparison to PMHS Tests. Nicholas A. Vavalle , Benjamin C. Jelen , DanielP. Moreno , Joel D. Stitzel & F. Scott Gayzik Traffic Injury Prevention 01 Aug 2013

23. Development of high-quality hexahedral human brain meshes using feature-based multi-block approach Mao H, Gao H, Cal L, Genthikatti V, Yang KH..Computer Methods in Biomechanics and Biomedical Engineering. 2013; 16(3):271-9.

24. A comprehensive experimental study on material properties of human brain tissue Jin X, Zhu F, Mao H, Shen M, Yang KH.. Journal of Biomechanics 2013 Nov15;46(16):2795-801.

25. Strain rate dependent properties of younger human cervical spine ligaments Mattucci S, Moulton JA, Chandrashekar N, Cronin DS.. Journal of the MechanicalBehavior of Biomedical Materials. 2013; 23: 71-79

26. Cervical spine segment finite element model for traumatic injury prediction. DeWit JA, Cronin DS.. Journal of the Mechanical Behavior of BiomedicalMaterials. 2012 Jun; 10:138-50. (GHBMC, iAMi)

27. Biomechanical and Injury Response of Human Foot and Ankle Under Complex Loading. Shin J and Untaroiu. Journal of Biomechanical Engineering. 2013.

28. A Finite Element Model of the Lower Limb for Simulating Automotive Impacts. Untaroiu CD, Yue N, and Shin JAnnals of Biomedical Engineering. 2013.

29. Focusing on Vulnerable Populations in Crashes: Recent Advances in Finite Element Human Models for Injury Biomechanics Research. HU Jingwen, JonathanD. Rupp, Matthew P. Reed. J Automotive Safety and Engergy, 2012 Vol. 3 No. 4

30. An evaluation of objective rating methods for full-body finite element model comparison to PMHS tests. Vavalle NA, Jelen BC, Moreno DP, Stitzel JD, Gayzik FS. (2013).. Traffic Inj Prev 2013; 14 Suppl: S87-94.

31. Lateral impact validation of a geometrically accurate full body finite element model for blunt injury prediction. Vavalle NA, Moreno DP, Rhyne AC, Stitzel JD, Gayzik FS. Ann Biomed Eng 2013; 41(3): 497-512.

GHBMC Journal and Peer-Reviewed Publications

52

Page 53: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

NTCE

NTCE(S)

NTCE(B)NTCNA

NTCNA

(ATC)

NM L&

Affiliate

DNTC

NCIC YNTC

NSEA

NBA

RNTBCI

NTCE

-Euro-NCAPとの調整窓口

NTC (KiF)

-製品開発の要望まとめと適用

NTCNA

- GHBM C活動への参画- 生体力学情報の収集と蓄積

NATC (XG2, YHA)

-戦略と開発の取りまとめ

- RNTBCI

- モデル開発業務- 事故分析による妥当性検証

John Com best (Chairm an)

Vim alathithan

Chinm oy Pal

GHBM C -日産の戦略と成果 -

日・印・米3拠点の最小限のリソースでニーズ・ベースのモデル開発に特化、コンソーシアムを牽引して NHTSAをスポンサーに招き入れ、事実上、世界標準ダミーとしての位置を確立した

Euro NCAP:歩行者保護から人体FEモデルによるNCAP評価の導入を計画中

NHTSA:高い生体忠実度を持つGHBM Cモデルで脳傷害基準BrIC等の検証を検討中

Page 54: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GHBMC Journal and Peer-Reviewed Publications

32. Investigation of the Mass Distribution of a Detailed Seated Male Finite Element Model. Vavalle NA, Thompson AB, Hayes AR, Moreno DP, Stitzel JD, Gayzik FS.. J Appl Biomech. 2013

33. Comparison of Kinematics of GHBMC to PMHS on the Side Impact Condition. Park G, Kim T, Crandall JR, Arregui-Dalmases C, Luzon-Narro J.. 2013; International Research Council on Biomechanics of Injury (IRCOBI). Gothenburg, Sweden.

34. Abdominal Organ Location, Morphology, and Rib Coverage for the 5(th), 50(th), and 95(th) Percentile Males and Females in the Supine and Seated Posture using Multi-Modality Imaging. Hayes AR, Gayzik FS, Moreno DP, Martin RS, Stitzel JD. Annals of Advances in Automotive Medicine (AAAM) 2013; 57: 111-122.

35. Comparison of organ location, morphology, and rib coverage of a midsized male in the supine and seated positions. Hayes AR, Gayzik FS, Moreno DP, Martin RS, Stitzel JD.. Computational Mathematic Methods Med 2013: 419821.

36. Recent advances in developing finite element head model. Mao H, Zhang L, Jiang B, Genthikatti V, Jin X, Zhu F, Makwana R, Gill A, Jandir G, Singh A, and Yang KH. International Crashworthiness Conference, ICRASH 2012, Milan, Italy. Beillas P, Berthet F.

37. Performance of a 50th percentile abdominal model for impact: effects of size and mass. J Biomech. 2012;45:S83

38. Investigation of whiplash injuries in the upper cervical spine using a detailed neck model. Fice, J.B., Cronin, D.S., 2012. Journal of Biomechanics, 2012.01.016

39. Upper Cervical Spine Kinematic Response and Injury Prediction. Cronin DS, Fice J, DeWit J, Moulton J.. International Research Council on Biomechanics of Injury (IRCOBI). Dublin, Ireland, 2012

40. External landmark, body surface, and volume data of a mid-sized male in seated and standing postures. Gayzik FS, Moreno DP, Danelson KA, McNally C, Klinich KD, Stitzel JD.. Annals of Biomedical Engineering 2012; 40(9): 2019-2032.

41. A Finite Element Model of the Foot and Ankle for Automotive Impact Applications. Shin J, Yue N, and Untaroiu CD. Annals of Biomedical Engineering. 2012.

42. A paradigm for human body finite element model integration from a set of regional models. Thompson AB, Gayzik FS, Moreno DP, Rhyne AC, Vavalle NA, Stitzel JD.. Biomedical Science Instruments 2012; 48: 423-430.

43. Strain rate dependent properties of younger human cervical spine ligaments Mattucci SF, Moulton JA, Chandrashekar N, Cronin DS." Journal of the mechanical behavior of biomedical materials. 2012; 10: 216-226.

44. In vitro kinematics of the shoulder: comparison with in vivo data during arm flexion. Duprey S, Subit D, Lessley D, Guillemot H, and Kent R.. Computer Methods in Biomechanics and Biomedical Engineering. 2011; 14(S1):193-4.

45. Development and validation of an occupant lower limb finite element model. Yue N, Shin J, Untaroiu CD. SAE; 2011. SAE Technical Paper 2011-01-1128

46. Structural response of cadaveric rib cages under a localized loading: stiffness and kinematic trends. Kindig M, Lau A, Forman J, Kent R.. Stapp Car Crash Journal 2010; 54:337-380.

47. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction Li Z, Kindig M, Subit D, Kent R.. Medical Engineering and Physics. 2010; 32(9):998-1008.

GHBMC Journal and Peer-Reviewed Publications

54

Page 55: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

GHBMC Journal and Peer-Reviewed Publications

48. A pseudo-elastic effective material property representation of the costal cartilage for use in finite element models of the whole human body. Forman J, Del Pozo E, Kent R. Traffic Injury Prevention. 2011; 11:613-622.

49. Cervical Spine Model To Predict Capsular Ligament Response In Rear Impact. Fice JB, Cronin DS, Panzer MB. Annals of Biomedical Eng.. 2011; 39 (8):2152-21.

50. A parametric study of hard tissue injury prediction using finite elements: Consideration of geometric complexity, sub-failure material properties, CT-thresholding, and element characteristics. Arregui-Dalmases, Del Pozo, Duprey, Lopez-Valdes, Lau, Subit, Kent . Traffic Injury Prevention. 2010; 11(3):286-293.

51. Structural response of cadaveric rib cages under a localized loading: stiffness and kinematic trends. Kindig M, Lau A, Forman J, Kent R.. Stapp Car Crash Journal 2010; 54:337-380.

52. A multi-modality image data collection protocol for full body finite element analysis model development. Gayzik FS, Moreno DP, Hamilton C, Tan J, McNally C, Duma S, Klinich KD, Stitzel JD. (2010). 2010, SAE Tech Paper, 2009-01-2261. SAE World Congress. Detroit, MI, SAE.

53. Development of a full body CAD dataset for computational modeling: a multi-modality approach. Gayzik FS, Moreno DP, Geer CP, Wuertzer SD, Martin RS, Stitzel JD.. Annals of Biomedical Engineering, 2011;39(10): 2568-2583.

54. Study of Rib Fracture Mechanisms Based on the Rib Strain Profiles in Side and Forward Oblique Impact. Leport T, Baudrit P, Potier P, Trosseille X, Lecuyer E, Vallancien G.. 2011 Stapp Car Crash Conference.

55. Biomechanical properties of the costovertebral joint. Duprey S, Subit D, Guillemot H, Kent R.. Medical Engineering and Physics. 2010; 32:222-227.

56. Cervical Spine Segment Finite Element Model Validation and Verification at Traumatic Loading Levels for Injury Prediction DeWit J, Cronin DS.. 2010 IRCOBI, Hannover, Germany.

57. Structural response of cadaveric rib cages under a localized loading: stiffness and kinematic trends Kindig, M., Lau, A., Forman, J., Kent, R.. 2010 Stapp Car Crash Journal. 2010; 54:337-380

58. Rib fractures under anterior-posterior dynamic loads: experimental and finite element study. Li Z, Kindig M, Kerrigan J, Untaroiu CD, Subit D, Kent R.. Journal of Biomechanics. 2010; 43:228-234.

59. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction. Li Z, Kindig MW, Subit D, Kent RW. Med Eng Phys. 2010;32:998–1008

60. Identifying the properties of ultra-soft materials using a new methodology of combined specimen-specific FE model and optimization techniques Zhu F, Jin X, Guan F, Zhang L, Mao H, Yang K, King AI. Materials and Design 2010; 31(10):4704-4712.

GHBMC Journal and Peer-Reviewed Publications

55

Page 56: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

Conference Presentation (no written paper): 1. The Status of the Global Human Body Models Consortium (GHBMC). John J. Combest, J.T. Wang, 2016 SAE Government Industry Meeting, Washington D.C.

2. An Objective Evaluation of Mass Scaling Techniques Utilizing Computational Human Body Models. Matthew Davis, Wake Forest/Virginia Tech., 2015 43rd

International Workshop on Human Subjects for Biomechanical Research, November 8, 2015. New Orleans, LA

3. Understanding Head Injury Mechanisms: Parametric Modeling of Head/Neck Response. Derek A. Jones, Wake Forest/Virginia Tech., 2015 43rd International Workshop on Human Subjects for Biomechanical Research, November 8, 2015. New Orleans, LA

4. Effect of Impact Location on Brain Tissue Strain in Football Helmet Impacts. Benjamin S. Elkin, MEA Forensic Engineers and Scientists., 2015 43rd International Workshop on Human Subjects for Biomechanical Research, November 8, 2015. New Orleans, LA

5. Preliminary Investigation of Thoracolumbar Loads under Frontal Crashes using a Human Finite Element Model. Mike W. J. Arun, Medical College of Wisconsin., 2015 43rd International Workshop on Human Subjects for Biomechanical Research, November 8, 2015. New Orleans, LA

6. Development of Computational Models As Part of the Global Human Body Models Consortium - The Perspective of the Center of Excellence in HeadModeling. Computer-Aided Engineering and Multidisciplinary Design Optimization: Recent Advances, Technology, and Future Symposium. April 17, 2015, AnnArbor, MI

7. Development and Validation of GHMBC Models by the Full Body Models Center of Expertise F. Scot Gayzik, 5th International Symposium “Human Modeling and Simulation in Automotive Engineering, Munich Germany, October 17, 2014.

8. Segment Tension Testing Jeffrey Barker, Naveen Chandrashekar, Duane Cronin, World Congress of Biomechanics July 8, 2014.

9. Current Research and Development Activities of the Full Body Model Center of Expertise of the Gloabal Human Body Models Consortium Project. F. Scot Gayzik, Joel Stitzel, ARL Workshop on Numerical Analysis of Human and Surrogate Response to Accelerative Loading, January 8, 2014

10. A Preliminary Evaluation of Human & Dummy Finite Element Models under Blast-Induced Accelerative Loading Conditions. Costin D. Untaroiu, ARL Workshop on Numerical AnalNeck Response of a Finite Element Human Body Model During a Simulated Rotary-Wing Air-craft Impact

11. Neck Response of a Finite Element Human Body Model During a Simulated Rotary-Wing Air-craft Impact. Joel Stitzel, ARL Workshop on Numerical Analysis of Human and Surrogate Response to Accelerative Loading, January 8, 2014

12. Phase II Plan & Status of the Global Human Body Models Consortium. J.T.Wang, SAE Government & Industry Meeting, January 24, 2014, Washington D.C.

13. Status of the Global Human Body Models Consortium. J. Combest, 4th International Symposium on Human Modeling and Simulation in Automotive Engineering. May 14th, 2013, Munich, Germany

14. Updated Status of the GHBMC (Global Human Body Models Consortium) J. Combest, RAMSIS update Conference, June 8th, 2013

15. Development of a Detailed Finite Element Neck Model for Automotive Safety Research. Fice JB, Moulton J, Cronin DS. NHTSA Biomechanics Workshop Paper, Dearborn, Michigan, 2012.

16. High Rate Behaviour of the Cervical Spine Segments. Barker J, Chandrashekar N, Cronin DS., Ohio State University Injury Biomechanics Symposium, 2012.

GHBMC Public Presentation Materials

56

Page 57: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

Conference Presentation (no written paper): 17. Examination of the Kinematics of the Thoracoabdominal Contents under Various Loading Scenarios. Howes MK, Gregory SA, Beillas P, and Hardy WN. Stapp

Journal and Car Crash Conference: Savannah, GA, 201218. Material Properties of the Post-Mortem Stomach in High-Rate Equibiaxial Elongation. Howes MK and Hardy WN.. ASME Summer Bioengineering Conference:

Fajardo, Puerto Rico, 2012.

19. Material Properties of the Post-Mortem Small Intestine in High-Rate Equibiaxial Elongation. Howes MK and Hardy WN. The Ohio State University Injury Biomechanics Symposium: Columbus, OH, 2012.

20. A Finite Element Model of the Occupant Lower Extremity for Automotive Impact Applications. Untaroiu, Yue, and Shin (2012). ASME 2012 Summer Bioengineering Conference. 267-268.

21. Recent advances in developing finite element head model. Presented at the 2012 ICRASH. July 18th - 20th, Milan, Italy. Y.H. Kim, J.E. Kim, A.W. Eberhardt, ASME Summer Bioengineering Conf.,Fajardo, Puerto Rico, June 2012.

22. Performance of a 50th percentile abdominal model for impact: effect of size and mass. Beillas P., and Berthet F. European Society of Biomechanics Conference, Lisbon, Portugal, July 2012

23. Finite element simulation of pelvic fractures in side impacts. Kim, Kim, and Eberhardt. ASME Summer Bioengineering Conference, Fajardo, Puerto Rico, June 2012.

24. Completion of Phase I Development of the Global Human Body Models Consortium Mid‐Sized Male Full Body Finite Element Model. F. Scott Gayzik, SAE Government Industry Meeting, January 26th, 2012

25. Development and Validation of an Finite Element Model of Occupant Lower Extremity. Untaroiu. NHTSA Human Subjects Workshop, Nov. 2011

26. Development & Validation of an In-Vivo Finite Element Pelvis Model with Cortical Thickness Mapped from a Cadaver. Kim, Kim, and Eberhardt (2011)., ASME Summer Bioengineering Conf., Nemacolin, PA, June 2011.

27. Status of the Global Human Body Models Consortium. John J. Combest, 3rd International Symposium on Human Modeling and Simulation in Automotive Engineering, Auschafenburg, Germany, May 27th, 2011

28. Development and Validation of an Finite Element Model of Occupant Lower Extremity, Neng Yue, Jaeho Shin,Costin Untaroiu NHTSA Workshop, Nov. 2011.

29. Development & Validation of an In-Vivo Finite Element Pelvis Model with Cortical Thickness Mapped from a Cadaver, Y.H. Kim, J.E. Kim, A.W. Eberhardt, ASME Summer Bioengineering Conf., Nemacolin, PA, June 2011.

30. Development of finite element model of the abdomen for impact. Beillas P., and Berthet F. Thirty-Ninth International Workshop on Human Subjects for Biomechanical Research - NHTSA, Dearborn, MI, November 2011 (oral presentation)

31. Prediction of rib cage fracture in computational modeling: effect of rib cortical thickness distribution and intercostal muscles mechanical properties. Subit, D, Kindig, M, Li, Z, Kent, R, Baudrit, P, Jansova, M, Hyncik, L, Dziewonski, T, Toczyski, J. (2011) Proceedings of the 39th International Workshop on Human Subjects for Biomechanical Research, National Highway Traffic Safety Administration, U.S. D.O.T.

GHBMC Public Presentation Materials

57

Page 58: GLOBAL HUMAN BODY MODELS CONSORTIUM · •Updates Responsibilities: GHBMC Development Status 13 • 13 models to be developed by 2017 ... Average of top 10% most severe frontal NCAP

Conference Presentation (no written paper):

32. Development of the GHBMC thorax finite element model. Subit, D, Kindig, M, Li, Z, Kent, R, (2011) Workshop 'From medical image reconstruction to human body models ' for the European project THOMO (Valenciennes, France)"

33. Mechanical Properties of Human Cervical Spine Ligaments Relevant to Car Crash Scenarios. Mattucci, S., Moulton, J., Chandrashekar, N., Cronin, D., Biomedical Engineering Workshop: Foundations for the Future, November 17, 2011, University of British Columbia, British Columbia, Canada.

34. Prediction of Neck Injury in Out-of-Position Rear Impact. Shateri, H., Cronin, D.S., Graduate Student Research Conference 2011, University of Waterloo, Waterloo, Ontario, April 28, 2011.

35. Prediction of Neck Response in Out Of Position Impact Scenarios. Shateri, H. and Cronin, D.S., BIOMECH Pittsburgh, PA, November 7-9, 2011.

36. Development of a Detailed Finite Element Neck Model for Automotive Safety Research. Fice, J., Moulton, J., Cronin, D.S., 39th International Workshop on Human Subjects for Biomechanical Research, Dearborn, MI, November 6, 2011.

37. Mechanical Properties Of Human Craniovertebral Ligaments. Mattucci, S., Cronin, D., Chandrashekar, N., Moulton, J., American Society of Biomechanics, August 2011, California.

38. GHBMC Mid-Size Male Model 2011 Status & Future Plan. Mark S. Torigian, SAE Government/Industry Meeting, Washington, DC, Jan. 27, 2011.

39. Development of a New Device for Characterizing Solid Organ Failure Properties. Howes MK, White NA, Beillas P and Hardy WN. 6th World Congress of Biomechanics: Singapore, 2010.

40. Development of a finite element ribcage model of the 50th percentile male with variable rib cortical thickness. Li, Z., Subit, D., Kindig, M., Kent, R. Proc. 38th International Workshop on Human Subjects for Biomechanical Research, National Highway Traffic Safety Administration, U.S. D.O.T. 2010

41. Development of a Finite Element Model of the Human Cervical Spine for Automotive Crashworthiness Fice, J., Panzer, M. and Cronin, D.S., Research World Congress of Biomechanics WCB 2010, Aug 1-6, 2010, Singapore.

42. Injury Prediction Using a Detailed Cervical Spine Segment Finite Element Model. Dewit, J. and Cronin, D.S., World Congress of Biomechanics WCB 2010, Aug 1-6, 2010, Singapore.

43. Status of the GHBMC – Recent Progress and Next Steps. Duane Detwiller, SAE Government/Industry Meeting, 2010

44. Status of the GHBMC – Creation of Six Centers of Expertise. John Combest, SAE Government/Industry Meeting, 2009

45. Investigation of facet joint response under rear impact conditions using FE model of the cervical spine. Fice, Jason, Duane Cronin, Matthew Panzer. ESV. Stuttgart, 2009.

46. Introduction of Global Human Body Models Consortium, Robert C. Lange, SAE Government/Industry Meeting, Washington, DC, May 14-16, 2007

47. Technical Approach of the Global Human Body Models Consortium. Jenne-Tai Wang and Yuichi Kitagawa, SAE Government/Industry Meeting, Washington, DC, May 14-16, 2007

GHBMC Public Presentation Materials

58