giving wastewater a boost with breakthroughs in … · with breakthroughs in secondary treatment...

34
Giving Wastewater a Boost with Breakthroughs in Secondary Treatment Brent Giles Research Director

Upload: nguyenanh

Post on 11-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Giving Wastewater a Boost with Breakthroughs in Secondary TreatmentBrent GilesResearch Director

About Lux Research

Helps clients find new business opportunities from emerging technologies in physical and life sciences 

Offers ongoing technology and market intelligence, as well as market data and consulting services 

Over 250 clients on six continents – multinational corporations, investors, governments, and SMEs

Global reach, with offices in Boston, New York, Amsterdam, Singapore, Shanghai, and Tokyo

Combines deep technical expertisewith business analysis to support strategic decisions

More at www.luxresearchinc.com

2

Coverage areas

Advanced Materials Agro Innovation Alternative Fuels Autonomous Systems 2.0 Bio‐based Materials & Chemicals Bioelectronics Efficient Building Systems Energy Electronics Energy Storage Exploration and  Production Food and Nutrition Printed, Flexible, and Organic 

Electronics Solar Sustainable Building Materials  Water

Contents

Problems with existing wastewater treatment

A picture of the “average” activated sludge plant

Six innovative technologies go head to head

3

Stickney Water Reclamation Plant, Chicago

Contents

Problems with existing wastewater treatment

A picture of the “average” activated sludge plant

Six innovative technologies go head to head

4

Stickney Water Reclamation Plant, Chicago

Wastewater treatment gobbles energy and produces large volumes of sludge

The dominant process for treating the world’s wastewater, activated sludge, faces three major issues:

5

High energy consumption

Mountains of waste sludge

The squeezefor space

Anaerobic digestion reduces, but doesn’t eliminate waste sludge

6

Does not scale down well

Many facilities need to combine sludge with other waste streams

Reduces sludge volume by about 40%, but you still have to do something with the remaining stabilized biosolids

The largest annual storms have increased in size by about 30%

y = 0.0954x ‐ 124.53R² = 0.277

50

55

60

65

70

75

80

1940 1950 1960 1970 1980 1990 2000 2010 2020

Ave

rage 24‐ho

ur precipitation (m

m) in larges

t an

nual sto

rm at e

ach station

Year

Many U.S. wastewater plants will look to expand capacity due to population and climate pressures

7

Source: Environment America Research & Policy Center (2012). 

Many U.S. wastewater plants will look to expand capacity due to population and climate pressures

8

Change in frequency of extreme storm events, 1948 to 2011

New EnglandExtreme storms now occur 85% more frequently

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 Up to 378m3/day

Up to 3780m3/day

Up to 37,800m3/day

Up to 378,000m3/day

Total

Breakdown of WWTP's in U.S. by Size

By numberof WWTPs

By volumeof watertreated

In the United States, a few mega‐systems treat a large portion of the water

9

Chemicals: need to target plants treating 

100,000 m3/day or more

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 Up to 378m3/day

Up to 3780m3/day

Up to 37,800m3/day

Up to 378,000m3/day

Total

Breakdown of WWTP's in U.S. by Size

By numberof WWTPs

By volumeof watertreated

In the United States, a few mega‐systems treat a large portion of the water

10

Hardware: need to target plants treating  650 m3/day or 

more

100,000m3/day

Contents

Problems with existing wastewater treatment

A picture of the “average” activated sludge plant

Six innovative technologies go head to head

11

Stickney Water Reclamation Plant, Chicago

The “average” wastewater treatment plant

We compiled a representative sample of activated sludge wastewater treatment plants throughout the U.S. 

For each plant, we collected data onAverage daily flowVolume of sludge generatedEnergy consumedNumber of staffFootprint and unused space

12

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

0 200,000 400,000 600,000 800,000

Ave

rage daily flow (m

3/da

y)

Population

Population vs. wastewater volume

0

5

10

15

20

25

30

35

40

45

50

0 200,000 400,000 600,000 800,000

Foot

print (ac

res)

Average daily flow (m3/day)

Actual and minimum footprint

Actualfootprint

Minimumfootprint

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

0 100,000 200,000 300,000 400,000 500,000

Dry solids slud

ge (ton

s/yr)

Average daily flow (m3/day)

Sludge production

13

The “typical” U.S. 100,000 m3/day plant

Wastewater volume: 100,000 m3/day

Population: 180,000 people

Energy consumption: 0.4 kWh/m3

Staff: 46

Sludge production: 3150 tons/year dry, or 12,600 

tons/year at 25% solids

Minimum footprint: 12.5 acres

Annual operating cost: $4million/year

13

25%

23%

19%

9%

6%

5%3%

10%

Sludge transport/disposal ElectricityStaff Discharge feesChemicals AdministrationMaintenance Other

Operating cost breakdown for wastewater treatment

14

Source: EPA

About 60% of sludge ends up in landfills, with tipping fees on the order of $35/tonPlants often 

need supervision around the clock

~2% of all electricity generated in developed countries

Energy breakdown for wastewater treatment

15

57%

13%

13%

7%3%

7%

Aeration PumpingAnaerobic digestion Lighting/building maintenanceBelt press Other

Source: American Electric Power, Hazen & Sawyer

Includes all water and sludge pumping

Aeration efficiency is limited by the need to pressurize air in order to pump it into several meters of water

Contents

Problems with existing wastewater treatment

A picture of the “average” activated sludge plant

Six innovative technologies go head to head

16

Stickney Water Reclamation Plant, Chicago

How we compared these technologies

17

Based in Founded Revenue Employ‐ees

Australia 2009 $2 million

12

Australia 1996 $4 million

12

U.S. 2004 $7 million

20

Israel 2007 Pre‐revenue

25

U.S. 2006 $10 million

12

Ireland 2013 $500,000 27

BioGill

Ceramic “gill” material supports biofilm

Gills create passive aeration and allow biofilm to slough off due to gravity

18

1

BioGill

19

1

AquaCell

Membrane bioreactors provide high‐quality effluent

Focus on graywater and blackwater recycling systems within a building or campus

20

2

AquaCell

21

2

Baswood

Separates secondary treatment into three reactors

“Dry cycle” reduces sludge volume and removes old biomass

22

3

Baswood

23

3

Emefcy Sabre (Spiral Aerobic Biofilm Reactor)

Another take on passive aerationSpiral shape with biofilm on insideIncorporates a backwash cycle

24

4

Emefcy Sabre (Spiral Aerobic Biofilm Reactor)

25

4

Aquarius Technologies

Incorporates many different zones with slightly different conditions

18 to 24 hours of aeration

26

5

Aquarius Technologies

27

5

OxyMem

Membrane Aerated Biofilm Reactor (MABR) provides air through the inside of hollow fiber membrane

Monitors biofilm growth by nitrogen production

Developing easy‐retrofit solution

28

6

OxyMem

29

6

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

500%

Activated sludge BioGill AquaCell Baswood Sabre Aquarius OxyMem

EnergyconsumptionSludgeproductionMinimumfootprintNumber ofstaffOperatingcost

The next generation of secondary wastewater treatment

30

Energy consumption of typical MBR

Operating cost of typical MBR

Lowest electricity consumption

Most promising current technologies

31

Least sludge

Smallest staff

Over $800,000 in operating costs savings per year from a combination of energy and sludge reduction $‐

 $500,000

 $1,000,000

 $1,500,000

 $2,000,000

 $2,500,000

 $3,000,000

 $3,500,000

 $4,000,000

Activated sludge Emefcy

Lowest electricity consumption

Most promising current technologies

32

Least sludge

Smallest staff

 $‐

 $500,000

 $1,000,000

 $1,500,000

 $2,000,000

 $2,500,000

 $3,000,000

 $3,500,000

 $4,000,000

Activated sludge Aquarius

Over $900,000 in operating costs savings per year, mostly from savings on sludge disposal

Lowest electricity consumption

Most promising current technologies

33

Least sludge

Smallest staff

 $‐

 $500,000

 $1,000,000

 $1,500,000

 $2,000,000

 $2,500,000

 $3,000,000

 $3,500,000

 $4,000,000

Activated sludge Baswood OxyMem

Over $1 million in operating cost savings from staff reduction, sludge reduction, and energy savings

Questions?

Brent GilesResearch Director

[email protected]

34