geotechnical parameters of sydney sandstone and shale · sydney sandstone and shale bertuzzi &...

14
SYDNEY SANDSTONE AND SHALE BERTUZZI & PELLS Australian Geomechanics Vol 37 No 5 December 2002 41 GEOTECHNICAL PARAMETERS OF SYDNEY SANDSTONE AND SHALE Robert Bertuzzi & Philip J.N. Pells Pells Sullivan Meynink Pty Ltd, Sydney 1 INTRODUCTION The classification system for Sydney sandstone and shales, through the Australian Geomechanics Society (Pells et al, 1978; Pells, Mostyn and Walker, 1998) was intended to assist in the design of foundations on rock in the Sydney area. The five class system has proved to be a good tool for communicating rock mass quality for other geotechnical projects such as tunnels and deep basement excavations. However, the classification system is not a design tool for works other than foundations on rock. Tunnels, slopes, deep basements and retaining walls should be designed using normal methods of applied mechanics. However, such methods, whether hand stability calculations or complex analyses using programs such as UDEC, require engineering parameters covering strength and deformation characteristics. In some instances, such as rock substance strength and modulus, the parameters may be measured by laboratory testing. However, when it comes to rock mass parameters use has to be made of parameters back figured from monitoring of actual excavations and retaining structures; published correlations from other geological environments, such as mass modulus versus RMR; or semi-theoretical approaches such as Hoek’s approach of estimating mass modulus from Hoek- Brown parameters. Unfortunately, when one scratches the surface many of these correlations and guidelines are based on scant data and they must be used with great caution. This paper summarises the deformation and strength parameters the authors currently use for rock mechanics computations in the Sydney shales and sandstones. It is not intended to provide a detailed lithological or petrographic description of Sydney rocks. The reader is directed elsewhere for that information, for example Packham (1969), Chestnut (1983), Pells (1985), Pells (1993), Pells et al (1998), McNally & McQueen (2000), McNally & Franklin (2000), etc. Rather, the purpose of this paper is to improve the communication between engineering geologists, geotechnical engineers and the construction industry, in particular the tunnelling fraternity, when referring to Sydney rocks. The paper is divided into four parts. i) The first is a recapitulation of the appropriate process of classification using the Sydney Classification System. ii) The second presents typical insitu engineering parameters, which may be appropriate for engineering design once the rock mass has been classified. The tables should not be used to back-figure the rock mass class. iii) The third presents typical Q and RMR values for sandstone and shale, as the authors have found that these may help in communicating conditions to practitioners unfamiliar with the Sydney Classification System. However, please note that the authors do not recommend using either the Q or RMR system, or the Sydney Classification System, for the design of tunnel support within these rocks. Several publications highlight the difficulties in using the Q and/or RMR system in Sydney, eg Asche & Cooper (2002), Pells (1997). iv) The fourth presents six colour sheets describing the typical engineering geology of Class I/II, Class III and Class IV/V sandstone and then of Class I/II, Class III and Class IV/V shale. Photographs of example rock exposures are included on the sheets to further assist communication. The authors note that there are several locations around Sydney to observe these exposures, including: a. West Pymble Bicentennial Park - Class II to V sandstone; b. M2 tunnel and the Tarpian Cliff at the Opera House - Class I and II sandstone; c. Eastwood Brick Pit – Class V to II shale; d. M2 motorway – Class V and IV shale. The authors hope that practitioners will find this paper useful in their work in Sydney. 1 USING THE SYDNEY CLASSIFICATION SYSTEM The classification system as described in Pells et al (1978 and 1998) is reasonably unambiguous in its application to foundations. The original 1978 guidelines state that the rock mass to be classified is for: Pad footings within a zone of influence of 1.5 times the least footing dimension, and

Upload: nguyendat

Post on 07-Apr-2018

254 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Geotechnical Parameters of Sydney Sandstone and Shale · SYDNEY SANDSTONE AND SHALE BERTUZZI & PELLS Australian Geomechanics Vol 37 No 5 December 2002 41 GEOTECHNICAL PARAMETERS OF

SYDNEY SANDSTONE AND SHALE BERTUZZI & PELLS

Australian Geomechanics Vol 37 No 5 December 2002 41

GEOTECHNICAL PARAMETERS OF SYDNEY SANDSTONE AND SHALERobert Bertuzzi & Philip J.N. Pells

Pells Sullivan Meynink Pty Ltd, Sydney

1 INTRODUCTIONThe classification system for Sydney sandstone and shales, through the Australian Geomechanics Society (Pells et al,1978; Pells, Mostyn and Walker, 1998) was intended to assist in the design of foundations on rock in the Sydney area.The five class system has proved to be a good tool for communicating rock mass quality for other geotechnical projectssuch as tunnels and deep basement excavations. However, the classification system is not a design tool for works otherthan foundations on rock. Tunnels, slopes, deep basements and retaining walls should be designed using normalmethods of applied mechanics. However, such methods, whether hand stability calculations or complex analyses usingprograms such as UDEC, require engineering parameters covering strength and deformation characteristics. In someinstances, such as rock substance strength and modulus, the parameters may be measured by laboratory testing.However, when it comes to rock mass parameters use has to be made of parameters back figured from monitoring ofactual excavations and retaining structures; published correlations from other geological environments, such as massmodulus versus RMR; or semi-theoretical approaches such as Hoek’s approach of estimating mass modulus from Hoek-Brown parameters. Unfortunately, when one scratches the surface many of these correlations and guidelines are basedon scant data and they must be used with great caution.

This paper summarises the deformation and strength parameters the authors currently use for rock mechanicscomputations in the Sydney shales and sandstones. It is not intended to provide a detailed lithological or petrographicdescription of Sydney rocks. The reader is directed elsewhere for that information, for example Packham (1969),Chestnut (1983), Pells (1985), Pells (1993), Pells et al (1998), McNally & McQueen (2000), McNally & Franklin(2000), etc. Rather, the purpose of this paper is to improve the communication between engineering geologists,geotechnical engineers and the construction industry, in particular the tunnelling fraternity, when referring to Sydneyrocks.

The paper is divided into four parts.

i) The first is a recapitulation of the appropriate process of classification using the Sydney ClassificationSystem.

ii) The second presents typical insitu engineering parameters, which may be appropriate for engineeringdesign once the rock mass has been classified. The tables should not be used to back-figure the rock massclass.

iii) The third presents typical Q and RMR values for sandstone and shale, as the authors have found that thesemay help in communicating conditions to practitioners unfamiliar with the Sydney Classification System.However, please note that the authors do not recommend using either the Q or RMR system, or the SydneyClassification System, for the design of tunnel support within these rocks. Several publications highlight thedifficulties in using the Q and/or RMR system in Sydney, eg Asche & Cooper (2002), Pells (1997).

iv) The fourth presents six colour sheets describing the typical engineering geology of Class I/II, Class III andClass IV/V sandstone and then of Class I/II, Class III and Class IV/V shale. Photographs of example rockexposures are included on the sheets to further assist communication. The authors note that there are severallocations around Sydney to observe these exposures, including:

a. West Pymble Bicentennial Park - Class II to V sandstone;b. M2 tunnel and the Tarpian Cliff at the Opera House - Class I and II sandstone;c. Eastwood Brick Pit – Class V to II shale;d. M2 motorway – Class V and IV shale.

The authors hope that practitioners will find this paper useful in their work in Sydney.

1 USING THE SYDNEY CLASSIFICATION SYSTEMThe classification system as described in Pells et al (1978 and 1998) is reasonably unambiguous in its application tofoundations. The original 1978 guidelines state that the rock mass to be classified is for:

Pad footings within a zone of influence of 1.5 times the least footing dimension, and

Page 2: Geotechnical Parameters of Sydney Sandstone and Shale · SYDNEY SANDSTONE AND SHALE BERTUZZI & PELLS Australian Geomechanics Vol 37 No 5 December 2002 41 GEOTECHNICAL PARAMETERS OF

SYDNEY SANDSTONE AND SHALE BERTUZZI & PELLS

42 Australian Geomechanics Vol 37 No 5 December 2002

Socketed footings, within a zone equal to the length of the socket plus a further depth equal to the width of thefooting.

The 1998 publication acknowledged that the classification system was being used for other works such as tunnels andexcavations and recommend that the zone of rock being classified be “over a length of core of similar characteristics”.In writing those words it was the senior author’s intent that the classification system be applied to portions or units ofthe rock mass having similar UCS, defect spacing and seam characteristics. However, from reading several projectspecific reports produced by professionals applying the system to cuttings, tunnels and retaining structures it is apparentthat the classification system is sometimes applied inappropriately.

In particular the system is being applied to small elements of a geological profile, such as individual seams and thinbeds. Figure 1 is a cartoon intended to clarify the correct method of applying the classification system to a general rockprofile. This may be a mapped face or a borehole. The main points to note from Figure 1 are that it is incorrect toapply the system to small components of the rock mass and the UCS for a unit should be a cautious estimate of themean, ie it is reasonable to discard outliers. It should also be noted that there could be a change to the classification iffooting of particular dimensions were to be located within the profile. For example a 2m wide footing at level AA inFigure 1 would classify as being on Class II material even though in the general classification it is in Class III material.This is because of the controlling influence of seam thickness percentage in the footing’s zone of influence, ie 1.5 times2m.

2 SOURCE OF INFORMATION FOR ENGINEERING PARAMETERSTable 1 presents the substance and mass parameters for the various classes, which the authors have used in severaldesign projects. Table 2 presents the friction angle and stiffness of discontinuities.

There is substantial information on the sandstone and shale substance parameters from numerous site investigations forspecific projects. Publications giving summaries of substance parameters include Pells (1985, 1993), McNally &McQueen (2000), Won (1985) and Ghafoori et al (1993), etc.

Rock mass modulus values for mainly Class II and Class III sandstone have been backfigured from lateralmeasurements in deep basements (Pells, 1990), from tunnel convergence measurements (Hole, 2000) and fromsettlement monitoring of pad and socket footings (Rowe & Pells, 1980). These field measurements provide a gooddatabase and therefore there is reasonably high level of confidence in regard to the sandstone mass modulus values.Mass modulus values for the shales are largely taken from the estimates made by members of the AustralianGeomechanics Society obtained in preparing the 1978 paper by Pells, Douglas, Rodway, Thomas and McMahon.

Figure 1: The wrong and right way to classify

Page 3: Geotechnical Parameters of Sydney Sandstone and Shale · SYDNEY SANDSTONE AND SHALE BERTUZZI & PELLS Australian Geomechanics Vol 37 No 5 December 2002 41 GEOTECHNICAL PARAMETERS OF

SYDNEY SANDSTONE AND SHALE BERTUZZI & PELLS

Australian Geomechanics Vol 37 No 5 December 2002 43

The authors use extension failure (Stacey, 1981) as one of the criteria in assessing potential failure zones aroundunderground excavation. The strain values at which sympathetic tensile failure starts is shown in Table 1 and arederived from laboratory testing of large blocks of sandstone undertaken by Pells. Note that extension is dependent onthe Young’s Modulus of the substance, ie intact rock.

Permeability values have been obtained from site investigations for numerous tunnelling projects including the OceanOutfalls, Sydney Harbour Tunnel, Eastern Distributor, M5 East, Cross City, cables tunnels and Parramatta Rail Link.Overall the permeability database represents approximately 5km of tested borehole.

There is very little direct data for defect normal and shear stiffness. These are very difficult parameters to measure inthe laboratory for real defects. Normal stiffness can be estimated using the relationship between the defect’s normalstiffness (kn) and the modulus of its infill material (E), so that, kn = Load ÷ closure of defect = E ÷ thickness of defect.The elastic relationship between shear (ks) and normal (kn) stiffness is ks = kn÷2(1+ν), which suggests that ks shouldbe 0.33 to 0.5 times kn. However, the authors note that the ratio ks/ kn is actually dependent on the normal stress.Kulhawy (1975) showed limited experimental data with ks/ kn = 0.04 to 1.20. Bandis et al (1983) carried out furthertesting which suggested that for normal stresses greater than about 1MPa, a ratio of about 0.10 could be used. This isthe ratio the authors currently use in the absence of specific data.

3 REFERENCESAsche HR & Cooper DN (2002), Estimation of tunnel support requirements for TBM driven rock tunnels. 28th

International Tunnelling ConferenceBandis SC, Lumsden AC & Barton NR (1983), Fundamentals of rock joint deformation. Int. J Rock Mech Min Sci &

Geomech Abstr. Vol 20, No 6 Chestnut WS (1983),Engineering Geology Geology of the Sydney 1:100,000 Sheet ed. Herbert, Geol. Survey of NSWEngineering geology of the Sydney region (1985). ed. Pells Balkema Ghafoori M, Carter JP & Airey DW (1993) Anisotropic behaviour of Ashfield shale in the direct shear test Geotechnical

Engineering of Hard Soils – Soft Rocks, ed Anagnostopoulos, BalkemaHoek E, Kaiser PK & Bawden WF (1995),Support of underground excavations in hard rock, Balkema Hole J (2000), Determination of field stress ratio and Young’s modulus using the under excavation technique. 4th ANZ

Young geotechnical professionals conferenceKulhawy FH (1975), Stress deformation properties of rock and rock discontinuities. Engineering Geology, Vol 9McNally GH & McQueen LB (2000),The Engineering Properties of Sandstone and What they Mean. Sandstone City

eds McNally & Franklin, Geological Society of AustraliaPells PJN, Douglas DJ, Rodway B, Thorne C & McMahon BK (1978). Design loadings for foundations on Shale and

Sandstone in the Sydney Region AGS JournalPells PJN (1990), Stresses and displacements around deep basements in the Sydney Sandstone. 7th Australian

Tunnelling ConferencePells PJN (1994), Rock Mechanics and Engineering Geology in the design of underground works.The 1993 EH Davis

Memorial Lecture, Austraian Geomechanics No.25.Pells PJN (1997), Classification systems – good for communication but not always for design. Tunnelling under

difficult ground, ITC Conference, BaselPells PJN, Mostyn G & Walker BF (1998), Foundations on Sandstone and Shale in the Sydney Region. Australian

Geomechanics Vol 33 No 3Rowe RK & Pells PJN (1980), A theoretical study of pile-rock socket behaviour. Int. Conf. on Structural Foundations

on Rock.Sandstone City (2000),Geological Society of Australia, eds McNally & Franklin Stacey TR (1981), A simple extension strain criterion for fracture of brittle rock.Int. J Rock Mech Min Sci & Geomech

Abstr. Vol 18The geology of New South Wales (1969).Geological Society of Australia,ed. PackhamVarious papers in Structural Foundations on Rock, (1980) ed. Pells, Balkema Won G (1985),Engineering properties of Wianamatta Group rocks from laboratory and insitu testing, Engineering

geology of the Sydney region, ed. Pells Balkema.

Page 4: Geotechnical Parameters of Sydney Sandstone and Shale · SYDNEY SANDSTONE AND SHALE BERTUZZI & PELLS Australian Geomechanics Vol 37 No 5 December 2002 41 GEOTECHNICAL PARAMETERS OF

SYD

NEY

SA

ND

STO

NE

AN

D S

HA

LEB

ERTU

ZZI &

PEL

LS

44Au

stra

lian

Geo

mec

hani

cs V

ol 3

7 N

o 5

Dec

embe

r 200

2

IN S

ITU

EN

GIN

EE

RIN

G P

AR

AM

ET

ER

ST

AB

LE

1 -

RO

CK

MA

SSSU

BSTA

NC

EM

ASS

STREN

GTH

ELA

STIC

ITY

STREN

GTH

PERM

EABIL

ITY

(uL

)

CLA

SS

UC

S(M

Pa)

σt(M

Pa)

mε (c)

E(G

Pa)

UC

S(M

Pa)

c'(k

Pa)

φ’ (°)

UN

ITW

EIG

HT

(kN

/m3)

MO

DU

LUS

(MPa

)LO

GM

EAN

RA

NG

E

GSI(b

)

San

dsto

neI /

II12-5

02-6

2-9

8-1

415-2

5(a

)(a

)24

900-2

500

0.2

< 0

.01 t

o2

65-7

5

San

dsto

neIII

7-2

50.5

-34-1

06-1

05-2

0(a

)(a

)24

350-1

200

10.1

to

50

45-6

5

San

dsto

neIV

/ V

1-7

0.1

-0.5

<1-4

(a)

(a)

24

50-7

00

5-1

01 t

o 100

30-4

5

San

dsto

neRes

idua

l Soi

l<

10

<1

528

20

40

N/A

Sha

leI /

II7-4

01-4

2-1

07-1

5(d

)10-2

0(a

)(a

)24

700-2

500

0.2

< 0

.01 t

o25

64-7

3

Sha

leIII

2-1

50.1

-22-1

05-1

0(d

)1-7

(a)

(a)

24

200-1

200

10.1

to

50

40-6

4

Sha

leIV

/ V

1-2

<0.2

<1

(a)

(a)

24

50-5

00

1<

1 t

o25

30-4

0

Sha

leRes

idua

l Soi

l<

10

<1

526

18

30

N/A

TA

BL

E 2

- D

ISC

ON

TIN

UIT

IES

STIF

FNES

S (G

PA/M

)D

ESC

RIP

TIO

NTH

ICK

NES

S(E)

(MM

)FR

ICTI

ON

AN

GLE

(°)

NO

RM

AL

(KN

)SH

EAR

(KS)

MA

JOR

BED

DIN

GPL

AN

ETI

GH

T1-

55-

10

35-4

530

-35

20-2

5

4000

200

10

400

20 1ER

OSI

ON

AL

PLA

NE

5-30

20-3

55

0.5

CR

OSS

BED

PA

RTI

NG

STI

GH

T1-

325

-35

20-2

840

0015

0040

015

0JO

INT

TIG

HT

35-4

040

0040

01

22-2

815

0015

03

18-2

250

050

a Th

e va

lue

of G

SI w

hich

is in

clud

ed in

the

tabl

e ca

n be

use

d to

obt

ain

c’ a

nd φ

’ whi

ch a

re d

epen

dent

on

the

insi

tu st

ress

.b G

eolo

gica

l Stre

ngth

Inde

x de

fined

by

Hoe

k et

al (

1995

).c M

illis

train

at w

hich

sym

path

etic

tens

ile fa

ilure

com

men

ces t

o be

use

d in

ext

ensi

on fa

ilure

crit

erio

n St

acey

(198

1).

Stra

ins i

ncre

ase

with

nor

mal

stre

ss.

d Sub

stan

ce m

odul

us fo

r sha

le is

dep

ende

nt o

n m

oist

ure

cont

ent (

m%

). F

or d

esig

n us

e th

e re

latio

nshi

p ba

sed

on W

on (1

985)

, ie

E =

3.6e

-0.4

15m G

Pae Th

e in

fill i

s typ

ical

ly a

sand

y cl

ay w

hen

pres

ent i

n sa

ndst

one,

and

a c

lay

whe

n pr

esen

t in

shal

e.

Page 5: Geotechnical Parameters of Sydney Sandstone and Shale · SYDNEY SANDSTONE AND SHALE BERTUZZI & PELLS Australian Geomechanics Vol 37 No 5 December 2002 41 GEOTECHNICAL PARAMETERS OF

SYD

NEY

SA

ND

STO

NE

AN

D S

HA

LEB

ERTU

ZZI &

PEL

LS

Aust

ralia

n G

eom

echa

nics

Vol

37

No

5 D

ecem

ber 2

002

45

TA

BL

E 3

Q –

SA

ND

STO

NE

PAR

AM

ET

ER

CL

ASS

IC

LA

SS II

CL

ASS

III

CL

ASS

IVC

LA

SS V

1.

Roc

k Q

ualit

yD

esig

natio

n (R

QD

)

2.

Join

t Set

Num

ber

(Jn)

90 -1

00

2-4

505.

22−

=JnRQ

D

75–1

00

4

2575.

18−

=JnRQ

D

40 –

70

4 –

6

25 –

40

4 –

6

102.4

−=

JnRQD

0-25

1

6-12

17.483.0

−=

JnRQD

3.

Join

t Rou

ghne

ssN

umbe

r (J r)

4.

Join

t Alte

ratio

nN

umbe

r (J a

)

1-3 1

31

−=

JaJr

1–3

1–2

35.0

−=

JaJr

1 –

2

2 –

3

133.0

−=

JaJr

1 –

2

3 –

4

67.025.0

−=

JaJr

1 3-6

33.017.0

−=

JaJr

5.

Join

t Wat

erR

educ

tion

Fact

or(J

w)

6.

Stre

ss R

educ

tion

Fact

or (S

RF)

2

1 1

1=

SRFJw

1 1–2

15.0

−=

SRF

Jw

1

1 –

2.5

14.0−

=SR

FJw

0.66

–1

1 –

5

113.0

−=

SRF

Jw

0.66

-1

1-5

113.0

−=

SRF

Jw

SRF

Jwx

JaJnx

JnRQD

Q=

22.5

to 1

50G

ood

to E

xtre

mel

y G

ood

4.7

to 7

5Fa

ir to

Ver

y go

od0.

9 to

17.

5Po

or to

Goo

d0.

14 to

6.7

Ver

y po

or to

Fai

r0.

02 to

1.4

Extre

mel

y po

or to

poo

r

1 Whe

re R

QD

≤ 1

0 (in

clud

ing

0) a

nom

inal

val

ue o

f 10

is u

sed

to e

valu

ate

Q.

2 App

licab

le fo

r tun

nels

at d

epth

s to

50 m

, say

.

Page 6: Geotechnical Parameters of Sydney Sandstone and Shale · SYDNEY SANDSTONE AND SHALE BERTUZZI & PELLS Australian Geomechanics Vol 37 No 5 December 2002 41 GEOTECHNICAL PARAMETERS OF

SYD

NEY

SA

ND

STO

NE

AN

D S

HA

LEB

ERTU

ZZI &

PEL

LS

46Au

stra

lian

Geo

mec

hani

cs V

ol 3

7 N

o 5

Dec

embe

r 200

2

TA

BL

E 4

Q –

SH

AL

E

PARA

MET

ERC

LA

SS I

CL

ASS

IIC

LA

SS II

IC

LA

SS IV

CL

ASS

V

1.

Roc

k Q

ualit

yD

esig

natio

n (R

QD

)

2.

Join

t Set

Num

ber (

J n)

90-1

00

2-4

505.

22−

=JnRQ

D

70-9

0

4

5.22

5.17

−=

JnRQD

40-6

0

4 –

6

157.6

−=

JnRQD

25 -

40

4 –

6

102.4

−=

JnRQD

0-25

2

6-12

3.

Join

t Rou

ghne

ssN

umbe

r (J r)

4.

Join

t Alte

ratio

nN

umbe

r (J a

)

1-3 1

31

−=

JaJr

1-2

1- 4

225.0

−=

JaJr

1– 2

2 –

6

117.0

−=

JaJr

0.5-

1.5

6-12

25.004.0

−=

JaJr

1 3-6

33.017.0

−=

JaJr

5.

Join

t Wat

er R

educ

tion

Fact

or (J

w)

7.

Stre

ss R

educ

tion

Fact

or(S

RF)

2

1 1

1=

SRFJw

1

1 –

2

15.0

−=

SRF

Jw

1

1 –

5

12.0

−=

SRF

Jw

0.66

-1

2.5-

10

4.006

6.0

−=

SRF

Jw

0.66

-1

5-10

2.006

6.0

−=

SRF

Jw

SRF

Jwx

JaJnx

JnRQD

Q=

22.5

to 1

50G

ood

to E

xtre

mel

y G

ood

2.2

to 4

5Po

or to

Ver

y go

od0.

2 to

15

Ver

y Po

or to

Goo

d0.

011

to 1

Extre

mel

y Po

or to

V

ery

Poor

0.00

9 to

0.2

7Ex

cept

iona

lly P

oor t

oV

ery

Poor

1 Whe

re R

QD

≤ 1

0 (in

clud

ing

0) a

nom

inal

val

ue o

f 10

is u

sed

to e

valu

ate

Q.

App

licab

le fo

r tun

nels

at d

epth

s to

50 m

, say

.

Page 7: Geotechnical Parameters of Sydney Sandstone and Shale · SYDNEY SANDSTONE AND SHALE BERTUZZI & PELLS Australian Geomechanics Vol 37 No 5 December 2002 41 GEOTECHNICAL PARAMETERS OF

SYD

NEY

SA

ND

STO

NE

AN

D S

HA

LEB

ERTU

ZZI &

PEL

LS

Aust

ralia

n G

eom

echa

nics

Vol

37

No

5 D

ecem

ber 2

002

47

TA

BL

E 5

RM

R –

SA

ND

STO

NE

PAR

AM

ET

ER

CL

ASS

IC

LA

SS II

CL

ASS

III

CL

ASS

IVC

LA

SS V

Inta

ct S

treng

th

Roc

k Q

ualit

yD

esig

natio

n (R

QD

)

2 20

2

18-2

0

2

11-1

6

1

5-11

0 0-5

Dis

cont

inui

ty S

paci

ng

Dis

cont

inui

ty C

ondi

tion

15-2

5

20-2

5

15-2

0

20-2

2

8-12

15-2

0

6-10

8-12

5-8

5-12

Gro

undw

ater

Adj

ustm

ent f

orO

rient

atio

n

8-10 -5

7-10 -5

7-10 -5

7-10 -5

7-10 -5

RM

R60

to 7

7G

ood

rock

57 to

69

Fair

to g

ood

rock

38 to

55

Poor

to fa

ir ro

ck22

to 3

9Po

or ro

ck12

to 3

0V

ery

poor

to p

oor r

ock

Page 8: Geotechnical Parameters of Sydney Sandstone and Shale · SYDNEY SANDSTONE AND SHALE BERTUZZI & PELLS Australian Geomechanics Vol 37 No 5 December 2002 41 GEOTECHNICAL PARAMETERS OF

SYD

NEY

SA

ND

STO

NE

AN

D S

HA

LEB

ERTU

ZZI &

PEL

LS

48Au

stra

lian

Geo

mec

hani

cs V

ol 3

7 N

o 5

Dec

embe

r 200

2

TA

BL

E 6

RM

R –

SH

AL

E

PAR

AM

ET

ER

CL

ASS

IC

LA

SS II

CL

ASS

III

CL

ASS

IVC

LA

SS V

Inta

ct S

treng

th

Roc

k Q

ualit

yD

esig

natio

n (R

QD

)

2

18-2

0

2

18-2

0

1

11-1

6

0

5-11

0 0-5

Dis

cont

inui

ty S

paci

ng

Dis

cont

inui

ty C

ondi

tion

15-2

0

18-2

5

8-15

18-2

2

6-12

15-2

0

3-8

6-10

1-3

0-6

Gro

undw

ater

Adj

ustm

ent f

orO

rient

atio

n

8-10

-7 to

-5

7-10

-7 to

–5

7-10

-7 to

-5

7-10

-7 to

-5

7-10

-7 to

-5

RM

R54

to 7

2Fa

ir to

goo

d ro

ck46

to 6

4Fa

ir to

goo

d ro

ck33

to 5

4Po

or to

fair

rock

14 to

34

Ver

y po

or to

poo

r roc

k1

to 1

9V

ery

poor

rock

Page 9: Geotechnical Parameters of Sydney Sandstone and Shale · SYDNEY SANDSTONE AND SHALE BERTUZZI & PELLS Australian Geomechanics Vol 37 No 5 December 2002 41 GEOTECHNICAL PARAMETERS OF

SYD

NEY

SA

ND

STO

NE

AN

D S

HA

LEB

ERTU

ZZI &

PEL

LS

Aust

ralia

n G

eom

echa

nics

Vol

37

No

5 D

ecem

ber 2

002

49

CL

ASS

I/II

SA

ND

STO

NE

DIS

CO

NTI

NU

ITY

SET

S

Set 1

Set 2

Set 3

Set 4

Bed

ding

Join

tJo

int

Cro

ss B

edPa

rting

sO

rient

atio

n (T

rue

Nor

th) D

ip/D

ipD

irSe

t 1Se

t 2Se

t 3Se

t 4

0-5°

160-

200°

90 ±

20°

100-

140°

90 ±

20°

350-

020°

15-3

0-45

°

Effe

ctiv

e Le

ngth

(m)

Set 1

Set 2

Set 3

Set 4

up to

100

’s

H >

10m

V 3

0% >

10m

4

0% 5

-10m

3

0% <

5m

H >

10m

V 3

0% >

10m

4

0% 5

-10m

3

0% <

5m

<4

Effe

ctiv

e Sp

acin

g (m

)Se

t 1Se

t 2Se

t 3Se

t 4

1 to

52

to 1

0m

ay o

ccur

insw

arm

s

2 to

20

0.2

Con

ditio

nSe

t 1Se

t 2Se

t 3Se

t 4

Und

ulat

ing,

roug

h,oc

casi

onal

lysa

ndy

clay

infil

l10

mm

Plan

ar, r

ough

,lim

onite

stai

ning

Plan

ar, r

ough

,lim

onite

stai

ning

Cur

ved,

roug

h

Not

esEx

pect

var

iatio

n in

def

ect o

rient

atio

ns w

ith c

hang

e in

larg

e sc

ale

geol

ogic

al fe

atur

es, e

g la

rge

scal

e fo

ldin

gC

ross

bed

ding

var

ies l

ocal

ly

GEO

LOG

ICA

L D

ESC

RIP

TIO

N

Sand

ston

e.

Fine

to m

ediu

m g

rain

ed, p

ale

grey

to p

ale

yello

w, p

oorly

to

wel

l de

velo

ped

bedd

ing,

th

inly

la

min

ated

to

m

assi

ve,

quar

tzsa

ndst

one

(av.

70%

con

tent

) w

ithin

kao

linite

cla

y (u

p to

20%

) m

atrix

and

som

e si

derit

e. MA

JOR

GEO

LOG

ICA

L FE

ATU

RES

Mas

sive

and

cro

ss-b

edde

d sa

ndst

one

beds

. Su

b-ho

rizon

tal u

ndul

atin

gbe

ddin

g pl

anes

with

occ

asio

nal u

p to

10m

m th

ick

of c

laye

y si

lty s

and.

Indi

vidu

al b

eds

are

typi

cally

2m

thi

ck,

rang

ing

1 to

5m

. T

wo

sub-

verti

cal

join

t se

ts o

ccur

and

are

typ

ical

ly t

ight

. O

ne s

et s

pace

d at

appr

oxim

atel

y 3m

, the

oth

er a

t 5 to

10m

.

RO

CK

MA

SS C

ON

DIT

ION

Wea

ther

ing:

Fres

h to

Slig

htly

wea

ther

ed

Inta

ct R

ock

Stre

ngth

:12

to

50 M

Pa(ty

pica

lly 2

0 to

30

MPa

)

RQ

D:

75-1

00%

Perm

eabi

lity:

< 0.

01 to

25

Luge

on(lo

g m

ean

0.0

2uL)

Page 10: Geotechnical Parameters of Sydney Sandstone and Shale · SYDNEY SANDSTONE AND SHALE BERTUZZI & PELLS Australian Geomechanics Vol 37 No 5 December 2002 41 GEOTECHNICAL PARAMETERS OF

SYD

NEY

SA

ND

STO

NE

AN

D S

HA

LEB

ERTU

ZZI &

PEL

LS

chan

ics

Vol 3

7 N

o 5

Dec

embe

r 200

2

CL

ASS

III S

AN

DST

ON

E

DIS

CO

NTI

NU

ITY

SET

S

Set 1

Set 2

Set 3

Set 4

Bed

ding

Join

tJo

int

Cro

ss B

edPa

rting

sO

rient

atio

n (T

rue

Nor

th) D

ip/D

ipD

irSe

t 1Se

t 2Se

t 3Se

t 4

0-5°

160-

200°

90 ±

20°

100-

140°

90 ±

20°

350-

020°

15-3

0-45

°

Effe

ctiv

e Le

ngth

(m)

Set 1

Set 2

Set 3

Set 4

up to

100

’s

H >

10m

V 3

0% >

10m

4

0% 5

-10m

3

0% <

5m

H >

10m

V 3

0% >

10m

4

0% 5

-10m

3

0% <

5m

<4

Effe

ctiv

e Sp

acin

g (m

)Se

t 1Se

t 2Se

t 3Se

t 4

GEO

LOG

ICA

L D

ESC

RIP

TIO

N

Sand

ston

e.

Fine

to m

ediu

m g

rain

ed, p

ale

grey

to y

ello

w, p

oorly

to w

ell

deve

lope

d be

ddin

g, t

hinl

y la

min

ated

to

mas

sive

, qu

artz

sand

ston

e (a

v. 7

0% c

onte

nt)

with

in k

aolin

ite c

lay

(up

to 2

0%)

mat

rix a

nd so

me

side

rite.

MA

JOR

GEO

LOG

ICA

L FE

ATU

RES

Mas

sive

and

cro

ss-b

edde

d sa

ndst

one

beds

, wea

ther

ing

deve

lope

dal

ong

disc

ontin

uitie

s. S

ub-h

oriz

onta

l un

dula

ting

bedd

ing

plan

esw

ith o

ccas

iona

l up

to 2

0mm

thic

k of

cla

yey

silty

san

d. I

ndiv

idua

lbe

ds a

re t

ypic

ally

2m

thi

ck, r

angi

ng 1

to

5m.

Two

sub-

verti

cal

join

t se

ts o

ccur

and

are

typ

ical

ly t

ight

. O

ne s

et s

pace

d at

appr

oxim

atel

y 3m

, the

oth

er a

t 5 to

10m

.

RO

CK

MA

SS C

ON

DIT

ION

Wea

ther

ing:

Slig

htly

to M

oder

atel

y

50Au

stra

lian

Geo

me

1 to

51

to 5

may

occ

ur in

swar

ms

2 to

20

0.2

Con

ditio

nSe

t 1Se

t 2Se

t 3Se

t 4

Und

ulat

ing,

roug

h, sa

ndy

clay

infil

l to

20m

m

Plan

ar, s

light

lyro

ugh,

lim

onite

stai

ning

Plan

ar, s

light

lyro

ugh,

lim

onite

stai

ning

Cur

ved,

slig

htly

roug

h,oc

casi

onal

cla

yin

fill u

p to

3m

m

Not

esEx

pect

var

iatio

n in

def

ect o

rient

atio

ns w

ith c

hang

e in

larg

e sc

ale

geol

ogic

al fe

atur

es, e

g la

rge

scal

e fo

ldin

gC

ross

bed

ding

var

ies l

ocal

ly

wea

ther

ed

Inta

ct R

ock

Stre

ngth

:7

to 2

5 M

Pa

RQ

D:

40-7

0%

Perm

eabi

lity:

0.1

to 5

0 Lu

geon

(log

mea

n 1u

L)

Page 11: Geotechnical Parameters of Sydney Sandstone and Shale · SYDNEY SANDSTONE AND SHALE BERTUZZI & PELLS Australian Geomechanics Vol 37 No 5 December 2002 41 GEOTECHNICAL PARAMETERS OF

SYD

NEY

SA

ND

STO

NE

AN

D S

HA

LEB

ERTU

ZZI &

PEL

LS

51

CL

ASS

IV/V

SA

ND

STO

NE

GEO

LOG

ICA

L D

ESC

RIP

TIO

N

Sand

ston

e.

Fine

to

med

ium

gra

ined

, yel

low

to

oran

ge t

o re

d-br

own,

poor

ly to

wel

l dev

elop

ed b

eddi

ng, t

hinl

y la

min

ated

to m

assi

ve, q

uartz

sand

ston

e (a

v. 7

0% c

onte

nt)

with

in k

aolin

ite/il

lite

clay

(up

to

30%

)m

atrix

and

som

e si

derit

e.

MA

JOR

GEO

LOG

ICA

L FE

ATU

RES

Mas

sive

an

d cr

oss-

bedd

ed

sand

ston

e be

ds,

wea

ther

ing

very

w

ell

deve

lope

d al

ong

disc

ontin

uitie

s. S

ub-h

oriz

onta

l un

dula

ting

bedd

ing

plan

es w

ith u

p to

50m

m th

ick

of c

laye

y si

lty s

and.

Ind

ivid

ual b

eds

are

DIS

CO

NTI

NU

ITY

SET

S

Set 1

Set 2

Set 3

Set 4

Bed

ding

Join

tJo

int

Cro

ss B

edPa

rting

sO

rient

atio

n (T

rue

Nor

th) D

ip/D

ipD

irSe

t 1Se

t 2Se

t 3Se

t 4

0-5°

160-

200°

90 ±

20°

100-

140°

90 ±

20°

350-

020°

15-3

0-45

°

Effe

ctiv

e Le

ngth

(m)

Set 1

Set 2

Set 3

Set 4

Aust

ralia

n G

eom

echa

nics

Vol

37

No

5 D

ecem

ber 2

002

typi

cally

2m

thic

k, ra

ngin

g 1

to 5

m.

Two

sub-

verti

cal j

oint

set

s oc

cur

and

are

typi

cally

tigh

t. O

ne s

et s

pace

d at

app

roxi

mat

ely

3m, t

he o

ther

at 5

to 1

0m.

RO

CK

MA

SS C

ON

DIT

ION

Wea

ther

ing:

Hig

hly

to E

xtre

mel

y w

eath

ered

Inta

ct R

ock

Stre

ngth

:1

to 7

MPa

RQ

D:

<40%

Perm

eabi

lity:

1 to

100

Lug

eon

(log

mea

n 5

to 1

0uL)

up to

100

’s

H >

10m

V 3

0% >

10m

4

0% 5

-10m

3

0% <

5m

H >

10m

V 3

0% >

10m

4

0% 5

-10m

3

0% <

5m

<4

Effe

ctiv

e Sp

acin

g (m

)Se

t 1Se

t 2Se

t 3Se

t 4

1 to

51

to 5

may

occ

ur in

swar

ms

2 to

20

0.2

Con

ditio

nSe

t 1Se

t 2Se

t 3Se

t 4

Und

ulat

ing,

roug

h, sa

ndy

clay

infil

l to

50m

m

Plan

ar, s

light

lyro

ugh,

sand

ycl

ay in

fill t

o>3

mm

Plan

ar, s

light

lyro

ugh,

sand

ycl

ay in

fill t

o>3

mm

Cur

ved,

slig

htly

roug

h,cl

ay in

fill u

p to

3mm

Not

esEx

pect

var

iatio

n in

def

ect o

rient

atio

ns w

ith c

hang

e in

larg

e sc

ale

geol

ogic

al fe

atur

es, e

g la

rge

scal

e fo

ldin

g

Page 12: Geotechnical Parameters of Sydney Sandstone and Shale · SYDNEY SANDSTONE AND SHALE BERTUZZI & PELLS Australian Geomechanics Vol 37 No 5 December 2002 41 GEOTECHNICAL PARAMETERS OF

SYD

NEY

SA

ND

STO

NE

AN

D S

HA

LEB

ERTU

ZZI &

PEL

LS

stra

lian

Geo

mec

hani

cs V

ol 3

7 N

o 5

Dec

embe

r 200

2

52

Au

CL

ASS

I/II

SH

AL

E

GEO

LOG

ICA

L D

ESC

RIP

TIO

N

Shal

e.

Ver

y fin

e to

fin

e gr

aine

d, d

ark

grey

to

blac

k, w

ell

deve

lope

d be

ddin

g, th

inly

lam

inat

ed, s

iltst

one

and

clay

ston

e w

ithm

inor

car

bona

ceou

s con

tent

.

MA

JOR

GEO

LOG

ICA

L FE

ATU

RES

Sub-

horiz

onta

l un

dula

ting

bedd

ing

plan

es.

Ind

ivid

ual

beds

are

typi

cally

1 t

o 3m

. T

wo

sub-

verti

cal

join

t se

ts o

ccur

and

are

typi

cally

tigh

t. O

ne s

et s

pace

d at

app

roxi

mat

ely

3m, t

he o

ther

at

5 to

10m

.

RO

CK

MA

SS C

ON

DIT

ION

Wea

ther

ing:

Fres

h to

Slig

htly

wea

ther

ed

Inta

ct R

ock

Stre

ngth

:7

to 4

0 M

Pa

RQ

D:

70-1

00%

Perm

eabi

lity:

< 0.

01 to

25

Luge

on

(log

mea

n 0

.02u

L)

DIS

CO

NTI

NU

ITY

SET

S

Set 1

Set 2

Set 3

Set 4

Bed

ding

Join

tJo

int

Join

t(r

ando

m)

Orie

ntat

ion

(Tru

e N

orth

) Dip

/Dip

Dir

Set 1

Set 2

Set 3

Set 4

0-10

°

sout

h

90 ±

20°

070-

110°

90 ±

15°

340-

040°

30-6

SW o

r NE

Effe

ctiv

e Le

ngth

(m)

Set 1

Set 2

Set 3

Set 4

up to

100

’s

typi

cally

with

inin

divi

dual

bed

sty

pica

lly w

ithin

indi

vidu

al b

eds

Ver

y m

inor

Effe

ctiv

e Sp

acin

g (m

)Se

t 1Se

t 2Se

t 3Se

t 4

1 to

30.

5 to

50.

5 to

10

Ver

y m

inor

Con

ditio

nSe

t 1Se

t 2Se

t 3Se

t 4

Und

ulat

ing,

smoo

thPl

anar

, slig

htly

roug

hPl

anar

, slig

htly

roug

hPl

anar

,sl

ight

ly ro

ugh

Not

esEx

pect

var

iatio

n in

def

ect o

rient

atio

ns w

ith c

hang

e in

larg

e sc

ale

geol

ogic

al fe

atur

es, e

g la

rge

scal

e fo

ldin

g

Page 13: Geotechnical Parameters of Sydney Sandstone and Shale · SYDNEY SANDSTONE AND SHALE BERTUZZI & PELLS Australian Geomechanics Vol 37 No 5 December 2002 41 GEOTECHNICAL PARAMETERS OF

SYD

NEY

SA

ND

STO

NE

AN

D S

HA

LEB

ERTU

ZZI &

PEL

LS

53

Au

stra

lian

Geo

mec

hani

cs V

ol 3

7 N

o 5

Dec

embe

r 200

2

CL

ASS

III S

HA

LE

GEO

LOG

ICA

L D

ESC

RIP

TIO

N

Shal

e. V

ery

fine

to fi

ne g

rain

ed, d

ark

grey

to b

lack

, wel

l dev

elop

edbe

ddin

g,

thin

ly

lam

inat

ed,

silts

tone

an

d cl

ayst

one

with

m

inor

carb

onac

eous

con

tent

.

MA

JOR

GEO

LOG

ICA

L FE

ATU

RES

Wea

ther

ing

deve

lope

d al

ong

disc

ontin

uitie

s.

Sub-

horiz

onta

lun

dula

ting

bedd

ing

plan

es.

Indi

vidu

al b

eds

are

typi

cally

1 t

o 3m

.Tw

o su

b-ve

rtica

l jo

int

sets

occ

ur a

nd a

re t

ypic

ally

tig

ht.

One

set

spac

ed a

t app

roxi

mat

ely

3m, t

he o

ther

at 5

to 1

0m.

RO

CK

MA

SS C

ON

DIT

ION

Wea

ther

ing:

Mod

erat

ely

wea

ther

ed

Inta

ct R

ock

Stre

ngth

:2

to 1

5 M

Pa

RQ

D:

40-6

0%

Perm

eabi

lity:

0.1

to 5

0 Lu

geon

(lo

g m

ean

1uL)

DIS

CO

NTI

NU

ITY

SET

S

Set 1

Set 2

Set 3

Set 4

Bed

ding

Join

tJo

int

Join

t(r

ando

m)

Orie

ntat

ion

(Tru

e N

orth

) Dip

/Dip

Dir

Set 1

Set 2

Set 3

Set 4

0-10

°

sout

h

90 ±

20°

070-

110°

90 ±

15°

340-

040°

30-6

SW o

r NE

Effe

ctiv

e Le

ngth

(m)

Set 1

Set 2

Set 3

Set 4

up to

100

’s

typi

cally

with

inin

divi

dual

bed

sty

pica

lly w

ithin

indi

vidu

al b

eds

1 to

2

Effe

ctiv

e Sp

acin

g (m

)Se

t 1Se

t 2Se

t 3Se

t 4

1 to

30.

5 to

50.

5 to

10

<1

Con

ditio

nSe

t 1Se

t 2Se

t 3Se

t 4

Und

ulat

ing,

smoo

th, c

lay

infil

l up

to 1

0mm

Plan

ar, s

moo

th,

clay

coa

ting

Plan

ar, s

moo

th,

clay

coa

ting

Plan

ar,

smoo

th,

clay

coat

ing

Not

esEx

pect

var

iatio

n in

def

ect o

rient

atio

ns w

ith c

hang

e in

larg

e sc

ale

geol

ogic

al fe

atur

es, e

g la

rge

scal

e fo

ldin

g

Page 14: Geotechnical Parameters of Sydney Sandstone and Shale · SYDNEY SANDSTONE AND SHALE BERTUZZI & PELLS Australian Geomechanics Vol 37 No 5 December 2002 41 GEOTECHNICAL PARAMETERS OF

BER

TUZZ

I & P

ELLS

lian

Geo

mec

hani

cs V

ol 3

7 N

o 5

Dec

embe

r 200

2

SYD

NEY

SA

ND

STO

NE

AN

D S

HA

LE

CL

ASS

IV/V

SH

AL

E

DIS

CO

NTI

NU

ITY

SET

S

Set 1

Set 2

Set 3

Set 4

Bed

ding

Join

tJo

int

Join

t(r

ando

m)

Orie

ntat

ion

(Tru

e N

orth

) Dip

/Dip

Dir

Set 1

Set 2

Set 3

Set 4

0-10

°

sout

h

90 ±

20°

070-

110°

90 ±

15°

340-

040°

30-6

SW o

r NE

GEO

LOG

ICA

L D

ESC

RIP

TIO

N

Shal

e.

Ver

y fin

e to

fin

e gr

aine

d, d

ark

grey

to

blac

k, w

ell

deve

lope

d be

ddin

g, th

inly

lam

inat

ed, s

iltst

one

and

clay

ston

e w

ithm

inor

car

bona

ceou

s con

tent

.

MA

JOR

GEO

LOG

ICA

L FE

ATU

RES

Wea

ther

ing

ubiq

uito

us

alon

g di

scon

tinui

ties.

Su

b-ho

rizon

tal

undu

latin

g be

ddin

g pl

anes

. In

divi

dual

bed

s ar

e ty

pica

lly 1

to 3

m.

54Au

stra

Effe

ctiv

e Le

ngth

(m)

Set 1

Set 2

Set 3

Set 4

up to

100

’s

typi

cally

with

inin

divi

dual

beds

typi

cally

with

inin

divi

dual

beds

1 to

2

Effe

ctiv

e Sp

acin

g (m

)Se

t 1Se

t 2Se

t 3Se

t 4

1 to

30.

5 to

50.

5 to

10

<1

Con

ditio

nSe

t 1Se

t 2Se

t 3Se

t 4

Und

ulat

ing,

smoo

th, c

lay

infil

l up

to30

mm

Plan

ar,

smoo

th, c

lay

infil

l to

30m

m

Plan

ar,

smoo

th, c

lay

infil

l to

30m

m

Plan

ar,

smoo

th, c

lay

infil

l to

30m

m

Not

esEx

pect

var

iatio

n in

def

ect o

rient

atio

ns w

ithch

ange

in la

rge

scal

e ge

olog

ical

feat

ures

, eg

larg

esc

ale

fold

ing

Two

sub-

verti

cal j

oint

set

s oc

cur a

nd a

re ty

pica

lly ti

ght.

One

set

spac

ed a

t app

roxi

mat

ely

3m, t

he o

ther

at 5

to 1

0m.

RO

CK

MA

SS C

ON

DIT

ION

Wea

ther

ing:

Hig

hly

to e

xtre

mel

y w

eath

ered

Inta

ct R

ock

Stre

ngth

:1

to 2

MPa

RQ

D:

<40%

Perm

eabi

lity:

<1 to

25

Luge

on(lo

g m

ean

1uL)