geophysical causes of pole coordinates data prediction errors

35
Geophysical causes of pole coordinates data prediction errors Wiesław Kosek 1) Environmental Engineering and Land Surveying Department, Agriculture University of Krakow, Poland 2) Space Research Centre, Polish Academy of Sciences, Warsaw, Poland European Geosciences Union, General Assembly, Vienna, Austria, 22 – 27 April 2012

Upload: badrani

Post on 05-Feb-2016

38 views

Category:

Documents


0 download

DESCRIPTION

Geophysical causes of pole coordinates data prediction errors. Wiesław Kosek 1) Environmental Engineering and Land Surveying Department, Agriculture University of Krakow, Poland 2) Space Research Centre, Polish Academy of Sciences, Warsaw, Poland. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Geophysical causes of pole coordinates data prediction errors

Geophysical causes of pole coordinates data prediction errors

Wiesław Kosek

1) Environmental Engineering and Land Surveying Department, Agriculture University of Krakow, Poland

2) Space Research Centre, Polish Academy of Sciences, Warsaw, Poland

European Geosciences Union, General Assembly, Vienna, Austria, 22 – 27 April 2012

Page 2: Geophysical causes of pole coordinates data prediction errors

SUMMARY• introductionintroduction• input data input data • wavelet based comparison of complex-valued wavelet based comparison of complex-valued

time series applied to geodetic and fluid time series applied to geodetic and fluid excitation functions and corresponding to them excitation functions and corresponding to them pole coordinates data pole coordinates data

• prediction of pole coordinates data by the prediction of pole coordinates data by the LS+AR method and wavelet based comparison LS+AR method and wavelet based comparison of prediction errors. of prediction errors.

• conclusionsconclusions

Page 3: Geophysical causes of pole coordinates data prediction errors

The exact knowledge of the EOP is important for many investigations in astronomy and geodesy. For some tasks the future EOP data are needed to compute real-time transformation between the celestial and terrestrial reference frames. This transformation is important for the NASA Deep Space Network, which is an international network of antennas that supports: - interplanetary spacecraft missions, - radio and radar astronomy observations, - selected Earth-orbiting missions.

Page 4: Geophysical causes of pole coordinates data prediction errors

DATA• x,y pole coordinates data from the IERS: EOPC04_IAU2000.62-now (1962 – 2012.15), Δt = 1 day,

http://hpiers.obspm.fr/iers/eop/eopc04/

• Equatorial components of atmospheric angular momentum from NCEP/NCAR (mass+motion),

aam.ncep.reanalysis.* (1948 - 2012.15) Δt = 0.25 day, ftp://ftp.aer.com/pub/anon_collaborations/sba/,

• Equatorial excitation functions of global ocean angular momentum (mass+motion):

ECCO_kf080.chi ECCO_JPL (Jan. 1993 - Dec. 2011), Δt = 1 day,   c20010701.chi ECCO_JPL (Jan. 1980 - Mar. 2002) Δt = 1 day,

ECCO_50yr.chi  ECCO_JPL  (Jan 1949 - Dec 2002)   Δt = 10 days http://euler.jpl.nasa.gov/sbo/sbo_data.html,

Page 5: Geophysical causes of pole coordinates data prediction errors

IERS C04_IAU2000 x,y pole coordinates data, their determination errors and recent ratio of the prediction to the determination errors

< 3 mm

1

3

5

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012years

1

3

5

da

ys in

the

futu

re

01020304050607080

ratio

x

y

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010-0.20.00.20.40.6mas

x

y

1998 2000 2002 2004 2006 2008 2010 2012years

0.0000

0.0001

0.0002arcsec determ ination errors in x & y

Page 6: Geophysical causes of pole coordinates data prediction errors

Equatorial components of AAM and connected OAM excitation functions

33000 36000 39000 42000 45000 48000 51000 54000-100

0

100

200

300

400 AAM aam.ncep.reanalysismas

33000 36000 39000 42000 45000 48000 51000 54000MJD

- 6 0- 4 0- 2 0

02 04 06 0 OAM

19801949 20121993ECCO_kf080.chic20010701.chi ECCO_50yr.chi

mas

Page 7: Geophysical causes of pole coordinates data prediction errors

)/2(exp)/2()(1),(ˆ2/

12/

nbinaxn

aabXn

n

)(x 2/,12/,...,12/ nnn

)(tx

)(

)4/224exp()2/2exp(2)22/2exp()2exp(21)(

tttit

The wavelet transform coefficients of complex-valued signal defined:

where

- Discrete Fourier Transforms (DFT)

of time series

, - Continuous Fourier Transform (CFT) of the modified Morlet wavelet function given by the following time domain formula (Schmitz-Hübsch and Schuh 1999):

WAVELET TRANSFORM COEFFICIENTS

- dilation and translation parameters

)(tx

1,...,1,0,0 nba

Page 8: Geophysical causes of pole coordinates data prediction errors

WAVELET TRANSFORM SPECTRUM AND POLARISATION

SPECTRUM:

12,2/1,...,12/),(ˆ),(ˆ ,22/

12/

nmmnmtabtXatS

m

mbxx

POLARISATION: ,),(ˆ),(ˆ),(ˆ),(ˆ

),(ˆatSatSatSatSatxxp

yyxx

xxxx

0),(ˆ atxxp

1),(ˆ atxxp1),(ˆ atxxp 1),(ˆ0 atxxp0),(ˆ1 atxxpretrograde prograde

ellipticcircular circular

the shape of ellipse degenerates to a line

Page 9: Geophysical causes of pole coordinates data prediction errors

...5,3,1r )(tx )(ty 1,...,1,0 nt

12,2/1,...,12/)),(ˆ(cos),(ˆ),(ˆ , nmmnmtatxyatxyatxy rr

),(ˆ),(ˆ/),(ˆ),(ˆ atSatSatSatxy yyxxxy

),(ˆ),(ˆ/]),(ˆ),(ˆ[1arg),(ˆ 2/

12/

abtYabtXabtYabtXm

atm

mbxy

WAVELET TRANSFORM SEMBLANCE

, between and

,

time series is defined as:

where - wavelet coherence,

- wavelet phase synchronization,

- wavelet spectrum of

The wavelet semblance of the order

mabtYabtXatSm

mbxy /),(ˆ),(ˆ),(ˆ 2/

12/

- wavelet cross-spectrum

)/2(exp)/2()(1),(ˆ2/

12/

nbinayn

aabYn

n

)(y - DFT of )(ty

,2

),(ˆ),(ˆ 2/

12/abtYatS

m

mbyy

)(ty

Page 10: Geophysical causes of pole coordinates data prediction errors

The wavelet semblance (order=1) between geodetic excitation functions computed from x-iy IERS pole coordinates data and equatorial components of the fluid excitation functions (AAM, OAM and AAM+OAM).

psi /chi IERS, AAM

psi/chi IERS, OAM

psi/chi IERS, AAM+OAM

200

400

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

-400

-200

200

400

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

-400

-200

P

erio

d (d

ays)

200

400

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005years

-400

-200

-1

-0.5

0

0.5

1semblance (order 1)

Page 11: Geophysical causes of pole coordinates data prediction errors

x,y pole coordinates model data computed from fluid excitation functions

)()()( ttmtmich

)()()( tiytxtm

)(2)(1)( titt

Qi

Tchch 212 daysTch 433 170Q

tittttititmttm ch

chch exp)()(2exp)()(

Differential equation of polar motion:

- model pole coordinates

- equatorial excitation functions corresponding to AAM, OAM, and AAM+OAM excitation functions

- complex-valued frequency, where and

Approximate solution of this equation in discrete time moments can be obtained using the trapezoidal rule of numerical integration:

Page 12: Geophysical causes of pole coordinates data prediction errors

38000 40000 42000 44000 46000 48000 50000 52000 54000 56000-0.40-0.200.000.200.40arcsec x

38000 40000 42000 44000 46000 48000 50000 52000 54000 56000MJD

-0.200.000.200.400.60 y

The IERS x,y pole coordinates and the x,y pole coordinates model data computed from fluid excitation functions in 1962 - 2012.

IERS, AAM, AAM+OAM, OAM

Page 13: Geophysical causes of pole coordinates data prediction errors

The wavelet spectra of x-iy IERS pole coordinates data and pole coordinates model data computed from fluid excitation functions.

50

100

01000200030004000500060007000

1980 1984 1988 1992 1996 2000 2004 2008-100

-50

50

100

per

iod

(day

s)

1980 1984 1988 1992 1996 2000 2004 2008-100

-50

50

100

1980 1984 1988 1992 1996 2000 2004 2008-100

-50

x,y IERS

x, y AAM+OAM

x, y AAM

50

100

1980 1984 1988 1992 1996 2000 2004 2008-100

-50

x, y OAM

Page 14: Geophysical causes of pole coordinates data prediction errors

The wavelet polarization functions of x-iy IERS pole coordinates data and pole coordinates model data computed from fluid excitation functions.

200

400

p

erio

d (d

ays)

-1

-0.5

0

0.5

1

200

400

x,y AAM

x,y AAM+OAM

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010years

200

400

x,y OAM

200

400

x,y IERS

prograde

retrograde

Page 15: Geophysical causes of pole coordinates data prediction errors

The mean (1980-2011) wavelet polarization functions of IERS x-iy pole coordinates data and pole coordinates model data computed from fluid excitation functions (AAM, OAM, AAM+OAM).

0 40 80 120 160 200 240 280period (days)-0.2

0.0

0.2

0.4

0.6

0.8

1.0

x,y IERSx,y AAMx,y OAMx,y AAM+OAM

Page 16: Geophysical causes of pole coordinates data prediction errors

Prediction of x, y pole coordinates data by the LS+AR method

x, y LS residuals

Prediction ofx, y

LS residuals

x, yLS extrapolation

Prediction of x, y

AR prediction

x, y

x, y LS model (Chandler circle + annual and semiannual ellipses +

linear trend)

LS extrapolation

Page 17: Geophysical causes of pole coordinates data prediction errors

Prediction errors of the IERS pole coordinates data and pole coordinates model data computed from fluid (AAM, AAM+OAM) excitation functions for 30 and 60 days in the future, together with the correlation coefficients between these errors in 1990-2012.

-0.03-0.02-0.010.000.010.020.03arcsec x - 30 day prediction differences IERS AAM AAM+OAM

1992 1996 2000 2004 2008 2012-0.03-0.02-0.010.000.010.020.03 y - 30 day prediction differences IERS AAM AAM+OAM

-0.03-0.02-0.010.000.010.020.03arcsec x - 60 day prediction differences IERS AAM AAM+OAM

1992 1996 2000 2004 2008 2012-0.03-0.02-0.010.000.010.020.03 y - 60 day prediction differences IERS AAM AAM+OAM

Correlation coefficents IERS/AAM IERS/AAM+OAM

0.56 0.86

0.52 0.76

0.48 0.84

0.51 0.75

Page 18: Geophysical causes of pole coordinates data prediction errors

Prediction errors of x IERS pole coordinate and x pole coordinate model data computed from fluid excitation functions from one day to one year in the future

x

IERS

AAM

AAM+OAM

0100200300

0100200300

0100200300

day

s in

the

futu

re

1980 1985 1990 1995 2000 2005 2010years

0100200300

OAM

-0.1

-0.05

0

0.05

0.1mas

Page 19: Geophysical causes of pole coordinates data prediction errors

Prediction errors of y IERS pole coordinate and y pole coordinate model data computed from fluid excitation functions from one day to one year in the future

y

IERS

AAM+OAM

AAM

0100200300

0100200300

0100200300

d

ays

in th

e fu

ture

1980 1985 1990 1995 2000 2005 2010years

0100200300

OAM

-0.1

-0.05

0

0.05

0.1mas

Page 20: Geophysical causes of pole coordinates data prediction errors

Mean prediction errors of x,y IERS pole coordinates and pole coordinates model data computed from fluid excitation functions (AAM, OAM, AAM+OAM)

0 50 100 150 200 250 300 350 400days in the fu ture

0.00

0.01

0.02

0.03

0.04IERS

arcsec

AAM

AAM+OAM

OAM

x

0 50 100 150 200 250 300 350 400days in the fu ture

0.00

0.01

0.02

0.03

0.04IERS

arcsec

AAM

AAM+OAM

OAM

y

Page 21: Geophysical causes of pole coordinates data prediction errors

The wavelet spectrum of complex-valued prediction errors of the IERS x,y pole coordinates data

306090

120

0

40000

80000

120000

prograderetrogradeWavelet spectrum of x-iy IERS prediction errors

100 200 300 400 500 600 700 800period (days)

0200400600800

-800 -700 -600 -500 -400 -300 -200 -100period (days)

369

da

ys in

the

futu

re

Page 22: Geophysical causes of pole coordinates data prediction errors

The wavelet spectra of the complex-valued prediction errors of the IERS x,y pole coordinates data and pole coordinates model data computed from fluid excitation functions (AAM, OAM, AAM+OAM)

100 200 300 400 500 600 700 800

period (days)

306090

120

306090

120

306090

120

d

ays

in th

e fu

ture

-800 -700 -600 -500 -400 -300 -200 -100

period (days)

306090

120

0

40000

80000

120000x, y IERS pred err

x,y AAM+OAM pred err

x, y AAM pred err

x,y OAM pred err

prograderetrograde

Page 23: Geophysical causes of pole coordinates data prediction errors

The wavelet polarizations of complex-valued prediction errors of the IERS pole coordinates data and pole coordinates model data computed from fluid excitation functions (AAM, OAM, AAM+OAM)

x,y IERS pred err

30

60

90

120

30

60

90

120

x,y AAM+OAM pred err

30

60

90

120

d

ays

in th

e fu

ture

x,y AAM pred err

50 100 150 200 250 300 350 400 450 500period (days)

30

60

90

120

x,y OAM pred err

-1

-0.5

0

0.5

1prograde

retrograde

Page 24: Geophysical causes of pole coordinates data prediction errors

CONCLUSIONSCONCLUSIONS• The wavelet polarization function of complex-valued IERS pole coordinates data

and pole coordinates model data computed from fluid excitation functions, show that oscillations in them with periods greater than ~30 days are mostly prograde and become more circular when the period increases. Oscillations with periods less than ~30 days are more retrograde than prograde.

• The wavelet semblance (order=1) between complex-valued geodetic excitation functions computed from the IERS pole coordinates data and fluid excitation functions are greater for the joint atmospheric-ocean excitation than for the atmospheric or ocean ones. The annual oscillations in geodetic and ocean excitation functions are out of phase.

• The contributions of atmosphere and ocean angular momentum excitation functions to the mean prediction errors of pole coordinates data is similar and of the order of 55-60% of the total mean prediction error of pole coordinates data.

• The contribution of the joint atmospheric-ocean angular momentum excitation to the mean prediction errors of pole coordinates data is of the order of 70 to 80 % of the total mean prediction error of these data.

• The wavelet spectra and polarization of time series of prediction errors of pole coordinates data show that oscillations in them are mostly prograde. These prediction errors are mostly caused by short period wide band elliptic oscillations in joint ocean atmospheric excitation function and wide band prograde oscillations in the Chandler and annual frequency band caused by mismodelling of the Chandler and annual oscillations in the prediction algorithm.

Page 25: Geophysical causes of pole coordinates data prediction errors

The wavelet coherence between geodetic excitation functions computed from x-iy IERS pole coordinates data and equatorial components of the fluid excitation functions.

-500 -400 -300 -200 -100 0 100 200 300 400 500period (days)

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

err

AAM + OAM / IERSAAM / IERSOAM / IERS

coherence chi/psi (1980-2011)

Page 26: Geophysical causes of pole coordinates data prediction errors

Skewness (SKE)

MiSD

xxn

xxn

SDxx

ESKEin

i jiobspred

ji

n

i jiobspred

ji

i

jiobspred

jii ,...,2,1,

)(1

)(1

33

2/3

12

,,

13

,,3

,,

3

skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable. Negative skew indicates that the tail on the left side of the probability density function is longer than the right side. If the distribution is symmetric then skewness is zero.

- third moment about the mean

iSD - standard deviation error

- the expectation operator. E pi nSKE /6)(ˆ

Page 27: Geophysical causes of pole coordinates data prediction errors

Kurtosis (CUR)

33)(1

)(1

3 44

2

12

,,

14

,,4

,,

in

i jiobspred

ji

n

i jiobspred

ji

i

jiobspred

jii SD

xxn

xxn

SDxx

EKUR

4

(Gr. κυρτός, ang. bulging) is a measure of the "peakedness" of the probability distribution of a real-valued random variable,

- fourth moment about the mean

iSD - standard deviation error

- the expectation operator. E

pi nKUR /24)(ˆ

Page 28: Geophysical causes of pole coordinates data prediction errors

Skewness and kurtosis of prediction errors of the IERS x,y pole coordinates and pole coordinates model data computed from fluid excitation functions (AAM, OAM, AAM+OAM)

0 20 40 60 80 100 120days in the future

- 6

- 4

- 2

0

2

4

6 SKE y

0 20 40 60 80 100 120days in the future

05

1015202530 KUR x

0 20 40 60 80 100 120days in the future

- 6

- 4

- 2

0

2

4

6 SKE x IERSAAM+OAMAAMOAM

0 20 40 60 80 100 120days in the future

05

1015202530 KUR y

Page 29: Geophysical causes of pole coordinates data prediction errors

Mean absolute errors (MAE) and standard deviations (SD) computed by different participants of the project. Ensemble prediction (red).

EOPCPPP (Oct 2010 – Dec 2011)

Page 30: Geophysical causes of pole coordinates data prediction errors

Pole coordinates spectra

The Morlet wavelet spectra of x,y IERS 08C04 pole coordinates data computed for different σ parameter values. Time span of data: 1962 – 2012.

-500 -400 -300 -200 -100 0 100 200 300 400 500period (days)

0.0E+02.0E+94.0E+96.0E+98.0E+9

1.0E+101.2E+101.4E+10 Morlet W avelet spectra

-400 -350 -300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300period (days)

0E+0

1E+7

2E+7

3E+7 Morlet W avelet spectra

Page 31: Geophysical causes of pole coordinates data prediction errors

1900 1920 1940 1960 1980 2000

0.04

0.08

0.12

0.16

0.20

0.24arcsec

1900 1920 1940 1960 1980 2000years

0.00

0.01

0.02

1900 1920 1940 1960 1980 2000years

-240-200-160-120

-80-40

04080

120160200240 o

Amplitudes

Phases

Chandler

Annual

Semi-annual

Chandler

AnnualSemi-annual

Amplitudes and phases of the most energetic oscillations in x, y pole coordinates data

bold line – progradethin line - retrograde

Page 32: Geophysical causes of pole coordinates data prediction errors

EOP prediction – international activity

Earth Orientation Parameters Prediction Comparison Campaign (EOPPCC) (Oct. 2005 – Mar. 2008). The main idea of this campaign was to compare the various prediction techniques that can be applied to the EOP prediction.

IERS Working Group on Predictions (04. 2006 – EGU). The main idea of the WGP is to investigate the optimum input data sets for the EOP predictions and the strengths and weaknesses of the various prediction algorithms.

Page 33: Geophysical causes of pole coordinates data prediction errors

EOP prediction – international activity

Earth Orientation Parameters Prediction Comparison Campaign (EOPPCC) (Oct. 2005 – Mar. 2008) [H. Schuh (Chair), W. Kosek, M. Kalarus]

The main idea of this campaign was to compare the various prediction techniques that can be applied to the EOP prediction. During the EOPPCC about 10 participating groups/methods were submitting prediction results of pole coordinates, UT1- UTC, LOD, and celestial pole offsets.

IERS Working Group on Predictions (WGP) (04. 2006 – EGU) [W. Wooden (Chair), T. Van Dam (input data) , W. Kosek (algorithms)] The main idea of the WGP is to investigate the optimum input data sets for the

EOP predictions and the strengths and weaknesses of the various prediction algorithms. The WGP was formed to investigate the properties of different prediction algorithms, qualities of the input data, and the interactions between input data and prediction algorithms.

Page 34: Geophysical causes of pole coordinates data prediction errors

Future EOP data are neededFuture EOP data are needed to compute real-time transformation to compute real-time transformation between the celestial and terrestrial reference frames. This between the celestial and terrestrial reference frames. This transformation is important for the NASA Deep Space Network, transformation is important for the NASA Deep Space Network, which is an international network of antennas that supports: which is an international network of antennas that supports: - interplanetary spacecraft missions, - interplanetary spacecraft missions, - radio and radar astronomy observations, - radio and radar astronomy observations, - selected Earth-orbiting missions.- selected Earth-orbiting missions.

1989 - IERS Rapid Service Sub-bureau. 2001 - IERS Rapid Service/Prediction Centre (IERS RS/PC)

Page 35: Geophysical causes of pole coordinates data prediction errors

Goldstone, California, Goldstone, California, pustynia Mojavepustynia Mojave

Madrid, SpainMadrid, Spain

Canberra, Australia.Canberra, Australia.

Deep Space Network