geometric approximation using coresets - duke …pankaj/publications/slides/core-set.pdfk...

35
Geometric Approximation Using Coresets Pankaj K. Agarwal Department of Computer Science Duke University

Upload: trinhbao

Post on 10-Apr-2018

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

Geometric Approximation Using Coresets

Pankaj K. Agarwal

Department of Computer ScienceDuke University

Page 2: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

� : Set of � moving points in ���

� �� � � �� �Maintain the diameter (width, smallest enclosing disk) of � .

K [A., Guibas, Hershberger, Veach]

� Diametral pair can change � �� � times

� Kinetic data structure with � �� events

K Can we maintain the approximate diameter of � more efficiently?

� Is there a small coreset � � � s.t.

�� �� � � � � � �� ��� � � � �� �� � � � � � � ?K Kinetic bounding box hierarchies?

Kinetic Geometry

Geometric Approximation Using Coresets 1

Page 3: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

� : Set of � points in ���

K Fit a cylinder through �

� Find a cylinder � �

�� � � � � �! " � �# $ � �%&' (*) � �+ � �

� Optimal solution: �-, [A., Aronov,

Sharir]

� . �� � -approximation: � ��K Can we compute an � -approximation of

�� � � � in linear time? δ

rO Ir

Is there is a small coreset � � � so that �� � � � approximates �/� � � � ?

Shape Fitting

Geometric Approximation Using Coresets 2

Page 4: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

t=3t=2t=1 t=4

K An incoming stream of points in �10

K Maintain certain geometric/statistical measures of the input stream

� Diameter, smallest enclosing disk, 2 -clustering

K Use 3 4 "*5 687 9 � space and processing time

K Much work done on maintaining a summary of 1D data

K Little work on multidimensional geometric data[A., Krishnan, Mustafa, Venkatasubramanian], [Hershberger, Suri],

[Bagchi, Chaudhary, Eppstein, Goodrich]

K How much storage and processing time (per point) needed to maintain

� -approx of smallest disk enclosing � ? Maintain a core set!

Geometry in Streaming Model

Geometric Approximation Using Coresets 3

Page 5: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

K : � � � +<; � ,; �>= ( : Set system (range space)� ? : VC-dimension of :

K @ � � � -approximation if for all A B;

CCCCD A D

D � D� D A E @ D

D @ DCCCCF �

K A random subset @ G � of size HJIKI 3 4 " H K is an � -approximation of �

with high probability [Vapnik-Chervonenkis]

K Efficient deterministic algorithms for computing an � -approximation[Matousek, Chazelle]

L -Approximation and Random Sampling

Geometric Approximation Using Coresets 4

Page 6: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

K An � -approximation is a coreset of � in a combi-natorial sense

� � : Set of points in ��

�; � M A E � D A is a disk N

� @ : an � -approximation of � � +<; �

� @ approximatesD � E A DK @ is not a coreset of � in a metric/geometric sense

� �� �� � @ � does not approximate � � �� � � �

� A best-fit circle for @ does not approximatethe best-fit circle for �

What about other sampling schemes?

L -Approximations

Geometric Approximation Using Coresets 5

Page 7: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

K Notion of coreset is problem specicific

K Is there a unified framework that constructs coresets for a wide classof problems?

� Random subset is an � -approximation for a large class of rangespaces!

� Easy to compute

Define the notion of � -kernel

K Core set for a wide class of problems

Unified Framework for Coresets

Geometric Approximation Using Coresets 6

Page 8: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

� : Set of points in �0

O�P

QRP

SP T U ω (u,Q)

ω (u,S)

u

Directional width: For V BW 0 X 7 ,

Y � V + � � � � �%&' ( Z V + � [ � � �#&' (Z V + � [

� -kernel: � � � is an � -kernel of � if

Y � V + � �� ��� � � � Y � V + � � \ V BW 0 X 7

L -Kernels

Geometric Approximation Using Coresets 7

Page 9: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

Theorem A: [AHV, YAPV, Ch] � � �0 , � ] ^ . We can compute an

� -kernel of � of size� _ � 60 X 7 9`� in time � � _ �0 X� `� .

Lemma 1: a affine transform b s.t.

K Unit hypercube c � � + � d0 is the smallest box enclosing �

K b � � � is fat

K � is an � -kernel of �e b � � � is an � -kernel of b � � �

Computing L -Kernels

Geometric Approximation Using Coresets 8

Page 10: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

Lemma 2: � : Set of � fat points in c � � + � d0 ,

� ] ^ . We can compute an � -kernel of � of size

� _ � 60 X 7 9 `� in time � � _ �0 X� `� .

Sketch: Algorithm in two phasesK Compute� _ �0 X 7 -size approximation �

K Draw a sphere f of radius= centered at originK Draw a grid of size� _ � 60 X 7 9 `� on fK For each grid point g , select its nearest neigh-

bor in �

(Suffices to compute approximate NN.)

q

ε

CH(Q)

B

Computing L -Kernels

Geometric Approximation Using Coresets 9

Page 11: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

K Computing � -kernels for � h ^i ^j on various synthetic inputs

Input Input Kernel Size

Type Size kl m k l n k l o k l p

q r s r r r q r t t n u s u uv o s t p v

sphere q r r s r r r q r q s p m n m m sv t m w u s m u o

q s r r r s r r r q r q s t p m v p s p v o qv t sv n r

q r s r r r o v o u v s p v n o sv m r

cylinder q r r s r r r o p w t p s p w u n t s m r v

q s r r r s r r r o n w q q m s u q u q m u sv p w

q r s r r r p m v w u q p m s w r m

clustered q r r s r r r q m v m o q s n p v u s o q n

q s r r r s r r r q m q n r q s w w n qv s u p q

Kernel Computation

Geometric Approximation Using Coresets 10

Page 12: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

Input Input Px I Px y Px z

Type Size Prepr Query Prepr Query Prepr Query{ | } | | | |~ |� |~ | { |~ | z |~ |� |~ { | �~ y |

sphere { | | } | | | |~ � y |~ | { |~ � | |~ � | {~ �� z� ~ I I{ } | | | } | | | �~ I � |~ | { {� ~ |� {~ � � { �~ I z I I � ~ I |{ | } | | | |~ |� |~ | { |~ | z |~ | � |~ { | I ~ y z

cylinder { | | } | | | |~ z | |~ | { |~ � { |~ � y {~ � � � |~ |�{ } | | | } | | | �~ �� |~ | { {� ~ | � |~ � { {� ~ � y � � ~ I �{ | } | | | |~ |� |~ | { |~ | z |~ | { |~ { | |~ |�

clustered { | | } | | | |~ � { |~ | { |~ z � |~ |I {~ |� {~ � y{ } | | | } | | | � ~ y { |~ | { � ~ � z |~ |I { y~ � � {~ |�

K Prepr: Time (in secs.) in converting input into a fat set and prepro-cessing for nearest-neighbor (NN) queries

K Query: Time (in secs.) in answering NN queries

K Experiments run on Pentium IV 3.6GHz processor with 2GB RAM

Kernel Computation: Running Time

Geometric Approximation Using Coresets 11

Page 13: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

K Computing � -kernels for � h ^i ^j on 3D models

Input Input Running Time Kernel Diameter

Type Size Prepr Query Size Error

bunny v w s t n u r� q u r � r q o u r � r q r

dragon n v u s o n w m� n n r � r q o t r � r r n

buddha w n v s o w m m� p u r� r q o p r � r q r

Kernel Computation

Geometric Approximation Using Coresets 12

Page 14: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

K Tradeoff between kernel size and approximation error

0 100 200 300 400 500 600 7000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Kernel Size

App

roxi

mat

ion

Err

or

2D4D6D8D

0 100 200 300 400 5000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Kernel Size

App

roxi

mat

ion

Err

or

Bunny: 35,947 verticesDragon: 437,645 vertices

Experimental Results: Approximation Error

Geometric Approximation Using Coresets 13

Page 15: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

� ��� � : Function defined over point sets in ��0 is faithful if

K � � � �� ^ for all � � �0

K a � ] ^ �� � � � � � � � � F � � � � F � � � � for any � -kernel � of �

faithful measure unfaithful measure

Faithful measures: Diameter, width, radius of smallest enclosing ball,volume of the smallest enclosing box (simplex)

Nonfaithful measures: width of the thinnest spherical shell containing �

Faithful Extent Measures

Geometric Approximation Using Coresets 14

Page 16: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

K � : Set of points, � : A faithful measure, � ] ^

K Compute an � � _ � � -kernel � of �

K Compute � � � � using a known algorithm

K Return � � � �By definition, � � � �� �� � � � � � � �

K � � �0 , � ] ^

Can compute a pair � + g B � s.t.) � � + g �� �� � � � �� �� � � �

in time � � _ �0 X� `�

K � � �� , � ] ^

Can compute an � -kernel of the smallest simplex enclosing �

in time � � _ �-� `�

How does one handle unfaithful measures?

Computing Faithful Measures

Geometric Approximation Using Coresets 15

Page 17: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

K � � M� 7 + i i i + �� N :) -variate functions

� � � : Upper envelope of � � � ��� � � � �% � � � ��� �

� � � : Lower envelope of � � � �� � � � �# � � � ��� �

L

U E (x)F

F

F

x

U

L

(x)G E (x)

F

F

F

x

E

Extent of � :

� � ��� � � � � ��� � � � � �� �

� -kernel: � � � is an � -kernel of � if

�� � � � � � ��� � F � � ��� � \ � B �0

Extents of Functions

Geometric Approximation Using Coresets 16

Page 18: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

EF (x)

(x)G

(x)

EFE

xx

U

L

F

F

K Many functions can be mapped to linear functions using linearization

K Upper and lower envelopes of linear functions are convex polyhedra

K Relationship between linear functions and points

Theoream A + Duality:

Theorem B: � : set of �) -variate linear functions, � ] ^ . We can computean � -kernel of � of size� _ �0 `� in time � � _ �0 X 7 `� .

L -Kernel of Linear Functions

Geometric Approximation Using Coresets 17

Page 19: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

� � M� 7 + i i i + �� N :) -variate polynomials

Linearization [Yao-Yao, A.-Matousek]

K Map � ��� ��� �0 � �1� , � �� � � � � 7 �� �+ i i i + �� �� � �

K Each� � maps to a 2 -variate linear function �� ;

� 6� � ] ^e �� � � �� � � ] ^K 2 : Dimension of linearization

Lemma: � � � is an � -kernel of � e

� � M� � D �� B � N is an � -kernel of � .

Theorem C: � : a family of � ) -variate polynomials, 2 : dimension oflinearization, � ] ^ . We can compute an � -kernel of � of size � _ �� `� intime � � _ �� X 7 `� .

L -Kernels of Polynomials

Geometric Approximation Using Coresets 18

Page 20: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

� : Set of � moving points in � 0

� �� � � �� � , � + �� B �0

� � � � � � M �� � � � D � F � F � N

K � � � an � -kernel if \ V BW 0 X 7 + � B �

�� � � � Y � V + � � � � � F Y � V + � � � � �

K Y � V + � � � � � � � �%&' ( Z � � � �+ V [ � � �#& ' (Z � � � �+ V [

ω (u,Q)

ω (u,S)

u

Define� � � V + � � � Z �� � � �+ V [ ;� � is a �� " �= � polynomial

Claim: � � M� 7 + i i i + �� N , Y � V + � � � � � � � � � V + � �

� -kernel of � � � -kernel of � .

Apply Theorem C!

Application I: Kinetic Geometry

Geometric Approximation Using Coresets 19

Page 21: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

Corollary: � : � linearly moving points in � 0 , � ] ^ . An � -kernel of size

� _ �0 X 7 `� can be computed in � � _ �� 0 X� `� time.

Maintaining the � -approximate bounding box of � :

K Compute an � -kernel � of �

K Use a kinetic data structure to maintain theextent of � in each direction

K Bounding box is defined by the left-, right-,top-, and bottom-most points

K Events: When one of these four points change

K Approach works for maintaining width,smallest enclosing ball/rectangle/simplex,i i i

Application I: Kinetic Geometry

Geometric Approximation Using Coresets 20

Page 22: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

K 100,000 moving points; their trajectories chosen to ensure large num-ber of events

K Trajectories linear or quadratic

K Error h ^i ^� (98% time) and ^ i ^� (100% time) for kernel 16.

−10 −5 0 5 100.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Time

Qua

lity

Kernel Size = 16Kernel Size = 32

−10 −5 0 5 100.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Time

Qua

lity

Kernel Size = 16Kernel Size = 28

Linear Motion Quadratic Motion

Bounding Box: Quality of Kernels

Geometric Approximation Using Coresets 21

Page 23: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

−10 −5 0 5 101000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Time

# E

vent

s

Linear Motion, Input Size = 10,000Quadratic Motion, Input Size = 10,000

−10 −5 0 5 100

2

4

6

8

10

12

14

16

18

Time

# E

vent

s

Linear Motion, Kernel Size = 24Quadratic Motion, Kernel Size = 27

Exact algorithm Approximation

Bounding Box: Number of Events

Geometric Approximation Using Coresets 22

Page 24: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

K Maintaining the kernel of� ^+ ^ ^ ^ moving points

K Slow implementation of kinetic convex hull algorithm

−2 −1.5 −1 −0.5 0 0.5 1 1.5 20.75

0.8

0.85

0.9

0.95

1

Time

Qua

lity

Kernel Size = 46Kernel Size = 128Kernel Size = 399

−2 −1.5 −1 −0.5 0 0.5 1 1.5 20.85

0.9

0.95

1

Time

Qua

lity

Kernel Size = 46Kernel Size = 128Kernel Size = 399

−2 −1.5 −1 −0.5 0 0.5 1 1.5 20.85

0.9

0.95

1

Time

Qua

lity

Kernel Size = 46Kernel Size = 128Kernel Size = 399

Convex hull Diameter Width

Diameter & Width: Quality of Kernel

Geometric Approximation Using Coresets 23

Page 25: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2400

600

800

1000

1200

1400

1600

1800

2000

2200

Time

# E

vent

s

−2 −1.5 −1 −0.5 0 0.5 1 1.5 20

20

40

60

80

100

120

140

160

Time

# E

vent

s

Kernel Size = 46Kernel Size = 128Kernel Size = 399

Exact algorithms � -kernel

Convex Hull: Number of Events

Geometric Approximation Using Coresets 24

Page 26: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

Functions are not polynomials in many applications� Distance between point� and circle of radius A centered at �

� ��� � �   � � �   � A

K � � M� 7 + i i i + �� N :) -variate functions

K � �¢¡ � �� � 7 `¤£ , �� :) -variate polynomial, A � � B¥

K � � M �� D � F � F � N

Theorem D: � � � is an � �£ -kernel of � , � ] ^ a constant, then M� � D

�� B � N is an � -kernel of � .

Corollary: If � admits a linearization of dimension 2 , then we can com-pute an � -kernel of � of size� _ �£ � `� in time � � _ �£ � X 7 `� .

L -Kernels of Fractional Polynomials

Geometric Approximation Using Coresets 25

Page 27: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

� : Set of � points in ��

K Find the best-fit circle � through � .(minimize the max distance between ¦ and § .)

� �� � : Min width of annulus containing � centered at�

K) ��� + � � : Distance between� and �

� �� � � � �% &' () �� + � � � � �# & ' () �� + � �

I

O

r

r

x

� � �� � � ) �� + � � � , � � M � 7 + i i i �� N � �� � � � � ��� �

Compute ¨� � � � # © � � ��� �

K Compute an � -kernel � of � ;D � D � � _ �K Compute � � � � ! " � �# © � � �� �

K Return � � �� � � ; � � �� � � F �� � � ¨�

K Time: � � _ �5 687 9

Application II: Shape Fitting

Geometric Approximation Using Coresets 26

Page 28: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

K � : Set of points in ��

K Find the best-fit circle � through �

� � : + � � � � �% &'ª ) � �+ � �

A simple iterative algorithmK @ � � : Initially,D @ D � �K « � @ � : Best fit circle for @K while ¬ ­ § ®°¯ ­²± ³ ³8´ ­²µ ¶· ³ ¬ ­²± ®°¯ ­²± ³ ³

� B � : Point farthest from « � @ �

� @ � @ ¸ M Nb

c

a

Claim: The algorithm terminates in . ��� _ � � steps.

Works for other shape-fitting problems as well.

Shape Fitting: Incremental Algorithm

Geometric Approximation Using Coresets 27

Page 29: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

Input Input Running Output

Type Size Time Width

q rº¹ r � r q » m ¼ 0.0501

½ l r � r w q r¿¾ r � r m » m ¼ 0.0500

q rÁÀ r � q p » m ¼ 0.0500

q r¹ r � r q » m ¼ 0.5014½ l r � w r q rÁ¾ r � r v » m ¼ 0.5004

q r¿À r � m o » m ¼ 0.5001q rº¹ r � r u » t ¼ 50.051

½ l w r� r q r¿¾ r � q m » t ¼ 50.018

q r¿À r � o u » t ¼ 50.001

K Points chosen randomly inside an annulus of width ¨ , inner radius� i ^

K Number of iterations is h � ^

Minimum Width Annulus

Geometric Approximation Using Coresets 28

Page 30: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

K Points chosen randomly on a cylindrical surface of radiusµ , height Ã

K Algorithms APPR: Approximation, CORE: Kernel based INCR: Incremental

Input Input Running Time Output Radius

Type Size APPR CORE INCR APPR CORE INCR{ | } | | | I |~ �� |~ � { |~ { { Ä z Å 1.024 1.012 1.009Æx I ~ | { | | } | | | I I z~ � � {~ { y |~ I � Ä z Å 1.021 1.020 1.013{ } | | | } | | | I z y |~ { | {I ~ { � {~ z � Ä� Å 1.010 1.011 1.013{ | } | | | { z~� I |~ � | |~ { { Ä� Å 1.029 1.078 1.072Æx I |~ | { | | } | | | {� � ~ I { {~ | z |~ I � Ä� Å 1.086 1.056 1.021{ } | | | } | | | I |I z~ � y {I ~ y � I ~ � � Ä� Å 1.066 1.039 1.068{ | } | | | { z~ y � |~ I � |~ { { Ä� Å 1.052 1.094 1.050Æx I | |~ | { | | } | | | {� z~ |I {~ | y |~ {� Ä y Å 1.030 1.092 1.018{ } | | | } | | | I | z � ~ { � { {~ �� I ~� � Ä { | Å 1.072 1.039 1.037

bunny � � } � y � z� ~ |� |~ y z |~ {� Ä z Å 0.0671 0.0672 0.0674

dragon y � � } z y � � | �~ � � I ~ � y |~ � � � Š0.0770 0.0770 0.0770

buddha � y � } z� I { {I z~ I � � ~ � � {~ { � � Š0.0408 0.0408 0.0408

Minimum Enclosing Cylinder

Geometric Approximation Using Coresets 29

Page 31: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

K � : Stream of points in ��

K Maintain the � -kernel using 3 4 " 5 687 9 � space

K Partition Ç into subsets Ç 7 + i i i + Ç È

� D Ç � D � = É for some Ê F 3 4 "� � , Ê � ! �# Ë � Ç � �

� Ç � ’s are not maintained explicitly

K Maintain an � � _= � -kernel � � of Ç �

� D � � D � Ê _Ì �

� Í � � � is an � � _= � -kernel of Ç .

K Maintain an � _²Î -kernel � of Í � � �

D � D � � _Ì �

P1

P2

P3

P44Q

Q3

Application III: Handling Data Stream

Geometric Approximation Using Coresets 30

Page 32: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

K Create a new set Ç Ï � M � N ; � Ï � Ç Ï

K If there are two sets Ç ©+ Ç Ð of rank Ê

� Compute an � _ � Ê � �� -kernel �Ñ of � © ¸ � Ð� Delete � ©+ � Ð and add �Ñ ;

� ÇÑ � Ç © ¸ Ç Ð ;! �# Ë � ÇÑ � � Ê �

K �Ñ is an � � _= � -kernel of ÇÑ

Pz

yxP PQ

Q

Qx y

z

Q U Qx y

Space: 3 4 "� � � � _Ì � , Processing time: . �� _Ì � � (amortized)

Improvement (Chan). Space: � _ � , time: . �� � (amortized)

Extend to higher diemnsions.

Corollary: �� � � � -approximation of width, smalelst enclosing box, ...using� _ �5 687 9 space and time in the streaming model.

Inserting a Point

Geometric Approximation Using Coresets 31

Page 33: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

K Computing � -kernels in high dimensions[Badoiu, Har-Peled, Indyk], [Badoiu, Clarkson], [Har-Peled, Varadarajan],

[Kumar, Mitchell, Yildirim], [Kumar, Yildirim]

� Smallest enclosing ball Ò� _ � Ó

� Smallest enclosing ellipsoid . �) _ � �

� � -median� _ �5 687 9K Computing � -kernels in presence of outliers [Har-Peled, Wang]

K Computing � -kernels for 2 -clusters[Har-Peled], [A., Procopiuc, Varadarajan]

� 2 -centers

� 2 -medians

� 2 -line-centers

Extensions

Geometric Approximation Using Coresets 32

Page 34: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

K � -kernels in high dimensions

� Polynomial dependence on) + � _ �

K General technique for computing core sets for clustering

K Core sets for shape fitting if we want to minimize the rms distance

� Given � , compute a cylinder � so that the rms distance between

� and � is minimum

K Core sets and range spaces with finite VC dimensions

Conclusions

Geometric Approximation Using Coresets 33

Page 35: Geometric Approximation Using Coresets - Duke …pankaj/publications/slides/core-set.pdfK Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Kernel Computation: Running Time

Review article.

K A., S. Har-Peled, K. Varadarajan, Geometric approximation via coresets, Cur-rent Trends in Combinatorial and Computational Geometry (E. Welzl, eds.),to appear.

Technical artciles.

K A., S. Har-Peled, K. Varadarajan, Approximating extent measures of points,J. ACM, 51(2004), 606–635.

K A., C. M. Procopiuc, and K. Varadarajan, Approximation algorithms for k-linecenter, 10th Annual European Sympos. Algorithms, 2002.

K T. M. Chan, Faster core-set constructions and data stream algorithms in fixeddimensions, in Proc. 20th Annu. ACM Sympos. Comput. Geom., 2004, 152–159.

K H. Yu, A., R. Poreddy, K. Varadarajan, Practical methods for shape fitting andkinetic data structures using core sets, in Proc. 20th Annu. Sympos. Comput.Geom., 2004, 263–272.

References

Geometric Approximation Using Coresets 34