geologi-struktur-4

Upload: rifky-farhan

Post on 04-Feb-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/21/2019 GEOLOGI-STRUKTUR-4

    1/14

    3/4/2015

    1

    FORCES AND VECTORS

    Force is any action which alters, or tends to alter

    Newton II law of motion : F = M a

    Unit force : kgm/s2

    = newton (N) or dyne = gram cm/s2

    ; N = 105

    dynes

    BASIC CONCEPTS

    (a). Force: vector quantity with magnitude and direction

    (b). Resolving by the parallelogram of forces

    Modified Price and Cosgrove (1990)

    Two Types of Force

    Body Forces (i.e. gravitational force)

    Contact Forces (i.e. loading)

  • 7/21/2019 GEOLOGI-STRUKTUR-4

    2/14

    3/4/2015

    2

    Force Equilibrium

    (A) Balance

    (B) Torque

    (C) Static Equilibrium

    (D) Dynamic Equilibrium

    (Davis and Reynolds, 1996)

    STRESS

    Stress defined as force per unit area:

    s = F/A

    A = area, Stress units = Psi, Newton (N),

    Pascal (Pa) or bar (105 Pa)

    (Davis and Reynolds, 1996)(Twiss and Moores, 1992)

  • 7/21/2019 GEOLOGI-STRUKTUR-4

    3/14

    3/4/2015

    3

    STRESS

    Stress at a point in 2D

    Types of stress

    Stress

    (

    )

    Normal stress (sN)

    (+) Compressive (-) Tensile

    Shear stress (sS)

    (+) (-)

    STRESS on PLANE

    Coordinate System

  • 7/21/2019 GEOLOGI-STRUKTUR-4

    4/14

    3/4/2015

    4

    Stress Ellipsoid

    a) Triaxial stress

    b) Principal planes of

    the ellipsoid

    (Modified from Means, 1976)

    Arbitrary coordinateaxes and planes

    C. General stress components

    B. Principal stress components

    X

    Principal coordinateaxes and planes

    Z

    X1

    s

    (lft)xx

    (lft)x

    s

    (top)zz

    s

    dx

    s (bot)zz

    dz

    s(top)zx

    s(rt)xz

    (bot)z

    s(rt)xx

    s(bot)zx

    (lft)xz

    s

    (rt)x

    X3

    s3

    (top)z

    A. Stress elipse

    z s

    s3

    xThe State of

    Two-Dimensional

    Stress at Point

    (Twiss and Moores, 1992)

    Principal Stress:

    s1> s3

    x, z = Surface Stress

  • 7/21/2019 GEOLOGI-STRUKTUR-4

    5/14

    3/4/2015

    5

    B. Principal stress components

    s

    z

    x

    s3

    x1

    x3

    y

    yx2

    x

    x

    y

    z

    s

    x

    szy

    sxy syysyz

    syx

    sxx

    szx

    szz

    sxz

    z

    y

    Arbitrarycoordinate planes

    A. Stress elipsoid

    C. General stress components

    z

    Principalcoordinate planes

    The State of3-Dimensional

    Stress at Point Principal Stress:

    s1> s

    > s

    3

    Stress Tensor Notation

    s11 s12 s13

    s = s21 s22 s23s31 s32 s33

    s12 = s21, s13 = s31, s23 = s32

    (Twiss and Moores, 1992)

    Geologic Sign

    Convention of

    Stress Tensor

    (Twiss and Moores, 1992)

  • 7/21/2019 GEOLOGI-STRUKTUR-4

    6/14

    3/4/2015

    6

    sn

    r

    n

    (p ) sn(p)

    ss

    2

    2

    s s 32

    s s 3

    sn

    sn,(p)

    s

    (p)s s

    s s 3 cos

    2

    s s 3 sin

    ss

    x3

    (p)ss

    (p )sns3

    s

    Plane P

    x

    s3

    Mohr Diagram 2-D

    A. Physical Diagram A. Mohr Diagram

    (Twiss and Moores, 1992)

    x3

    n'

    p

    (p')

    p'

    nx1

    sn,(p')

    ss

    sn

    s s

    ssn

    s3

    (p)sn,(p)s s

    A. Physical Diagram B. Mohr Diagram

    (Twiss and Moores, 1992)

    Mohr Diagram 2-D

  • 7/21/2019 GEOLOGI-STRUKTUR-4

    7/14

    3/4/2015

    7

    s s xx' xz

    sxx

    s s zz' zx

    2

    s s xx zz

    s s xx zz

    ss

    s snsxz

    )

    s

    s3

    szz

    szx

    z

    s3

    x3

    x1

    x

    sxz

    )

    A. Physical Diagram B. Mohr Diagram

    (Twiss and Moores, 1992)

    Mohr Diagram 2-D

    n-

    Planes of maximum

    shear stress

    Clockwise

    shear stress

    x3

    x

    ss ss

    Counterclockwise

    shear stress

    ' = +45

    s

    x3s3

    sn

    +

    ssx

    = +45

    ss3 sn

    ss max

    Clockwise

    '

    ss maxCounter clockwise

    s3

    B. Mohr DiagramA. Physical Diagram

    Planes of maximum shear stress

    Mohr Diagram 2-D

    (Twiss and Moores, 1992)

  • 7/21/2019 GEOLOGI-STRUKTUR-4

    8/14

    3/4/2015

    8

    Mohr Diagram 3-D

    (Twiss and Moores, 1992)

    Geometry of a three-dimensional

    Stress on a Mohr diagram

    Mohr Diagram 3-D

    Maximum Shear Stress

    (Twiss and Moores, 1992)

  • 7/21/2019 GEOLOGI-STRUKTUR-4

    9/14

    3/4/2015

    9

    Stress Ellipsoid

    FUNDAMENTAL STRESS EQUATIONS

    Principal Stress:

    s1> s

    > s

    3

    All stress axes are mutually perpendicular Shear stress are zero in the direction of

    principal stress

    s1 + s3 s1s3sN = cos 22 2

    ss = Sin 2s1s3

    2

    +

    Mohr diagram is a graphical representative of state of stress Mean stress is hydrostatic component which tends to produce dilation Deviatoric stress is non hydrostatic which tends to produce distortion

    Differential stress, if greater is potential for distortion

    (Davis and Reynolds, 1996)

  • 7/21/2019 GEOLOGI-STRUKTUR-4

    10/14

    3/4/2015

    10

    1. Gaya yang bekerja tergantung besarnya material yang terkena gaya

    tersebut (grafitasi)

    2. Stress adalah Sataun gaya persatuan luas

    3. Stress pada suatu titik dapat terbagi dua yaitu :

    Stress Normal

    Stress Geser

    4. Asumsi Struktur Geologi pada suatu titik bersifat isotropic dan

    homogen.

    5. Vektor Stress pada 3D merupakan stres ellipsoid yang memiliki tiga

    arah orthogonal stres dan tiga bidang utama.

    6. Prinsip stress s1>s2>s3

    7. Diagram Mohr adalah grafik yang menerangkan Stress pada suatu

    batuan

    STRESS

    STRESS vs. STRAIN

  • 7/21/2019 GEOLOGI-STRUKTUR-4

    11/14

    3/4/2015

    11

    Relationship Between Stress and Strain

    Evaluate Using Experiment of Rock

    Deformation Rheology of The Rocks Using Triaxial Deformation Apparatus Measuring Shortening Measuring Strain Rate Strength and Ductility

    2 3 4 61

    C

    Strain (in %)

    DifferentialStress(inMPa)

    ReptureStrength

    400

    5

    100

    200

    300Yield

    Strength

    UltimateStrength

    Yield StrengthAfter StrainHardening

    D

    A

    EB

    Stress Strain Diagram

    A. Onset plastic deformation

    B. Removal axial load

    C. Permanently strained

    D. Plastic deformation

    E. Rupture

  • 7/21/2019 GEOLOGI-STRUKTUR-4

    12/14

    3/4/2015

    12

    0 2 4 6 8 10 12 14 16

    Diffe

    rentialStress,

    MPa

    Strain, percent

    300

    200

    100

    70

    20

    Crown Point Limestone

    40

    140130

    60

    80

    5 10 15

    2000

    1500

    1000

    0Strain (in %)

    800C

    700C

    500C

    300C

    500Differen

    tialStress(inMPa)

    25C

    Effects of Temperature and Differential Stress

    (Modified from Park, 1989)

    Deformation and Material

    A. Elastic strain

    B. Viscous strain

    C. Viscoelastic strain

    D. Elastoviscous

    E. Plastic strain

    Hookes Law: e = s/E, E = Modulus Young or elasticity

    Newtonian :s

    =h

    e

    h

    viscosity, e = strain-rate

  • 7/21/2019 GEOLOGI-STRUKTUR-4

    13/14

    3/4/2015

    13

    (Modified from Park, 1989)

    Effect increasing stress to strain-rate

    Stress Strain

  • 7/21/2019 GEOLOGI-STRUKTUR-4

    14/14

    3/4/2015

    Limitation of The Concept of Stress in Structural Geology

    No quantitative relationship between

    stress and permanent strain

    Paleostress determination contain

    errors

    No implication equation relating

    stress to strain rate that causes the

    deformation