geohydrology ii (3)

42
Lecture (3) Lecture (3) Uncertainty in Groundwater Flow and Transport Models. 0 50 100 150 200 250 H o rizo n ta lD ista n ce b e tw een W e lls (m ) -5 0 0 D ep th (m ) W e ll 1 W e ll 2 ? K (x ,y ,z)? (x ,y ,z )? C (x ,y ,z)? H=? H=? ? ? ? ? ? ? ? ? ?

Upload: amro-elfeki

Post on 21-Feb-2017

82 views

Category:

Education


0 download

TRANSCRIPT

Page 1: Geohydrology ii (3)

Lecture (3)Lecture (3)

Uncertainty in Groundwater Flow and Transport Models.

0 50 100 150 200 250Horizontal Distance between W ells (m)

-50

0

Dep

th (m

)

W ell 1 W ell 2

? K(x,y,z)?

(x,y,z)?

C(x,y,z)?H=?

H=?

?

???

? ?

?

?

?

Page 2: Geohydrology ii (3)

Layout of the LectureLayout of the Lecture

• What is uncertainty?What is uncertainty?• Why addressing the uncertainty by the Why addressing the uncertainty by the

stochastic approach?stochastic approach?• How to model uncertainty?How to model uncertainty?

Monte-Carlo sampling.Monte-Carlo sampling.• How to quantify uncertainty? How to quantify uncertainty?

Stochastic Differential Eqs. & Monte Carlo Stochastic Differential Eqs. & Monte Carlo method.method.

• How to reduce uncertainty?How to reduce uncertainty?• Some Applications.Some Applications.

Page 3: Geohydrology ii (3)

What is Uncertainty?What is Uncertainty?

0 50 100 150 200 250Horizontal Distance between W ells (m )

-50

0

Dep

th (m

)

W ell 1 W ell 2

? K(x,y,z)?

(x,y,z)?

C(x,y,z)?H=?

H=?

?

???

? ?

?

?

?

Classification of Uncertainty:

-Conceptual Model Uncertainty:Darcy’s and Fick’s Laws.

-Geological Uncertainty:Connectivity and dis-connectivity of the layers, geological sequence,boundaries between geological units.

-Parameter Uncertainty: -K, porosity.

-Hydro-geological Uncertainty:Constant head boundaries, impermeable boundaries, Plume boundaries, source area bounaries.

Page 4: Geohydrology ii (3)

Why Addressing the Uncertainty by the Why Addressing the Uncertainty by the Stochastic Approach?Stochastic Approach?

- The uncertainty due to the The uncertainty due to the lack of information about lack of information about the subsurface structure the subsurface structure which is known only at which is known only at sparse sampled locations.sparse sampled locations.

-The erratic nature of -The erratic nature of the subsurface the subsurface parameters observed parameters observed at field scale.at field scale.

Page 5: Geohydrology ii (3)

Monte-Carlo SamplingMonte-Carlo Sampling

Uniform random number generator:

Multiplicative Congruence Method developed by Lehmer [1951].

1( )i i-

i i

= MODULO A. B , MN N = /MU N

Ni is a pseudo-random integer, i is subscript of successive pseudo-random integers produced, i-1 is the immediately preceding integer, M is a large integer used as the modulus, A and B are integer constants used to govern the relationship in company with M, Ui is a pseudo-random number in the range {0,1}, and " MODULO" notation indicates that Ni is the remainder of the division of (A.Ni-1) by M.

Page 6: Geohydrology ii (3)

Uniform Random Number ExampleUniform Random Number Example

1.0,5.0,3.0,9.0.......5,3,9,1,5,3,9:

)3(710737319*8

)9(0109911*8

)1(410414115*8

)5(210252513*8

)3(710737319*8

9)()10()18(

0

1

sequence

remainder

remainder

remainder

remainder

remainder

seedNMODULO N = N i-i

Page 7: Geohydrology ii (3)

Generation of a Random Variable from any Generation of a Random Variable from any DistributionDistribution

Inverse of Distribution Function.

Transformation Method.

Acceptance-Rejection Method.

Page 8: Geohydrology ii (3)

Inverse of Distribution FunctionInverse of Distribution Function

)()(

')'()(

UF = F = U

αdαf= αF

1-

α

-

Page 9: Geohydrology ii (3)

Transformation MethodTransformation Method

Random number generator for normal distribution

(from central limit theory):" Observations which are the sum of many independently operating processes tend to be normally distributed as the number of effects becomes large"

12

21

m/

- m/Uε =

m

i=i

with mean (μ=0) and unit standard deviation (σ=1), Ui is the i-th element of a sequence of random numbers from a uniform distribution in the range {0,1}, and m is the number of Ui to be used.

612

1

- Uε = i

i

If m is 12, a normal distribution with tails truncated at six times standard deviation is produced

σ + εμα = αα

Page 10: Geohydrology ii (3)

Example of IDF in Discrete 1D Markov ChainExample of IDF in Discrete 1D Markov Chain

1,...n= l 2,...n,=k p Upk

qlq

k

qlq ,

1

1

1

A B C D

A B C D

11 12 1

21

1

. .

. . . . . . . .

. . . . .. . .

n

lk

n nn

p p pp

pl

p p

1 2 ... ... n12

.n

p

11 11 12 11

21

1

11

. .12 . . . .

. . . .

. . . . .

. . .

n

ii

k

lii

n

n nii

p p p p

p

pl

np p

1 2 ... ... n

P

Page 11: Geohydrology ii (3)

Stochastic Differential Equations (Stochastic Differential Equations (SDEsSDEs))

Stochastic differential equation (SDE) = Differential equations for random functions (stochastic processes)

= Classical differential equation (DE) +

Random functions, coefficients, parameters and boundary or initial values,

e.g.

( , ) ( , ) 0

where ( , ) ( , ) are random space functions. and or stationary processes.

xx yy

xx yy

x y x y ΩK Kx x y y

x y x yKK

Page 12: Geohydrology ii (3)

Solving SDEs (Stochastic Forward Problem)Solving SDEs (Stochastic Forward Problem)

Analytical Approaches G reen 's F u n c tion A p p roach

P ertu rb a tion M eth odS p ec tra l M eth od

Num erical ApproachesM on teC arlo M eth od

S o lvin g S D E s

Page 13: Geohydrology ii (3)

Monte-Carlo MethodMonte-Carlo Method1. Generate a realization of a random field of the parameter under study.2. A classical numerical flow or/and transport model is run on the random field

and a set of results is obtained. 3. Another random field is made and the model is run again, and so on. 4. It's necessary to have a very large number of runs, and the output model

results corresponding to each input is obtained. 5. Statistical analysis of the ensemble of the output can be made to get the

mean, the variance, the covariance or the probability density function for each node with a location in the grid.

Page 14: Geohydrology ii (3)

Monte-Carlo Method (Flow)Monte-Carlo Method (Flow)

1

22

1

1( ) ( ),

1( ) ( ) ( )

MC

kk

MC

kk

= MC

= MC

x x

x x x

Ensemble Flow Statistics

is the hydraulic head at a location x in the kth realization.

The ensemble average( )k x

( ) x

Coefficient of variation

2 ( ) x

2 2( ) 2 ( ) ( ) ( ) 2 ( ) x x x x x

( )( )( )

CV

xx

x

represents the uncertainty in the predictions.

Page 15: Geohydrology ii (3)

Monte-Carlo Method (Transport)Monte-Carlo Method (Transport)

1

22

1

1( ) ( ),

1( , ) ( ) ( )

MC

kk

MC

C kk

C ,t = C ,tMC

t = C ,t C ,tMC

x x

x x x

Ensemble Transport Statistics

( )kC ,tx

( )C ,t x

is the concentration time t and a location x in the kth realization.

The ensemble average,

represents the uncertainty in the predictions. 2 ( , )C t x

2 2( ) 2 ( , ) ( ) ( ) 2 ( , )C CC ,t t C ,t C ,t t x x x x x

( , )( , )( , )

CC

tCV tC t

xx

x

Page 16: Geohydrology ii (3)

Example of Monte Carlo Method for FLOWExample of Monte Carlo Method for FLOW

0 5 10 15 20 25-25

-20

-15

-10

-5

0

- 2

- 1 . 5

- 1

- 0 . 5

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

5

Sing le Realiza tion ln (K )

0 5 10 15 20 25-25

-20

-15

-10

-5

0

0 5 10 15 20 25-25

-20

-15

-10

-5

0

10 20 KBAR SDK

6 NO. OF CLASSES

25 25 LX LY

3 3 1000 lx ly Mc

1 1 dx dy

0.001 10000 eps maxit

5 4 upstream downstream

1 12 seed knorm

1 porosity

Page 17: Geohydrology ii (3)

Random Field CorrelationRandom Field Correlation

0 5 10 15 20 25Separation Lag (m)

-0 .4

0

0.4

0.8

1.2

Aut

o_C

orre

latio

n {l

og(K

)}

Single R ealizationTheoretical C urveEnsem ble

Page 18: Geohydrology ii (3)

Flow and Transport Domain Flow and Transport Domain

Lx = dx (N x-1)

Ly =

dy

(Ny-

1)

X

Y

(0,0)

Yo

XoDo

W o

H up Hdn

Page 19: Geohydrology ii (3)

Single Realization Head FieldSingle Realization Head Field

0 5 10 15 20 25-25

-20

-15

-10

-5

0

0 5 10 15 20 25-25

-20

-15

-10

-5

0

0 5 10 15 20 25-25

-20

-15

-10

-5

0

3.95 4.05 4.15 4.25 4.35 4.45 4.55 4.65 4.75 4.85 4.95

0 5 10 15 20 25-25

-20

-15

-10

-5

0

-0.14

-0.1

-0.06

-0.02

0.02

0.06

0.1

0.14

0.18

0.22

S ingle Realiza tion ln (K )

S ing le Realization (Head) Theoretica l Ensem ble Head Head Perturbation

Lx = dx (N x-1)

Ly =

dy

(Ny-

1)

X

Y

(0,0)

Yo

XoDo

W o

Hup Hdn

Page 20: Geohydrology ii (3)

Single Realization of Darcy’s Fluxes Single Realization of Darcy’s Fluxes

0 5 10 15 20 25-25

-20

-15

-10

-5

0

0 5 10 15 20 25-25

-20

-15

-10

-5

0

0 5 10 15 20 25-25

-20

-15

-10

-5

0

0 5 10 15 20 25-25

-20

-15

-10

-5

0

Darcy’s fluxes superimposed over the heterogeneity

Darcy’s fluxes superimposed over the hydraulic heads

Page 21: Geohydrology ii (3)

Single Realization Head Gradient Profile Single Realization Head Gradient Profile

0 4 8 12 16 20Distance in the mean Flow direction (m )

-4

-2

0

2

4

Hea

d (m

)

M ean H eadS ingle R ealizationlog(K )- R ealization

0 4 8 12 16 20Distance in the mean Flow direction (m )

4

4.2

4.4

4.6

4.8

5

Hea

d (m

)

M ean HeadS ingle R ealiza tion

Page 22: Geohydrology ii (3)

Ensemble Head FieldEnsemble Head Field

0 5 10 15 20 25-25

-20

-15

-10

-5

0

0 5 10 15 20 25-25

-20

-15

-10

-5

0

3.95 4 .05 4.15 4.25 4.35 4.45 4.55 4.65 4.75 4.85 4 .95

0

0.005

0.01

0.015

0.02

0.025

0 5 10 15 20 25-25

-20

-15

-10

-5

0

H ead VarianceEnsem ble H ead

( , ) ( )up up downx

xH x y H H HL

1

22

1

1( ) ( ),

1( ) ( ) ( )

MC

kk

MC

kk

= MC

= MC

x x

x x x

0 2 4 6 8 10 12 14 16 18 20-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0

0.005

0.01

0.015

0.02

0.025

0 5 10 15 20 25-25

-20

-15

-10

-5

0

Ensem ble H ead

Page 23: Geohydrology ii (3)

Head Variance ProfileHead Variance Profile

0 5 10 15 20 25-25

-20

-15

-10

-5

0

0

0.005

0.01

0.015

0.02

0.025

H ead Variance

2 2 2 2_

2 2 2 2_

2 2_ _

0.21 ln 0.2 sin bounded domain

0.46 unbounded domain

at 40

xh bounded x Y Y

Y x

h unbounded x Y Y

h bounded h unbounded x Y

L xJL

J

L

Lx = dx (N x-1)

Ly =

dy

(Ny-

1)

X

Y

(0,0)

Yo

XoD o

W o

Hup Hdn

0 2 4 6 8 10 12 1 4 16 18 20-2 0

-1 8

-1 6

-1 4

-1 2

-1 0

-8

-6

-4

-2

0

0

0.005

0.01

0.015

0.02

0.025

0 5 10 15 20 25-25

-20

-15

-10

-5

0

Ensem ble Head

0 4 8 12 16 20Distance in the mean Flow direction (m)

0

0.005

0.01

0.015

0.02

0.025

Var (

h)

X-direction

Page 24: Geohydrology ii (3)

Solute Transport EquationSolute Transport Equation

 

Dispersion DiffusionAdvection

ij ii j i

C C CVDt x x x

where C is the concentration field at time t, Dij is the hydrodynamic dispersion tensor, i, j are counters, Vi is the component of the Eulerian interstitial velocity in xi direction defined as follows,

j

iji x

K

- = V

where Kij is the hydraulic conductivity tensor, and is the porosity of the medium.

Page 25: Geohydrology ii (3)

Set-up of the Monte Carlo Transport Set-up of the Monte Carlo Transport Experiment Experiment

  

.Xc (t)

tx x

y y t(Xo,Yo)

(Xo,Yo) Initial Source Location.

Xc(t) is Plume centroid in X-direction.

2xx(t) is Plume longitudinal variance.

2yy(t) is Plume transverse variance.

Page 26: Geohydrology ii (3)

Heterogeneous FieldHeterogeneous Field

2 7 12 17 22 27 32 37 42 47

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

K-field

Flow field

K (m/day)

Page 27: Geohydrology ii (3)

Single Realization SimulationSingle Realization Simulation

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 .00 0 .50 5 .00 50 .00

tim e = 10 0 d ays

tim e = 40 0 d ays

tim e = 10 00 da ys

tim e = 13 00 da ys

C on cen tra tio n in m g /l

tim e = 60 0 days

Page 28: Geohydrology ii (3)

Monte-Carlo Method ResultsMonte-Carlo Method Results

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 4 0 60 80 10 0 12 0 14 0 1 60 1 80 20 0-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 4 0 6 0 80 1 00 1 20 14 0 1 60 1 80 20 0-30

-20

-10

0

0 .00 0 .50 5 .0 0 50 .00

tim e = 100 days

tim e = 400 days

tim e = 100 0 days

tim e = 130 0 days

C oncentra tion in m g/l

tim e = 6 00 d ays

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 2 0 40 60 8 0 10 0 1 20 14 0 16 0 18 0 2 00-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

2 7 12 17 22 27 32 37 42 47

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 20 40 60 80 100 120 140 160 180 200-30

-20

-10

0

0 2 0 4 0 6 0 8 0 10 0 12 0 1 40 16 0 18 0 20 0-30

-20

-10

0

C <C> C C

<C>____

Page 29: Geohydrology ii (3)

Quantification of Uncertainties using Quantification of Uncertainties using CMCCMC

0 50 100 150 200 250 300-50

0

Single realization of the geological structure used in the experimentsFigure 1.

Classifications of Uncertainties:

Geological Uncertainty: Geological configuration.

Parameter Uncertainty: Conductivity value of each unit.

Page 30: Geohydrology ii (3)

Unconditional CMC

1 2 3 4

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0-5 0

0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0-5 0

0

tim e = 1 6 0 0 d ay s

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0-5 0

0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0-5 0

0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0-5 0

0

0 50 100 150 200 250 300

-40

-20

0

0 50 100 150 200 250 300

-40

-20

0

G eology is Certa in and Param eters are U ncerta in

G eology is Uncerta in and Param eters are C erta in

0 0.01 0.1 1

C

C

actualC

C

C

Elfeki, Uffink and Barends, 1998

Geological Uncertainty: Geological configuration.

Parameter Uncertainty: Conductivity value of each unit.

Geological and Parameter UncertaintiesGeological and Parameter Uncertainties

Page 31: Geohydrology ii (3)

Monte-Carlo Results for Geological Monte-Carlo Results for Geological UncertaintyUncertainty

0 50 10 0 150 200 250 30 0-50

0

0 50 10 0 150 200 250 30 0-50

0

0 50 10 0 150 200 250 30 0-50

0

0 50 10 0 150 200 250 30 0-50

0

0 50 100 150 200 250 300-50

0

0.00 0.01 0 .10 1.00

tim e = 200 da ys

tim e = 1000 days

tim e = 2000 days

tim e = 3000 days

C oncen tra tion in m g /l

tim e = 1600 days

0 50 100 1 50 200 25 0 30 0-50

0

0 50 100 1 50 200 25 0 30 0-50

0

0 50 100 1 50 200 25 0 30 0-50

0

0 50 100 1 50 200 25 0 30 0-50

0

0 50 10 0 150 200 250 300-50

0

0 .00 0.01 0 .10 1 .00

tim e = 20 0 d ays

tim e = 1000 days

tim e = 2000 days

tim e = 3000 days

C oncen tra tion in m g /l

tim e = 1600 days

0 50 100 150 200 250 300-50

0

0 50 100 150 200 250 300-50

0

0 50 100 150 200 250 300-50

0

0 50 100 150 200 250 300-50

0

0 50 100 150 200 250 300-50

0

0 .00 0 .01 0.10 1.00

tim e = 200 days

tim e = 1000 days

tim e = 2000 days

tim e = 3000 days

C oncen tra tion in m g/l

tim e = 1600 days

Page 32: Geohydrology ii (3)

Conditional Simulations Conditional Simulations

From a practical point of view, it is desirable that the random fields

not only

reproduce the spatial structure of the field

but also

honour the measured data and their locations.

This requires an implementation of some kind of conditioning, so that the generated realizations are constrained to the available field measurements.

Page 33: Geohydrology ii (3)

Representation of a Conditional SimulationRepresentation of a Conditional Simulation

Page 34: Geohydrology ii (3)

Methods of ConditioningMethods of Conditioning

D ire c t M e th o ds"M e trica l M e th o d s"

In d ire c t M e th o ds"K rig ing M eth o d"

M e tho d s o f C o nd it ion ing

Page 35: Geohydrology ii (3)

Conditioning in One-dimensional Markov Conditioning in One-dimensional Markov ChainChain

i0 1 i+ 1i-1 N2

S kS l S q

)1(

)(

)1(

)(

1

11

111

1

11

1

111

1

11

1

)(Pr

)Pr().|(Pr)(Pr).|(Pr).|(Pr

)(Pr

),(Pr),(Pr).|(Pr

)(Pr

),(Pr),(Pr),|(Pr

)(Pr

),(Pr),,Pr(

)(Pr

)(Pr

iNlq

iNkqlk

qlk

iNlq

lkiN

kqqNliki

liliqN

lilikikiqNqNliki

qNli

kilikiqNqNliki

qNli

kilikiliqNqNliki

qNli

qNkiliqNliki

qNliki

ppp

p

ppp

S Z ,S Z | S Z

SZS Z S Z S Z S Z S Z S Z S Z

S Z ,S Z | S Z

S Z S Z S Z S Z S Z S Z

S Z ,S Z | S Z

S Z S Z

S Z S Z S Z S ZS Z S Z ,S Z | S Z

S Z S Z S ZS ZS Z S Z ,S Z | S Z

S Z ,S Z | S Z

Page 36: Geohydrology ii (3)

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 0.1 1 10mg/lit

actualC C C

Reducing Geological Uncertainty by Reducing Geological Uncertainty by Conditioning (5 boreholes)Conditioning (5 boreholes)

Page 37: Geohydrology ii (3)

Conditioning on 9 boreholes (Ensemble)

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

actualC C C

Reducing Geological Uncertainty by Reducing Geological Uncertainty by Conditioning (9 boreholes)Conditioning (9 boreholes)

Page 38: Geohydrology ii (3)

Conditioning on 21 boreholes(Ensemble)

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

actualC C C

Reducing Geological Uncertainty by Reducing Geological Uncertainty by Conditioning (21 boreholes)Conditioning (21 boreholes)

Page 39: Geohydrology ii (3)

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

0 50 100 150 200-10

-5

0

actualC C C

Reducing Geological Uncertainty by Reducing Geological Uncertainty by Conditioning (31 boreholes)Conditioning (31 boreholes)

Page 40: Geohydrology ii (3)

Simulation of the MADE1 Experiment

0 50 100 150 200 250

-10

-5

0

0 50 100 150 200 250

-10

-5

0

0 50 100 150 200 250

-10

-5

0

0

0.1

1

10

100

0 50 100 150 200 250

-10

-5

0

1

2

3

4

5

0 50 100 150 200 250

-10

-5

0

Page 41: Geohydrology ii (3)

Plume Simulation in a Heterogeneous Plume Simulation in a Heterogeneous Aquifer (the MADE site)Aquifer (the MADE site)

0 50 100 150 200 250

-10

-5

0

Page 42: Geohydrology ii (3)

Conclusions Conclusions

- Uncertainty is always present in any modelling step and in the collected data.

- The Stochastic approach is capable of modelling uncertainty regarding data, heterogeneity etc..

- The Monte Carlo method is a tool to quantify uncertainty.

- Reduction of uncertainty can be archived via conditioning on all the available data.