geochemistry of carbon dioxide in six travertine-depositing waters of italy

Upload: desvery-budi-yandra

Post on 28-Feb-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 Geochemistry of Carbon Dioxide in Six Travertine-Depositing Waters of Italy

    1/16

    J o u r n a l

    o f

    ydrology

    E L S E V I E R

    [ ]

    Journ al o f Hyd rology 167 (1995) 263-278

    G e o c h e m i s tr y o f c a r b o n d i o x i d e i n s ix t ra v e r t in e d e p o s i ti n g

    w a t e r s o f I t a l y

    Allan Pentecost

    Division of Li fe Sciences, King s College London, Campden H il l Road, London W 8 7AH , U K

    Received 30 Janu ary 1994; revision accepted 3 Aug ust 1994

    Abstract

    T h e c h e m i c a l c o m p o s i t i o n s o f s ix t r a v e r t in e - d e p o s i t in g h o t s p r in g w a t e rs i n I t a l y a r e

    d e s c r ib e d w i t h e m p h a s i s o n t h e c a r b o n d i o x i d e sy s te m . A l l s p r in g s c o n t a i n e d h i g h c o n -

    c e n t r a t io n s o f C O 2 ( > 2 0 m M 1 -1 ) w i t h e q u i l ib r i u m p a r t i a l p r e s su r e s w e ll a b o v e t h o s e w h i c h

    c o u l d h a v e b e e n f o r m e d i n c o n t a c t w i t h a s o il a t m o s p h e r e . A f t e r s u r f a c in g , t h e C O 2 is r a p i d l y

    l o s t t o t h e a t m o s p h e r e , w i t h e v a s i o n ra t e s c l o s e t o t h e s p r in g s r a n g i n g f r o m 0 . 4 5 - 4 . 4 1 m M m - 2

    s - l . P a r t i a l p r e s s u r e s o f C O 2 s h o w e d a n e x p o n e n t i a l d e c l in e w i t h d i s t a n c e , w h i c h i s c o n s i s t e n t

    w i t h t h e s t a ti c f il m m o d e l w h e r e t e m p e r a t u r e a n d t u r b u l e n c e a re c o n s t a n t . D o w n s t r e a m C O 2

    t r a n s f e r c o e ff i ci e n ts , w h i c h r a n g e d f r o m 6 6 t o 3 60 c m h - l w e r e c o n s i s t e n t w i t h m o d e r a t e l y

    t u r b u l e n t f l o w , h o w e v e r , t h e r e w a s n o c o r r e l a t i o n b e t w e e n t u r b u l e n c e , m e a s u r e d a s t h e m e a n

    s h e a r s t re s s , a n d C O 2 e v a s i o n r a t e . T h e c h a n n e l s i n v e s t i g a t e d h a d a l l b e e n m o d i f i e d b y m a n a n d

    m o s t p o s s e s s e d e v e n w i d t h s a n d g r a d i e n t s .

    A l l w a t e r s b e c a m e i n c r ea s i n g ly s u p e r s a tu r a t e d w i t h a r a g o n i t e a n d c a lc i te d o w n s t r e a m a n d

    b o t h o f t h e se m i n e r a l s w e r e p r e s e n t i n f r e sh t r a v e r t i n e d e p o s i t s. T h e s u p e r s a t u r a t i o n w a s d r i v e n

    a l m o s t e x c l u si v e ly b y g a s e v a s io n . C o m p a r i s o n o f d a y t i m e a n d n i g h t t im e e v a s i o n r a t es d e m o n -

    s t r a t e d t h a t p h o t o s y n t h e t i c a c t i v i t y w a s a n i n s i g n i fi c a n t s o u r c e o f C O 2 f l u x i n t h e r e a c h e s

    i n v e s t i g a t e d . C a r b o n d i o x i d e e v a s i o n is t h e r e f o r e p r i m a r i l y r e sp o n s i b l e f o r th e s u p e r s a t u r a t i o n

    a n d p r o b a b l y a l s o t h e d e p o s i t i o n o f t r av e r t i n e a t t h e s e s it es .

    T h e C a C O 3 c o n t e n t o f th e t r a v e rt i n e s r a n g e d f r o m 9 1 .3 t o 9 6 .0 w t % w i t h 1 . 7 - 4 . 1 % C a S O 4 ,

    t r a c e s o f o r g a n i c m a t t e r a n d a c i d - i n s o l u b l e m i n e r a l s .

    1 I n t r o d u c t i o n

    S o m e o f th e w o r l d ' s l a r g e s t t r a v e r t i n e d e p o s i t s o c c u r i n I t a l y , a n d m o s t a r e b e l i e v ed

    t o h a v e b e e n f o r m e d f r o m h o t s p r in g s h i g h ly c h a r g e d w i t h c a l c iu m a n d c a r b o n

    d i o x i d e . L a r g e n u m b e r s o f h o t s p r i n g s t h a t a r e h ig h l y c h a r g e d w i t h C O 2 o c c u r i n

    0022-1694/95/$09.50 1995 - Elsevier Science B.V. All rights reserved

    S S D I 0 0 2 2 - 1 6 9 4 ( 9 4 ) 0 2 5 9 6 - 7

  • 7/25/2019 Geochemistry of Carbon Dioxide in Six Travertine-Depositing Waters of Italy

    2/16

    264 A. Pentecost / Journal of Hydrology 167 1995) 263-278

    Italy (Waring, 1965; Barnes et al., 1978), but less than a quarter of these are known to

    deposit travertine.

    Most of the large travertine sites, which are extensively quarried, are now inactive,

    but small travertine-depositing springs are widespread and a number are associated

    with recent volcanic centres. Several sites are clustered around the Vican centre in the

    Roman volcanic province, where fault-controlled springs deposit mounds and sheets

    of travertine near Viterbo, Lazio.

    There have been a number of geochemical studies on these deposits, but most

    research has concentrated on inactive sites (Dall'Aglio and Tedesco, 1968;

    Malesani and Vannuchi, 1975; Manfra et al., 1976). However, it is known

    that levels of carbon dioxide are much higher than those in equilibrium

    with soil atmospheres and probably linked to recent volcanic activity. Previous

    investigations of water chemistry have tended to concentrate on trace, rather

    than bulk constituents and little progress has been made in either identifying the

    origins of the solutions or the chemical changes occurring on contact with the

    atmosphere.

    Travertine deposition is frequently associated with biological activity and many hot

    springs possess a rich phototrophic bacterial flora. Phototrophic microbes can

    remove dissolved carbon dioxide by photosynthetic uptake, resulting in the direct

    precipitation of carbonates (Krumbein, 1979). Microbes can also provide a suitable

    framework for crystal nucleation and accretion (Pentecost and Riding, 1986; Emeis

    et al., 1987). Photosynthetic activity must be weighed against the direct transfer of

    carbon dioxide from water to atmosphere, which is independent of biological activity.

    Evasion of carbon dioxide to the atmosphere has been shown to increase with

    turbulence (Dandurand et al., 1982; Herman and Lorah, 1987), leading to rise in

    pH and carbonate ion activity. This in turn leads to calcite and aragonite

    supersaturation, favouring the precipitation of these minerals. The rate of transfer

    at these hot springs is unknown but assumed to be high because of the high CO2

    partial pressures in these waters.

    The aims of this investigation are threefold: first, to investigate the chemical

    composition of travertine-depositing thermal waters, with emphasis on the CO2

    system; second, to estimate CO2 evasion rates from in situ analyses and finally to

    determine the travertine composition. The results are used to evaluate the significance

    of gas evasion and photosynthetic activity in carbonate deposition.

    2 M e t h o d s

    2.1. Field sites

    Four of the six sites were grouped around Viterbo in Lazio: Bagnaccio, Bullicame-

    Dante, Bullicame-West and Le Zitelle. Two sites, Bagni san Fillipo and Bagni di

    Vignone are situated further nor th (Figs. 1 and 2(a)-(c)). At all sites travertine is

    being deposited in stream beds which have been altered by channelling to provide

    bathing water. These modifications were in most cases an advantage for the

  • 7/25/2019 Geochemistry of Carbon Dioxide in Six Travertine-Depositing Waters of Italy

    3/16

    A. Pentecost / Journal o f Hydrology 167 1995) 263 -278 265

    J

    /

    T O S C A N A

    R a d i c o f a n i , ,

    t /

    ; r

    ,

    /

    J N Q

    f - ' L a g o d i

    Bo l s e n a

    /

    U M B R I A

    = C a n i n o 1,

    T u s c a n i a

    I V i t e r b o

    O r t e

    L A Z I O

    t o-~_ L a g o d i

    2 0 k r n , ~ ~ V i c o

    Fig. 1. Location of sites investigated. 1, Bagn accio;2, Bagn i san Fillipo; 3, Ba gni di V ignoni; 4, Bullicame-

    Dante; 5, Bullicame-West;6, L e Zitelle.

    e s t i m a t i o n o f C 0 2 t r a n s fe r , a s t h e y p r o v i d e d f a ir l y e v e n s t r e a m g r a d i e n t s, d e p t h s a n d

    w i d t h s .

    2 .2 . W a t e r s a m p l i n g a n d a n a ly s i s

    S a m p l i n g w a s c a r r i e d o u t o n a s e ri es o f f ie ld tr ip s b e t w e e n F e b r u a r y 1 98 8 a n d A p r i l

    1 9 93 . M o s t w a t e r s a m p l e s w e r e c o l l e c t e d in 1 30 m l g l as s b o t t l e s ( e x c l u d i n g S i, w h e r e

    p o l y t h e n e w a s u s e d ) . W a t e r s a m p l e s w e r e c o ll e c t ed a t t h e s p ri n g s, a n d a t o n e o r m o r e

    p o i n t s d o w n s t r e a m , a t d i s t an c e s o f 7 .8 - 1 1 1 m f r o m t h e s p ri n g s (T a b l e 1 ). G a s

    a n a l y s e s (C O 2 , 0 2 , H 2 S ) w e r e p e r f o r m e d i m m e d i a t e l y a f t e r t h e s a m p l e s h a d c o o l e d ,

    b u t m o s t r e m a i n i n g a n a l y s e s w e r e p e r f o r m e d i n t h e l a b o r a t o r y a f t e r p r e s e r v i n g w i th

    e i t h e r 0.0 1 M H C 1 o r 0 . 0 0 1 % H g C1 2.

    T h e p H w a s d e t e r m i n e d i n s it u u s i n g a C o r n i n g 1 20 p H m e t e r a n d g l as s e l e c t ro d e

    c a l i b r a t e d w i t h N B S b u f f er s o f p H 4 .0 a n d 7 .4 . A c o o l e d w a t e r s a m p l e w a s t h e n

    d i l u t e d f i v e f o l d w i t h C O 2 - f r e e d is t il le d w a t e r , a n d t h e p H r a i s e d im m e d i a t e l y to

  • 7/25/2019 Geochemistry of Carbon Dioxide in Six Travertine-Depositing Waters of Italy

    4/16

    266

    A. Pentecost / Journal o f Hydrology 167 1995) 2 63 -27 8

    a) Bullicarne-Dante

    ~25rn

    b) Bullicame-West

    ~ } pools

    I

    5 0 m 2 J

    I

    c) Le Z itelle

    i

    l i .

    S t r a d a V a l o r e . . . . . . . . . . . . . . . . .

    ....... I 50rn ~ ~

    Fig . 2 . De ta i l s o f wa te r c o u r se s a t t he V i t e r bo ho t sp r ings . (a ) B u l l i c a r ne - Da n te ; (b ) gu l l i c a m e - W e s t ; (c ) Le

    Z i t e l le . S t a r s show pos i t i o ns o f t he sp r ings .

    b e t w e e n 8 .2 a n d 8 . 8 w i t h CO 2 - f r e e N a O H t o p r e v e n t g a s tr a n s f e r t o t h e a t m o s p h e r e .

    T h e s a m p l e w a s t h e n p l a c e d i n a fi x e d - v o l u m e t i t r a ti o n f la s k ( s ee E d m o n d , 1 9 70 ), a n d

    t h e a l k a l i n it y d e t e r m i n e d p o t e n t i o m e t r i c a l l y u s i n g a m i c r o b u r r e t t e f ille d w i t h 1 .0 M

    H C I . T h e t o t a l C O 2 w a s o b t a i n e d u s i n g a c o m p u t e r p r o g r a m w h i c h c a l c u la t e d t h e

    c o r r e c t e n d p o i n t o f t h e s a m p l e b y i te r a t i o n ( P e n t e c o s t , 1 9 92 ). P r o g r a m i n p u t s w e r e in

    s i t u a n d p o s t a l k a l i p H , s p r i n g a n d t i t r a t i o n t e m p e r a t u r e , n o r m a l i t y a n d v o l u m e o f

    t i tr a n t , a n d s o l u t i o n s p e c if ic c o n d u c t i v i ty . A l k a l i n i ty c o r r e c t i o n s f o r o t h e r b a s e s

    (bora te , s i l i ca t e and su lph ide ) were de te rmined for a l l s amples . A t l eas t f ive fo ld

    d i l u t io n o f s a m p l e s w a s n e c e s s a r y f o r t h e s e w a t e r s t o p r e v e n t t h e CO 2 r e l e a s e d d u r i n g

    t i t r a t i o n e s c a p i n g f r o m s o l u t i o n a n d f o r m i n g b u b b l e s i n t h e f l a s k . T o t a l s u l p h i d e ,

    t h i o s u lp h a t e a n d o x y g e n w e r e d e t e r m i n e d b y t h e c o m b i n e d m e t h o d o f I n g v o r s e n a n d

  • 7/25/2019 Geochemistry of Carbon Dioxide in Six Travertine-Depositing Waters of Italy

    5/16

    A. P entecost / Journal of Hydrology 167 199 5) 263-278

    Table 1

    Hy drologica l da ta re la t ing to ca rbon dioxide evasion ra tes

    267

    Characteristic Ba gn acci o-P aul a Springs (1)

    A - B B - C C - D D - E 3 4 5 6

    Discharge (1 s l) 3.7 3.7 3.5 3.1 3.2 5.4 3.7 4.4

    System length (m) 7.6 12 11.4 32 48 78 23 68

    M ean wi dth (m) 0.2 0.2 0.17 0.38 0.42 0.74 0.13 1.02

    M ean de pth (era) 3.4 3.4 3.0 3.0 5.8 3.4 11.2 2.5

    W ate r a rea (m 2) 1.5 2.4 1.9 12 20 58 3.0 69

    M ean w ater 62.0 61.3 60.3 55,8 40.7 50 55 55

    tempera ture C

    M ean gra die nt 1.01 1.11 3.75 1,54 7.80 1.43 0.60 1.85

    degrees

    M ean she ar stress 60 65 190 80 780 80 115 80

    ( gc m - l s - l )

    Bed charac tera S S S L H L S /R L/H

    a Stream b ed characteristics: S , smooth; L, loose travertine crust with micro bial mats; R , rou gh w ith small

    (1 cm) pro tuberan ces greater than 1 cm.

    Site key: 1, Bagnaccio, A represents spring orifice, with B, C, etc. consecutively downstream; 3, Bagni di

    Vigno ni; 4, Bullicame-Dan te; 5, BuUicam e W est; 6, Le Zitelle.

    J o r g e n s e n ( 1 97 9 ). A t s o m e s i t es , t h e p r e s e n c e o f o x y g e n w a s t e s t e d q u a l i t a t i v e l y u s i n g

    t h e s e n s it i v e r e s a z u r i n m e t h o d ( C a l d w e l l e t a l ., 1 9 84 ). M o s t o f t h e r e m a i n i n g c a t i o n s

    w e r e d e t e r m i n e d u s i n g a t o m i c a b s o r p t i o n s p e c t r o p h o t o m e t r y . C h l o r i d e a n d s u l p h a t e

    w e r e d e t e r m i n e d b y a r g e n t o m e t r y a n d t u r b i d i m e t r y r e s p e c t i v e ly ( G r e e n b e r g , 1 98 5) .

    2 . 3 . M i n e r a l s a t u r a t i o n q u o t i e n t s, p C 0 2 a n d tr a v e r ti n e c o m p o s i t i o n

    T h e s a t u r a t i o n q u o t i e n t s f~a, f~c a n d 9tg o f a r a g o n i t e , c a l c i t e a n d g y p s u m ,

    r e s p ec t iv e l y , w e r e d e t e r m i n e d u s i n g W A T E Q ( T r u e s d e l l a n d J o n e s , 1 97 4) .

    Ca)s cO 3)s

    ~ a, g = ( C a ) m ( C O 3 ) m

    W h e r e s r e f e rs t o t h e s a m p l e a n d m t h e i o n a c t iv i t y p r o d u c t f o r th e m i n e r a l ( a r a g o n i t e ,

    c a l c it e ) a t t h e m e a s u r e d t e m p e r a t u r e a n d p r e s s u r e . W h e n f~ = 1 t h e w a t e r s a m p l e i s a t

    e q u i l i b r i u m ( i.e . s a t u r a t e d w i t h t h e m i n e r a l ) , v a l u e s a b o v e u n i t y i n d i c a t e s u p e r -

    s a t u r a t i o n . T h e s a m e p r o g r a m o u t p u t s t h e e q u i l i b r i u m C O 2 p a r t i a l p r e ss u r e s o f

    t h e s e s o l u t i o n s , p l u s th e ' a q u e o u s ' ( t h a t i s, u n i o n i s e d ) C O 2 c o n c e n t r a t i o n .

    T r a v e r t in e c a r b o n a n d o x y g e n s t a b l e i s o t o p e c o m p o s i t i o n w a s d e t e r m i n e d a n d

    X - r a y d i f f r ac t i o n u s e d t o c o n f i r m t h e m i n e r a l o g y .

    2 . 4 . C a r b o n d i o x i d e f l u x a n d t r a n s fe r c o e f fi c ie n t s

    T h e c a r b o n d i o x i d e f lu x w a s e s t im a t e d f r o m t h e d i f f er e n ce b e t w e e n t h e a n a l y t i c a l

    c o n c e n t r a t i o n s o f c a r b o n d i o x i d e b e t w e e n t w o f i xe d p o i n t s , a l l o w a n c e b e i n g m a d e f o r

  • 7/25/2019 Geochemistry of Carbon Dioxide in Six Travertine-Depositing Waters of Italy

    6/16

    268 A . P e n t e c o s t / J o u r n a l o f H y d r o l og y 1 67 1 9 9 5 ) 2 6 3 - 2 7 8

    a n y C a C O 3 p r e c i p i t a te d in b e tw e e n . R a t e s c o u l d n o t b e c o r r e c t e d f o r p h o t o s y n t h e s i s

    d i r e c t l y , b u t s a m p l e s w e r e t a k e n a t m i d d a y a n d m i d n i g h t t o p r o v i d e a n e s t i m a t e o f

    b i o l o g i c a l a c t iv i t y , i .e . b e t w e e n p h o t o s y n t h e s i s w h i c h r e s u l ts i n n e t r e m o v a l o f C O 2

    f r o m t h e w a t e r i n t h e d a y , a n d r e s p i r a t io n w h i c h p r o v i d e s a s m a l l n e t i n p u t o f C O 2

    i n t o t h e w a t e r a t n i g h t . A t m o s t s ite s, s a m p l e s w e r e t a k e n o n l y in t h e u p p e r r e a c h e s o f

    t h e s tr e am s , b u t a t B a g n a c c i o , a s e q u en c e o f d o w n s t r e a m m e a s u r e m e n t s w a s m a d e .

    T h e s u rf a ce a r e a o f w a t e r e x p o s e d b e t w e e n t h e t w o p o i n t s w a s d e t e r m i n e d b y

    m e a s u r i n g t h e a v e r a g e s t r e a m w i d t h , u s i n g t e n e q u a l l y s p a c e d p o i n t s . D i s c h a r g e

    w a s e s t i m a t e d a l o n g a s h o r t l e n g th b y c a l c u l a ti n g t h e c r o s s - s e c ti o n a l a re a o f fl o w

    a n d t h e f l o w r a t e u s i n g f iv e t i m e d t r a n s i t s o f s u r f a c e - f l o a t i n g p a p e r d i s c s. A s m a l l

    c o r r e c t i o n w a s m a d e f o r d r a g ( M o r i s a w a , 1 9 68 ). T h e f lu x is e x p r e s s e d a s m M o l e C O 2

    m - 2 s - 1 . T h e C O 2 t r a n s f e r c o e f f ic i e n ts w e r e c a l c u l a t e d u s i n g t h e s t a t ic f i lm m o d e l

    ( G i s l a s o n , 1 9 8 9 ) w h e r e t h e f l u x , F i s e x p r e s s i b l e a s

    F = k C s -

    Cw)

    = k[(Pco2K ) - Cw ]

    w h e r e k is t h e t r a n s f e r c o e f f ic i e n t, Cs is t h e c o n c e n t r a t i o n o f g a s a t t h e f il m t o p , C w is

    t h e c o n c e n t r a t i o n o f g a s in w a t e r b e l o w t h e f ilm , P c % is th e p a r t i a l p r e s s u r e o f C O 2 i n

    a i r a b o v e t h e f il m a n d K s is H e n r y ' s L a w c o n s t a n t . T h e f il m th i c k n es s , z is g i v e n b y

    z = D / F

    w h e r e D is t h e c o e f fi c ie n t o f d i f f u s io n o f C O 2 in w a t e r , o b t a i n e d f r o m

    B r o e c k e r a n d P e n g ( 1 9 7 4 ) . F o r t h e c a l c u l a t i o n s , P c % h a s b e e n t a k e n a s i t s

    a t m o s p h e r i c v a l u e , 1 0 -3 .4 4 b a r a n d C w a s t h e b u l k c o n c e n t r a t i o n o f C O 2 ( a q ) .

    2 .5 . M e a n s h e a r s t r e s s

    M e a n s h e a r s t r e s s c a n b e e s t i m a t e d f r o m

    r = p g R S

    w h e r e p i s t h e d e n s i t y o f w a t e r , g is th e a c c e l e r a t i o n o w i n g t o g r a v i t y , R i s t h e

    h y d r a u l i c r a d iu s o f th e s t r e a m b e d a n d S is t h e s t r e a m g r a d i e n t , o b t a i n e d b y l e ve ll in g

    ( R i c h a r d s , 1 9 8 2) . T h i s r e l a t i o n s h i p s t r i c t ly a p p l ie s t o s t r e a m s e c t i o n s w h e r e t h e r e i s n o

    a c c e l e r a t i o n , i.e . w i t h o u t c a s c a d e s . T h e s e w e r e a b s e n t i n a l l o f th e s t r e a m s e c t i o n s

    i n v e s t i g a t e d .

    3 Resu l t s

    3 .1 . S i t e h y d r o l o g y

    S o m e p e r t i n e n t h y d r o l o g i c a l c h a r a c te r i s ti c s a r e s h o w n i n T a b l e 1. D i s c h a r g e a t a ll

    s p r i n g s i s l es s t h a n 5 1 s - l , a n d t h e c h a n n e l s l e a d i n g f r o m t h e s p r i n g s r a r e l y e x c e e d e d I

    m i n w i d t h a n d 1 0 c m i n d e p th . M o s t s t r e a m s s e e p e d i n t o t h e g r o u n d a f t e r a s h o r t

    d i s ta n c e a n d o n l y a t L e Z i t el le d i d t h e y f lo w i n t o a s e c o n d - o r d e r s t r e a m , a t w h i c h

    p o i n t t r a v e r t in e d e p o s i t i o n c e a s ed . S p r i n g w a t e r t e m p e r a t u r e s v a r i e d f r o m s it e t o s i te ,

  • 7/25/2019 Geochemistry of Carbon Dioxide in Six Travertine-Depositing Waters of Italy

    7/16

    A. P entecost / Journal of Hydrology 167 1995) 263-278

    269

    b u t t h e V i t e r b o g r o u p ( B a g n a c c i o , B u l li c a m e a n d L e Z i te l le ) a ll h a d t e m p e r a t u r e s c l o s e

    t o 6 2 C . G r a d i e n t s g e n e r a l ly w e r e s li g h t a l o n g t h e m a n - m a d e c h a n n e l s . A t B a g n o

    V i g n o n i , h o w e v e r , t h e s t r e a m f l o w e d d o w n a s t e e p g r a d i e n t b e f o r e f in a l ly c a s c a d i n g

    o v e r t h e m a i n t r a v e r t in e m o u n d . F l o w r a t e s ra r e l y e x c e e d e d 1 m s - I a t a n y o f t h e site s.

    T h e a v e r a g e s h e a r s t r es s e s ( T a b l e 1 ) r e f le c t d i f fe r e n c e s i n t h e g r a d i e n t a n d s h o w s t h a t

    B a g n a c c io A - B , B - C , D - E , B u l l ic a m e - D a n t e a n d L e Z it el le a ll h a v e a b o u t t h e sa m e

    m e a n s h e a r s t re s s ( 4 0 - 8 0 g c m - 1 s - l ) . C h a n n e l b e d c h a r a c t e r is t i c s w e r e v a r i a b l e a n d a t a ll

    s it es co n s i s te d o f tr a v e r ti n e . T h e d e p o s i ts w e r e o f t e n s m o o t h a n d h a r d , a s a t B a g n a c c i o

    a n d B a g n i d i V i g n o n i , b u t a t L e Z it e ll e , t h e m a i n c h a n n e l p o s s e s s e d a f e w d e e p p o o l s w i t h

    j a g g e d , u p s t r e a m - d i r e c t e d c o n c r e t i o n s b u t t h e s e d id n o t a p p e a r t o g i ve ri se t o h i g h s h e a r

    s tr e ss e s (s e e T a b l e 1 ). T h e h i g h e s t s h e a r s t re s se s w e r e o b t a i n e d a t B a g n i d i V i g n o n i w h e r e

    t h e w a t e r s d e s c e n d e d t h e s t ee p , u p p e r s e c t i o n o f t h e t r a v e r t in e m o u n d .

    3 .2 . W a t e r c h e m i s t r y

    A l l s p ri n g w a t e r s c o n t a i n e d h i g h c o n c e n t r a t i o n s o f c a r b o n d i o x i d e , c a l c iu m ,

    m a g n e s i u m a n d s u l p h a t e , w i t h l o w e r le v el s o f s o d i u m a n d c h l o r i d e ( T a b l e 2) .

    S p r i n g w a t e r p H w a s c l o s e t o 6 .4 a n d a ll w a t e r s c o n t a i n e d le ss t h a n 0 .2 m M o x y g e n

    a n d t o t a l s u l p h i d e .

    T h e p C O 2 o f th e e m e r g i n g w a t e r s w a s h ig h a n d o f t e n a p p r o a c h e d a t m o s p h e r i c

    p r e s s u r e . A l l w a t e r s a r o s e a p p a r e n t l y s u p e r s a t u r a t e d w i t h r e s p e c t t o b o t h a r a g o n i t e

    a n d c a l ci te a n d b o t h m i n e r a l s o c c u r r e d i n th e a s s o c i a te d t r a v e r ti n e s . S u p e r s a t u r a t i o n

    w a s p a r t i c u l a r l y h i g h a t t h e B a g n i s a n F i l l i p o s p r in g , w h i c h a l s o h a d t h e l o w e s t p C O 2 .

    T h i s w a s p r o b a b l y b e c a u s e t h e w a t e r s w e r e c o n d u c t e d o n t o t h e t r a v e r t i n e f r o m a

    l a r g e p i p e , w h i c h c o n n e c t e d w i t h t h e s o u r c e a b o u t 2 0 0 m d i s t a n t , p e r m i t t i n g s o m e

    d e g a s s in g w i t h i n t h e p ip e . F o r t h is r e a s o n , C O 2 f lu x m e a s u r e m e n t s w e r e n o t m a d e a t

    t h i s si te . T h r e e o f t h e s p r i n g w a t e r s w e r e a ls o c l o s e t o g y p s u m s a t u r a t i o n ( T a b l e 2 ).

    3 .3 . C 0 2 f l u x a n d t r a v e r t in e d e p o s it io n

    A t B a g n a c c i o , t h e f a ll i n T D I C ( t o ta l d is s o lv e d i n o r g a n i c c a r b o n ) a n d C O 2 ( a q ) is

    c l e a rl y d e m o n s t r a t e d ( F ig . 3 ) . T h e r a t e o f fa ll fo r b o t h is n o n - l i n e a r w i t h d i s ta n c e , b u t

    f o r C O 2 ( a q ) a l o g a r i t h m i c f a ll i s e v i d e n t ( F ig . 4 ). A s C O 2 e v a s i o n p r o c e e d e d , p H r o s e

    f r o m a r o u n d 6 . 4 t o 7 . 4 . O x y g e n i n v a d e d t h e w a t e r w i t h a n a p p a r e n t l y l i n e a r r a t e o f

    u p t a k e w i t h d i s t a n c e a n d a t t h e l o w e s t s i t e , 6 5 m d i s t a n t f r o m t h e s o u r c e , o x y g e n

    s a t u r a t i o n h a d r e a c h e d 7 6 % . T h e m e a n o x y g e n i m p o r t r a te w a s e st im a t e d a s 30 # M

    m - 2 s - I . T h e c a r b o n d i o x i d e f l u x d if f e r e d v e r y l i tt le b e t w e e n d a y a n d n i g h t ( T a b l e 3 ).

    T r a v e r t i n e d e p o s i t i o n i n t h e c h a n n e l s w a s m o n i t o r e d b y m e a s u r i n g d i s s o l v e d

    c a lc i um . R a t e s o f C O 2 d e p o s i t i o n ( in t o C a C O 3 ) w e r e lo w w h e n c o m p a r e d w i t h

    d e g a s s i n g , t h e l a r g e s t a m o u n t C a C O 3 p r e c i p i t a t e d b e t w e e n t h e h i g h e s t a n d l o w e s t

    s it es a t B a g n a c c i o b e i n g 0 . 3 m M l - l . A t t h e o t h e r V i t e r b o s p r in g s a n d a t B a g n i d i

    V i g n o n i , th e d if f e re n c e s b e t w e e n m i d d a y a n d m i d n i g h t m e a s u r e m e n t s w e r e a g a in

    s m a ll a n d c a l c iu m c a r b o n a t e d e p o s i t i o n a m o u n t e d t o a m a x i m u m o f 0 .3 m M 1-1.

    A t B u l l ic a m e - D a n t e a n d L e Z i te l le t h e m a x i m u m C O 2 ' l o ss ' t o C a C O 3 d e p o s i t i o n w a s

    0 . 7 6 m M 1-1 a n d 1 .5 m M 1 l , r e s p e c t iv e l y .

  • 7/25/2019 Geochemistry of Carbon Dioxide in Six Travertine-Depositing Waters of Italy

    8/16

    270

    A. P entecost / Journal o f Hydrology 167 1995) 263-278

    Table 2

    Chemical composition of spring waters

    Determinand Site

    2 3 4 5 6

    t(c) 64.9 47.0 33.2 55.5 56.3 62.9

    pH 6.32 6.72 6.75 6.30 6.54 6.32

    TDICa(mM) 31.2 36.4 21.9 28.5 21.6 23.0

    HCO 3 (mM) 17.4 27.8 16.6 15.8 14.6 12.8

    pCO2(atm) 0.881 0.395 0.177 0.705 0.384 0.632

    log pCO2 -0.055 -0.403 -0.752 -0.152 -0.416 -0.199

    CO2 (aq) (mM) 13.8 8.25 4.96 12.7 6.80 10.2

    Ca (mM) 14.3 18.0 18.0 14.3 14.0 14.2

    Mg (mM) 6.91 8.13 8.55 5.65 5.75 4.9

    Sr ( M) 92 - - - 98

    Na (mM) 2.00 5.00 2.85 3.30 2.80 1.9

    K (mM) 0.21 0.05 0.60 0.85 0.85 0.08

    CI (mM) 2.00 0.40 1.57 0.25 0.40 0.43

    SO4 (raM) 12.9 15.6 11.3 11.4 11.4 9.7

    total S ( M) 32 39 34 76 82 112

    02 (mM)b 0.01 + 0.26 0.02 0.22 +

    9tcc 5.70 14.8 7.22 3.94 6.46 3.98

    f~a 4.02 10.0 4.82 2.74 4.51 2.82

    f~g 0.86 1.23 - 0.87 - -

    a TDIC Total dissolved inorganic carbon.

    b + indicates waters resazurin-positive.

    c ~ c a g saturation ratios for calcite, aragonite and gypsum.

    Sites: 1, Bagnaccio, Paula Springs; 2, Bagni san Fillipo, top spring; 3, Bagni di Vignoni; 4, Bullicame-Dante;

    5, Bullicame-West;6, Le Zitelle.

    Ca rb on dioxide flux betwe en sites was variabl e (Table 3), with a range of 0.45-4.41

    mM CO2 m -2 s -1 The highest flux was obt ain ed at Bagnaccio, just b elow the springs,

    and the lowest were obt ain ed at Le Zitelle, in the upper, slow-flowing chann el. On

    average, day tim e rates of degassing (1.8 mM CO2 m -2 s -l ) were the same as nigh tti me

    rates, A significant posit ive correlati on was obt ained between the f lux and both the

    mea n pCO2 (P < 0.01) and the temper ature (P < 0.1), but no correlat ion was found

    between the f lux and stream gradient. Although there was some tendency for s i tes

    with higher shear stresses to have larger CO2 fluxes, there was no significant

    correlati on between these variates .

    The car bo n dioxide tr ansfer coefficients rang ed from 66 to 360 cm h -1 ( Table 3)

    with estimated f i lm thicknesses in the range 0.1- 0.4 cm.

    3 .4 . T r a v e r t i n e c o m p o s i t i o n

    The major travertine consti tuents are l is ted in Table 4. In a ll samples, the deposits

    conta ined more than 90% ca lc ium carbona te but with s ignificant amoun ts of gypsum,

    which amo un ted to 4.1% at Bullicame West. The Viterbo travertines normall y con-

    sis ted of mixtures of aragonite and calcite and only at Le Zite lle was aragonite the

  • 7/25/2019 Geochemistry of Carbon Dioxide in Six Travertine-Depositing Waters of Italy

    9/16

    A. Pentecost/Journal of Hydrology 167 1995) 263-278

    271

    7 5

    7 0

    6 5

    2 0

    15

    10

    o

    o

    0~0 ~ 8

    T D IC m M / l ~

    0 1 0 2 0 3 0 4 0 5 0

    m d o w n s t r e a m

    150

    1 0 0

    50

    Fig. 3. Dow nstream chemical changes at Paula spring, Bagnaccio on 8 April 1993. (a) Oxygen; (b) pH; (c)

    total dissolved inorganic carbon; (d) CO2 (aq). Full l ines denote midday measurements; broken l ines,

    midnight.

    p r e d o m i n a n t m i n e ra l . T r a c e s o f a r a g o n i t e w e r e f o u n d a t B u l l i c a m e - W e s t , a n d a t

    B u l l i c a m e D a n t e t h e t r a v e r t i n e c o n s i s t e d e n t i r e l y o f c a lc i te .

    T h e s t a b l e i s o to p i c c o m p o s i t i o n s s h o w t h a t a l l o f th e t r a v e r t i n e s w e r e e n r i c h e d w i t h

    13C a n d 1 8 0 ( T a b l e 1 ) i n r e l a t i o n t o th e P D B a n d S M O W s t a n d a r d s .

    4 D i s c u s s i o n

    4.1. The dissolved carbon dioxide and its origin

    C a r b o n d i o x i d e - - r ic h d i s ch a r g e s a r e f o u n d t h r o u g h o u t t h e w e s t e rn l im b

  • 7/25/2019 Geochemistry of Carbon Dioxide in Six Travertine-Depositing Waters of Italy

    10/16

    272

    A. Pentecost / Journal of Hydrology 167 1995) 2 63-2 78

    1.0

    0.1

    p C O 2 ( a t m )

    ' ~ ' 8 ~ o

    0.01

    0 50 100 150

    m . d o w n s t r e a m

    Fig. 4. Log (CO2 {aq}) as a funct ion of distance from springs, Paula springs, Bagnaccio. Full line, midday;

    broken line, midnighL

    of the Italian peninsula and are associated with all of the recent Italian volcanic

    centres.

    Numerous analyses of thermal waters may be found in Waring (1965) but

    measurements of dissolved carbon dioxide have rarely been undertaken on

    travertine-depositing thermal springs. Some information is available from Japan

    (Kitano, 1963), Italy (Malesani and Vannuchi, 1975), Wyoming (Friedman, 1970)

    and Bolivia (Risacher and Eugster, 1979). These data are listed with some previously

    unpublished informat ion in Table 5(a). Carbon dioxide levels from tectonically active

    regions fall in the range 12.7-67 mM 1 l with equilibrium partial pressures of

    0.22-1.0 atm. These partial pressures greatly exceed those of the soil atmosphere

    which lie in the range 0.01-0.1 atm (Atkinson and Smith, 1976).

    Table 3

    Carbon dioxide flux and transfer coefficients

    Site Flux mM CO 2 (m -2 s-1) Transfer coefficient k

    (cmh -1)

    Day rate Night rate

    Day Night

    Bagnaccio A-B 4.4 2.2 246 122

    Bagnaccio B-C 3.5 3.4 274 275

    Bagnaccio C-D 3.0 1.4 347 183

    Bagnaccio D-E 0.9 0.7 249 203

    Bagni di Vignone 1.3 1.7 187 360

    Bull icame-Dante 0.5 0.5 93 66

    Bullicame-West 2.4 3.6 109 157

    Le Zitelle 0.5 0.5 80 70

  • 7/25/2019 Geochemistry of Carbon Dioxide in Six Travertine-Depositing Waters of Italy

    11/16

    A. Pentecost / Journal o f Hydrology 167 1995) 263-278

    Table 4

    Co mp osition o f fresh travertines

    273

    Determinand Si te

    2 3 4 5 6

    Ca CO 3 (% ) 94.1 96.0 92.4 96.0 91.3 95.4

    CaSO 4 (% ) 3.4 2.3 3.3 3.1 4.1 1.7

    SrCO 3 (% ) 1.6 1.4 1.4 0.3 2.4 1.6

    Organic ma t te ra (% ) 0.48 0.14 0.80 0.37 1.84 0.94

    Acid-insoluble (% ) 0.15 0.08 1.73 0.11 0.32 0.24

    minerals

    M g (ppm ) 985 1900 4460 4690 1380 920

    Sr (pp m ) 9600 8100 4000 1510 14200 9340

    K (pp m) 15 - 35 39 -

    N a (ppm ) 440 57 730 480 55 24

    Fe (pp m) 135 136 230 145 136 57

    M n (ppm) 10 7 4 34 102 146 14

    P (ppm) 43 8 82 - -

    Mine ra logyb A + C A + C C C C + A(tr ) A + C(tr)

    ~13C

    PD B 6.29 6.50 4.30 5.91 5.92 4.93

    618 0 SM O W 18.71 19.90 20.71 19.56 19.28 17.62

    a Includes some sulph ur

    b A, ara gon ite; C, calcite; tr , trace.

    Sites: 1, Bagn accio; 2, Bagni san F illip o; 3, Bagni di Vignoni; 4, Bullicame-Dante; 5, Bullicame-West; 6, Le

    Zitelle.

    A c a r b o n d i o x i d e s o u r c e a d d i t i o n a l t o t h e s o i l i s n e c e s s a r y t o p r o d u c e s u c h h i g h

    p r e s s u r e s a t t h e e a r t h ' s s u rf a ce . L i m e s t o n e a n d / o r o r g a n i c m a t t e r d e c a r b o n a t i o n i n

    a r e a s o f r e g i o n a l o r c o n t a c t m e t a m o r p h i s m h a s o f t e n b e e n su g g e s t e d to a c c o u n t f o r

    t h e a d d i t i o n a l c a r b o n d i o x i d e ( H u r l e y e t a l . , 1 9 6 6; B a r n e s e t a l . , 1 98 4; C a t h e l i n e a u e t

    a l ., 1 9 89 ; D e i n e s , 1 99 2 ). N o d e c a r b o n a t i o n p r o c e s s e s h o w e v e r h a v e y e t b e e n u n e q u i -

    v o c a l l y i d e n t i f ie d w i t h a n y g e o t h e r m a l a r e a . T h e I t a l i a n v o l c a n o e s a n d a s s o c i a t e d

    g e o t h e r m a l f ie l d s o c c u r i n a c o m p l e x t e c t o n i c r e g i o n w h e r e c r u s t a l t e n s i o n , d e e p

    f a u l t i n g a n d s u b d u c t i o n a r e a l l i n p r o g r e s s ( C h e s t e r , 1 9 85 ) t h o u g h i t i s n o t p o s s i b l e

    a t p r e s e n t t o i d e n t i f y w h i c h C O 2 - e v o l v i n g p r o c e s s i s a s s o c i a t e d w i t h t h e h o t s p r in g s

    i n v e s t i g a te d . T h e i s o t o p i c c o m p o s i t i o n o f th e t r a v e r t in e s a n d t h e i r a s s o c i a t e d w a t e r s

    ( P a n i c h i a n d T o n g i o r g i , 1 97 6; M a n f r a e t a l . , 19 7 6) t o g e t h e r w i t h t h e r e s u l t s o b t a i n e d

    h e r e ( T a b l e 4 ) i n d i c a t e a h e a v i e r s o u r c e o f c a r b o n w h i c h c o u l d b e p r o v i d e d b y l i m e -

    s t o n e d e c a r b o n a t i o n a t h i g h te m p e r a t u r e s .

    T h e r m a l s p r i n g s o c c u r r i n g i n t e c t o n i c a l l y q u i e t r e g i o n s ( T a b l e 5 b ) h a v e l o w e q u i l i -

    b r i u m p C O 2 v a l u e s t h a t f a ll w i t h i n t h e r a n g e o f r e g i o n a l so i l p C O 2 a n d r e p r e s e n t

    d e e p - f l o w i n g m e t e o r i c w a t e r s u n l i k e l y t o h a v e c o n t a c t e d t h e r m a l l y g e n e r a t e d C O 2

    s o u r c e s .

    4 .2 . G a s f l u x

    T h e c a r b o n d i o x i d e e v a s i o n r a t e s ( T a b l e 3 ) w e r e f o u n d t o b e h i g h i n a l l c a s es ,

  • 7/25/2019 Geochemistry of Carbon Dioxide in Six Travertine-Depositing Waters of Italy

    12/16

    274 A. Pentecost / Journal o f Hydrology 167 1995) 2 63 -27 8

    T a b l e 5

    C a r b o n d i o x i d e l e v el s in t r a v e r t i n e - d e p o s i t i n g th e r m a l s p r i n g s

    S i t e / c o u n t r y T D I C ( m M 1 -1 ) p C O 2 t ( C ) R e f e r e n c e

    ( a t m )

    a) Tectonically/volcanically active regtons

    H e b e r H o t S p r s 2 1 .0

    U t a h

    J a p a n 1 2 . 7 - 6 7

    K a r l o v y - V a r y 5 4 . 5

    C z e c h R e p u b l i c

    M a m m o t h H o t S p r in g s 1 9 .6 - 20 .1

    W y o m i n g

    P a s t o s G r a n d e s c . 1 5.3

    B o l iv i a

    R a p o l a n o T e r m e 6 0 .2

    I t a ly

    S t N e c ta i r e , 65 . 2

    F r a n c e

    b) Tectonically quiet regions

    B a t h S p a 4 . 38

    E n g l a n d

    B or m io , I t a ly 6 . 07

    L a g u n a G r a n d e 4 .0 4

    M e x i c o

    M a t l o c k B a t h 4 .3 0

    E n g l a n d

    0 . 40 45 P e n te c os t

    ( u n p u b l i s h e d )

    0 . 6 6 - 1 .0 2 2 6 - 1 0 0 K i t a n o

    (1963)

    0 . 906 57 P e n te c os t

    ( u n p u b l i s h e d )

    0 . 3 1 - 0 . 3 3 7 3 a F r i e d m a n

    (1970)

    0 . 22 37 a R i sa c h e r a n d

    Eugs t e r ( 1979)

    0 . 50 26 P e n te c os t

    ( u n p u b l i s h e d )

    0 . 64 30 P e n te c os t

    ( u n p u b l i s h e d )

    0 .0 58 4 6 a E d m u n d s a n d

    M i le s ( 1991)

    0 . 056 38 a De C a p i t a n i

    e t a l . (1974)

    0 . 012 28 P e n te c os t

    ( u n p u b l i s h e d )

    0 .038 20 P e n te c os t

    ( u n p u b l i s h e d )

    a

    C a l c u l a t e d f r o m d a t a i n t e x t .

    r e f le c t in g t h e h i g h p a r t i a l p r e s s u r e s o f t h e g a s i n s o l u t i o n . T h e r e is l it tl e i n f o r m a t i o n

    o n r a t es o f c a r b o n d i o x id e e v a s i o n f r o m f r e s h w a t e r s o r h o t - s p r i n g s . I n a s t u d y o f g a s

    t r a n s p o r t i n a G e r m a n t r a v e r t i n e - d e p o s i t i n g h il l s t r e a m , a r a t e o f 8 # M m - 2 s - 1 w a s

    e s t i m a t e d ( U s d o w s k i e t a l. , 1 9 79 ). A c o n s i d e r a b l y h i g h e r r a t e o f 12 0 # M m - 2 s 1 w a s

    r e p o r t e d f r o m t h e M o n t e z u m a W e l l s o u r c e ( C o l e a n d B a c h e l d e r , 1 96 9). N e i t h e r o f

    t h e se r a t es a p p r o a c h e s t h o s e o b t a i n e d h e r e ( T a b l e 3) d u e t o t h e m u c h h i g h e r p C O 2

    a n d t e m p e r a t u r e s o f th e i s su i ng t h e r m a l w a t e r s .

    A d e t a il e d i n v e s ti g a t io n o f s o m e c o ld a n d w a r m t r a v e r t i n e - d e p o s i t in g s t r e a m s o f

    V i r g i n i a in d i c a t e d a p o s i t i v e r e l a t i o n s h i p b e t w e e n m e a n s h e a r s tr e s s a n d d e g a s s i n g

    ( H o f f e r - F r e n c h a n d H e r m a n , 1 98 9) w i th m a x i m u m C O 2 e v a s io n ra t es o f a r o u n d 1

    /.tM k g - l s - 1 o n t h e c a s c a d e s w h e r e s h e a r i n g s t re s s e s a p p r o a c h e d 2 k g c m -1 s - 1 . T h e s e

    r a te s c o m p a r e w i t h a m e a n e v a s i o n r a te o f 6 # M k g -1 s 1 f o r B a g n a c c i o w i t h s h e a r in g

    s t re s s e s o f a b o u t 0 .1 k g c m 1 s -1 ( T a b l e 1 ). T h e l a c k o f c o r r e l a t i o n b e t w e e n d e g a s s i n g

    r a t e a n d t h e m e a n s h e a r s tr e ss w a s u n e x p e c t e d a t th e I t a l i a n s it es b u t m i g h t b e

    e x p l a i n e d b y t h e l a c k o f e x t r e m e d i ff e r en c e s i n t u r b u l e n c e ( i. e. c a s c a d e s ) d o w n t h e

    w a t e r c o u r s e s i n v e s t i g a t e d .

    T h e f lu x o f c a r b o n d i o x id e a c r o s s th e a i r - w a t e r i n t e r f ac e h a s b e e n s h o w n , f o r m o s t

  • 7/25/2019 Geochemistry of Carbon Dioxide in Six Travertine-Depositing Waters of Italy

    13/16

    A. Pentecost/Journal of Hydrology 167 1995) 263-278

    275

    conditions of flow to be consistent with the static film model (Usdowski and Hoefs,

    1990) and is given by F = kAC (see above). The t ransfer coefficient k is dependent

    upon temperature and turbulence and where these factors are constant, the flux is

    dependent solely upon the concent ration difference of carbon dioxide across the film.

    A water sample subject to gas evasion under these conditions will undergo an

    exponential decline in dissolved gas with time, providing there are no limitations

    imposed by chemical reactions involving the gas. Carbon dioxide evasion at

    Bagnaccio showed such a decline with distance despite the fact that temperature

    varied downstream. A similar decline is also apparent in the data of Usdowski et

    al. (1979) but these examples must be regarded as the exception rather than the rule.

    At Bagnaccio the exponential decline must be attribu ted to the comparat ively simple

    and even form of the artificial channel. The weak positive correlat ion between evasion

    rate and temperature follows directly from the reduced solubility and increased

    diffusivity of carbon dioxide with increasing temperature. Values for the transfer

    coefficient and estimated film thickness are similar to those obtained for a meltwater

    stream investigated by Gislason (1989) who found that they were indicative of

    turbulent flow. Coefficients in excess of 100 cm h -l fall within the breaking-bubble

    regime at the sea surface (Broecker and Siems, 1984), but bubble breaking was rarely

    observed at the ho t springs. This suggests that the hot-spring waters were somewhat

    less turbulent than that predicted by the Broecker and Siems (1984) model, but this is

    accounted by the increasing magnitude of k with water temperature. Another

    contributory factor, which would be difficult to demonstrate, is that the concen-

    tration of carbon dioxide at the film surface is probably higher than the mean

    atmospheric value owing to the large amounts of gas being discharged into the

    overlying atmosphere.

    While carbon dioxide was lost from the hot waters, oxygen was absorbed. At

    Bagnaccio, the rate of uptake was consistent with the transfer model of Tsivoglou

    and Neal (1976) where uptake is a function of stream gradient and transit time.

    4 3 Chemical composition and travertine formation

    All of the springwaters are of the Ca -H CO 3- SO 4 type with high levels of

    magnesium and total dissolved solids ranging from 3.1 to 3.9 g 1 1 (Table 2). The

    low salinities and chloride levels show that the waters are non-marine in origin.

    Chemistries of the Viterbo springs are markedly similar to each other, suggesting a

    common source. High levels o f sulphate are probab ly the result of gypsum/anhydr ite

    dissolution as sediments containing these minerals are widespread in central Italy.

    The dissolution o f CaSO 4 and CaCO 3 may lead to subsurface precipitation of CaCO3

    through the common ion effect (Freeze and Cherry, 1979). Some evidence of

    subsurface deposition is apparent at Bagnaccio (R. L. Folk, personal com-

    munication, 1991), and the spring waters appear to rise slightly supersaturated with

    respect to both calcite and aragonite, though close to gypsum saturation (Table 2).

    The gross composition of these waters is similar to other t ravertine-depositing springs

    in central Italy (Malesani and Vannuchi, 1975).

    Experimental work has shown tha t a ragonite is precipitated in preference to calcite

  • 7/25/2019 Geochemistry of Carbon Dioxide in Six Travertine-Depositing Waters of Italy

    14/16

    276

    A. Pen tecost /Jou rnal of Hydrology 167 1995) 263-278

    a t t e m p e r a t u r e s e x c e e d i n g a b o u t 4 0 C ( L i p p m a n n , 1 97 3) . B e c a u s e m o s t o f t h e

    t h e r m a l s p r in g s h a v e t e m p e r a t u r e s e x c e e d i n g 4 5 C , t h e o c c u r r e n c e o f a r a g o n i t e w a s

    n o t s u r p r is i n g ( T a b l e 4 ), th o u g h i ts a b s e n c e a t B u l l ic a m e - D a n t e ( t 4 0 - 5 5 . 5 C ) w a s .

    T h e c o m p a r a t i v e l y h i g h l ev e ls o f S r i n t h e t r a v e r t in e ( T a b l e 4 ) m a y b e a t t r i b u t e d t o i ts

    h i g h l e v e l i n th e w a t e r a n d t h e l o w p a r t i t i o n c o e f f ic i e n t f o r S r i n a r a g o n i t e ( C i p r i a n i e t

    a l. , 1 9 7 7 ). A l t h o u g h r e l a t iv e l y h i g h M g l ev e l s a r e p r e s e n t t o h i g h l ev e l s i n t h e w a t e r ,

    h i g h m a g n e s i a n c a l ci te w a s n o t d e t e c t e d b y X - r a y d i f f ra c t i o n i n th e t r a v e r ti n e . T h e

    o c c u r r e n c e o f g y p s u m ( T a b l e 4) p r o b a b l y r e su l te d f r o m e v a p o r a t i o n o f t he

    C a S O 4 - s a t u r a t e d w a t e r .

    T h e d e p o s i t i o n o f t ra v e r t i n e f r o m t h e r m a l s p r in g s h a s b e e n o b s e r v e d o n n u m e r o u s

    o c c a s i o n s a n d is t h e s u b j e c t o f m a n y i n v e s t ig a t io n s . T w o v i e w s a r e c o m m o n l y

    e x p r e s s e d c o n c e r n i n g i t s f o r m a t i o n , t h o u g h t h e y a r e n o t m u t u a l l y e x c l u s i v e

    ( P e n t e c o s t , 1 9 9 0 ). O n e c o n s i d e r s t h a t d e p o s i t i o n i s t h e r e s u l t o f C O 2 e v a s i o n , w h i c h

    r a is e s p H a n d l ea d s t o r e a d j u s t m e n t o f th e d i s s o lv e d c a r b o n a t e e q u i li b r iu m .

    S u b s e q u e n t l y , i n c r e a s i n g c a r b o n a t e s u p e r s a t u r a t i o n a n d p r e c i p i t a t i o n o c c u r . T h e

    o t h e r v i e w e m p h a s i z e s t h e r o l e o f b i o l o g ic a l p ro c e s s e s in c o n t r o l l i n g c a r b o n a t e

    p r e c i p i t a ti o n , e i th e r t h r o u g h t h e r e m o v a l o f C O 2 v ia p h o t o s y n t h e s i s a n d / o r a

    c a t a l y t ic ef fe c t o p e r a t i n g a t t h e o r g a n i s m s u r fa c e . B e c a u s e o r g a n is m s a r e a b u n d a n t

    a t a l l o f t h e s e s p r i n g s t h e i r p o s s i b l e e f f e c ts c a n n o t b e i g n o r e d .

    I f p h o t o s y n t h e s i s i s s i g n if ic a n t i n r e m o v i n g C O 2 f r o m t h e w a t e r , t h e n a m a r k e d

    d i f fe r e n c e i n t h e b u l k T D I C a n d t h e e v a s io n r a t e s h o u l d b e a p p a r e n t b e t w e e n

    m e a s u r e m e n t s c a r r ie d o u t a t m i d d a y a n d m i d n i g h t. N o e v id e n c e w a s f o u n d h e r e t o

    s u p p o r t s i g n if ic a n t p h o t o s y n t h e t i c a c t iv i ty , a n d i t m u s t b e c o n c l u d e d t h a t g a s e v a s i o n

    is t h e m a j o r d r i v i n g f o r c e l e a d i n g t o c a r b o n a t e s u p e r s a t u r a t i o n a t a l l o f t h e s e si te s.

    W h e t h e r o r g a n is m s p r o c e e d t o c a ta l y se c a r b o n a t e d e p o s i t io n f r o m a w a t e r t h a t h a s

    b e c o m e h i g h ly s u p e r s a t u r a t e d a s a re s u l t o f C O 2 e v a s i o n is a n o t h e r m a t t e r a n d i s

    b e y o n d t h e s c o p e o f t h is s t u d y .

    cknowledgements

    I w i s h to t h a n k D r . T . P J o n e s o f th e I n s t i tu t e f o r G e o l o g y , U n i v e r s i ty o f T u b i n g e n

    f o r t h e s t a b le i s o t o p e a n a l y s e s a n d P r o f e s s o r R . L . F o l k f o r a s si s ta n c e w i t h s o m e o f t h e

    i n s i t u a n a l y s e s .

    References

    Atkinson, T.C. and Smith, D.I. , 1976. The erosion of limestones. In: T .D . Ford (Editor), The Scienceo f

    Speleology. Academ icpress, Lond on, pp. 151-178.

    Barnes, I., Irwin, W .P. and W hite, D.E., 1978. Glob al distribution o f carbon d ioxidedischarges, and ma jor

    zones o f seismicity. U.S., G eo l. Surv ., W ate r Res. Inv est. No. 78-39 (Open-file Rep.).

    Barnes, I. , Irwin, W .P. and W hite, D.E., 1984. Ma p showing world distribution of carbon dioxide springs

    and major zones of seismicity. Departm ent of the Interior. U.S. Geol. Surv., Misc. Invest. Ser. Map

    1-1528.

    Broecker, H.C . and Peng, T.H., 1974. Gas exchange rates between air an d sea. Tellus, 26: 21-35.

  • 7/25/2019 Geochemistry of Carbon Dioxide in Six Travertine-Depositing Waters of Italy

    15/16

    A. Pentecost / Journal of Hydrology 167 1995) 2 63-2 78

    277

    B r o e c k e r , H . C . a n d S i em s , W . , 1 98 4 . T h e r o l e o f b u b b l e s f o r g a s t r a n s f e r f r o m w a t e r t o a i r a t h i g h e r

    w i n d s p e e d s. E x p e r i m e n t s i n t h e w i n d w a v e f a ci l it y i n H a m b u r g . I n : W . B r u t s a e r t a n d G . H . J i r k a

    ( E d i t o rs ) , G a s T r a n s f e r a t W a t e r S u r f a ce s . R e i d el , D o r d r e c h t , p p . 2 2 9 - 2 3 6 .

    C a l d w e l l, D . E . , K i e ft , T .L . a n d B r a n n a n , D . K . , 1 98 4. C o l o n i z a t i o n o f s u l f i d e - o x y g e n i n te r f a c es o n h o t

    s p r i n g t u f a b y

    Thermothrix thiopara.

    G e om ic r ob io l . J . , 3 : 181 - 200 .

    C a the l ine a u , M . , Du be ssy , J . , M a r ign a c , C . , Va lo r i , A ., G ia ne l l i , G . a n d P uxe ddu , M . , 1989 . P r e s su r e -

    t e m p e r a t u r e - f l u i d c o m p o s i t i o n c h a n g e s f r o m m a g m a t i c t o p r e s e n t d a y s t a g e s i n t h e L a r d e r e l l o

    g e o t h e r m a l f ie ld . I n: D . L . M i l es (E d i t o r ) , W a t e r - R o c k I n t e r a c t i o n . B a lk e m a , R o t t e r d a m , p p . 1 3 7 - 1 4 0 .

    C h e s t e r , D . K . , 1 98 5. M o u n t E t n a , t h e a n a t o m y o f a v o l c a n o . C h a p m a n a n d H a l l , L o n d o n .

    Cip r iani , N . , M ales ani , P . and V ann ucc i , S. , 1977. I t r av er t in i de l l ' I ta l ia cent ra le . Bol l. Serv. Geo l . I ta l . , 98:

    8 5 - 1 1 5 .

    C o l e , G . A . a n d B a c h e l d e r , G . L . , 1 96 9 . D y n a m i c s o f a n A r i z o n a t r a v e r t i n e - f o r m i n g s tr e a m . J . A r iz . A c a d .

    Sc i . , 5 : 271-283.

    D a l l ' A g l i o , M . a n d T e d e s co , C ., 1 96 8 . R i l ie v o id r o g e o c h i m i c o d e l l' a r e a d e i M o n t i C i m i n i . C N E N R T / G E O

    (68) , pp . 1-9 .

    D a n d u r a n d , J . L . , G o u t , R . , H o e f s , J ., M e n s c h e l , G . , S c h o t t , J. a n d U s d o w s k i , E ., 1 9 8 2 . K i n e t i c a ll y

    c o n t r o l l e d v a r i a t i o n s o f m a j o r c o m p o n e n t s a n d c a r b o n a n d o x y g e n i s o t o p e s i n a c a l c i t e - d e p o s i t i n g

    sp r ing . C he m . G e o l . , 36 : 299 - 315 .

    D e C a p i t a n i , L . , F i o r e n t i n e , P . M . a n d T e r r a n i , M . , 1 9 7 4 . G e o c h e m i s t r y o f R a i n t h e s u p e rg e n e z o n e o f a

    r a d ioa c t ive sp r ing . A t t i S oc . I t a l . S c i . N a t . , 115 :157- 169 .

    D e i n e s , P ., 1 99 2. M a n t l e c a r b o n : c o n c e n t r a t i o n , m o d e o f o c c u r re n c e a n d i s o t o p i c c o m p o s i t i o n . I n : M .

    S c h i d l o w s k i , S . G o l u b i c , M . M . K i m b e r l e y , D . M . M c K i r d y , a n d P . A . T r u d i n g e r , ( E d i t o r s ) , E a r l y

    Or g a n ic Evo lu t ion . S p r inge r , B e r li n , pp . 133 - 146 .

    E d m o n d , J . M . , 1 97 0 . H i g h p r e c i s io n d e t e r m i n a t i o n o f t it r a t i o n a l k a li n i t y a n d t o t a l c a r b o n d i o x i d e c o n t e n t

    o f s e a w a t e r b y p o t e n t i o m e t r i c ti t r a t i o n . D e e p S e a R e s ., 1 7: 7 3 7 -7 5 0 .

    E d m u n d s , W . M . a n d M i l e s, D . L . , 1 9 91 . T h e g e o c h e m i s t ry o f t h e B a t h t h e r m a l w a t e rs . I n : G . A . K e l l a w a y

    ( E d i t o r ), H o t S p r i n g s o f B a t h . B a t h C i t y C o u n c i l , U K , p p . 1 4 3 - 1 5 6 .

    E m e i s , K . C ., R i c h n o w , H . H . a n d K e m p e , S . , 1 9 87 . T r a v e r t i n e f o r m a t i o n i n P l i tv i c e N a t i o n a l P a r k ,

    Yugos l a v i a : c he m ic a l ve r sus b io log ic a l c on t r o l . S e d im e n to logy , 34 : 595 - 610 .

    F r e e z e , R . A . a nd C he r r y , J . A . , 1979 . G r oundwa te r . P r e n t i c e - Ha l l , N e w Yor k .

    F r i e d m a n , I ., 1 97 0 . S o m e i n v e s t i g a ti o n s o f t h e d e p o s i t i o n o f t r a v e r t i n e f r o m h o t s p r i n g s - - 1 . T h e i s o t o p i c

    c h e m i s t r y o f a t r a v e r t i n e - d e p o s i t i n g s p r in g . G e o c h i m . C o s m o c h i m . A c t a , 3 4 : 1 3 0 3 - 1 3 1 5 .

    G i s l a so n , S . R . , 1989 . K ine t i c s o f w a te r - a i r i n t e r a c t ions i n r i ve rs : a f i eld s tudy in I c e l a nd . I n : D . L . M i l e s

    ( E d i t o r ), W a t e r R o c k In t e r a c t i o n . B a l k e m a , R o t t e r d a m , p p . 2 6 3 - 2 6 6 .

    G r e e n b e r g , A . E . ( E d i t o r ) , 1 9 85 . S t a n d a r d M e t h o d s f o r th e e x a m i n a t i o n o f W a t e r a n d W a s t e w a t e r , 1 6 t h

    e d n . A m e r i c a n P u b l i c H e a l t h A s s o c i a t i o n , W a s h i n g t o n .

    H e r m a n , J . S . a n d L o r a h , M . M . , 1 9 87 . C O 2 o u t g a s s i n g a n d c a l c it e p re c i p i t a t io n i n F a l l i n g S p r i n g C r e e k ,

    V i r g in i a , U . S . A . C he m . G e o l . , 62 : 251 - 262 .

    H o f f e r - F r e n c h , K . J . a n d H e r m a n , J .S . , 1 9 89 . E v a l u a t i o n o f h y d r o l o g i c a l a n d b i o l o g ic a l i n fl u e n ce s o n C O 2

    f luxes f r om a k a r s t s t r e a m . J . Hydr o l . , 108: 189 - 212 .

    H u r l e y , P . M . , F a i r b u r n , H . W . a n d P i n s o n , J r. , W . H . , 1 96 6 . R b - S r i s o t o p i c e v i d e n c e i n o r ig i n o f p o t a s h -

    r i c h l a va s o f we s t e r n I t a ly . Ea r th P l a ne t . S c i. Le t t . , 5 : 301 - 30 3 .

    I n g v o r s e n , K . a n d J o r g e n s e n , B .B ., 1 9 79 . C o m b i n e d m e a s u r e m e n t o f o x y g e n a n d s u lf id e i n w a t e r s a m p l es .

    L im no l . Oc e a nogr . , 24 : 390 - 393 .

    K i t a n o , Y . , 1 9 6 3. G e o c h e m i s t r y o f c a l c a re o u s d e p o s i t s f o u n d i n h o t s p r i n g s . J . E a r t h S ci., N a g o y a U n i v . ,

    11: 68 - 100 .

    K r u m b e i n , W . E ., 1 97 9 . C a l c i f ic a t i o n b y b a c t e r i a a n d a l ga e . I n : P .A . T r u d i n g e r a n d P . A . S w a i n e (E d i t o r s ),

    B i o g e o c h e m i c a l C y c l i n g o f M i n e r a l - f o r m i n g E l e m e n t s . E l se v ie r , N e w Y o r k , p p . 4 7 - 6 8 .

    L i p p m a n n , F . , 1 97 3. S e d i m e n t a r y C a r b o n a t e M i n e r a l s . S p r in g e r , H e id e l b er g .

    M a le sa n i , P . a nd Va n nuc c i , S ., 1975 . P r e c ip i t a z ione d i c a l c it e o d i a r a go n i t e da l l e a c que t e r m om ine r a l i i n

    r e l a z ione a l i a ge ne si e a l l' e vo luz ion e de i t r a ve r t i n i . A t t i R . A c c a d . I t a l . , 58 : 761 - 776 .

    M a nf r a , L . , M a s i , U . a n d Tur i , B . , 1976 . La c om pos iz io ne i so top ic a de i t r a ve r t i n i de l La z io . G e o l . R o m a na ,

    15: 127-174.

  • 7/25/2019 Geochemistry of Carbon Dioxide in Six Travertine-Depositing Waters of Italy

    16/16

    278

    A. Pentecost / Journal of Hydrology 167 1995) 2 63-2 78

    M o r i s a w a , M . , 1 9 68 . S t r e a m s , t h e i r D y n a m i c s a n d M o r p h o l o g y . M c G r a w - H i l l , N e w Y o r k .

    P a n i c h i , C . a n d T o n g i o r g i , E . , 1 9 7 6. C a r b o n i s o t o p i c c o m p o s i t i o n o f C O 2 f r o m s p r in g s , fu m a r o l e s , m o f e t t e s

    a n d t r a v e r t i n e s o f c e n t r a l a n d s o u t h e r n I t a ly . P r e l i m i n a r y p r o s p e c t i o n m e t h o d o f a g e o t h e r m a l a r e a . I n :

    P r o c . S e c o n d U n i t e d N a t i o n s S y m p . o n t h e D e v e l o p m e n t a n d U s e o f G e o t h e r m a l R e s o u r ce s . S a n

    F r a n c i s c o , p p . 8 1 5 - 8 2 5 .

    P e n t e c o s t , A . , 1 9 9 0. T h e f o r m a t i o n o f t ra v e r t i n e s h r u b s : M a m m o t h H o t S p r in g s , W y o m i n g . G e o l . M a g . ,

    127: 159 - 168 .

    P e n t e c o s t , A ., 1 9 92 . C a r b o n a t e c h e m i s t r y o f s u r f a c e w a t e r s i n a t e m p e r a t e k a r s t r e g i o n : th e s o u t h e r n

    Y o r k s h i r e D a l e s , U . K . J . H y d r o l . , 1 3 9 : 2 1 1 - 2 3 2 .

    P e n te c o s t , A . a nd R id ing . R . , 1986 . C a lc i f i c a t i on in c ya no ba c t e r i a . I n : B .S .C . Le a dbe a t e r a nd R . R id ing

    ( Ed i to r s ) , B iom ine r a l i z a t i on o f Low e r P l a n t s a nd A n im a l s . S ys t e m a t i c s Ass oc i a t i on S pe c. Vo l . 30 .

    O x f o r d U n i v e r s i ty , O x f o r d , p p . 7 3 - 9 0 .

    R i c h a r d s , K . , 1 98 2 . R i v e r s: F o r m a n d P r o c e s s i n A l l u v i a l C h a n n e l s . M e t h u e n , L o n d o n .

    R i sa c he r , F . a n d Eu gs t e r , H . P . , 1979. Ho loc e n e p i so l i th s a nd e nc r u s t a t i on s w i th sp r ing - f e d su r f a c e poo l s ,

    P a s to s G r a nde s , B o l iv i a . S e d im e n to logy , 26 : 253 - 270 .

    T r u e s d e l l, A . H . a n d J o n e s , B . F . , 1 97 4 . W A T E Q , a c o m p u t e r p r o g r a m m e f o r c a lc u l a t i n g c h e m i c a l e q u i l i b ri a

    o f na tu r a l wa te r s . J . R e s . U . S . G e o l . S u r v . , 2 : 223 - 248 .

    T s i v o g l o u , E . C . a n d N e a l , L . A . , 1 97 6. T r a c e r m e a s u r e m e n t o f r e a e r a t i o n I I I ., P r e d i c t in g t h e r e a e r a t i o n

    c a p a c i t y o f i n l a n d s t r e a m s . W a t e r P o l l u t . C o n t r o l F e d . J . , 48 : 6 6 9 - 7 2 .

    Usd ow sk i , E . a n d H oe f s , J . , 1990 . K ine t i c 13C /12C a n d 180 /160 ef fe ct s upo n d i s so lu t ion a n d o u tga s s ing o f

    C O 2 i n t h e s y s te m C O 2 - H 2 0 . C h e m . G e o l . , 80 : 1 0 9 - 1 1 8 .

    Usd ow sk i , E . , Hoe f s , J . a n d M e nsc he l , G . , 1979. R e la t i ons h ip be twe e n 13C a n d 180 f r a c t iona t ion a nd

    c h a n g e s i n m a j o r e l e m e n t c o m p o s i t i o n i n a r e c e n t c a l c it e - d ep o s i t in g s p r i n g - - a m o d e l o f c h e m i c a l

    v a r i a t i o n s w i t h i n o r g a n i c C a C O 3 p re c i p i t a ti o n . E a r t h P l a n e t S ci . L e t t. , 4 2: 2 6 7 - 2 7 6 .

    W a r i n g , G . A . , 1 96 5. T h e r m a l s p r i n g s o f t h e U n i t e d S t a t e s a n d o t h e r c o u n t r i e s o f th e w o r l d - - a s u m m a r y .

    U . S . , G e o l . S u r v . , U . S . , G o v t . P r in t i ng Of fi ce , W a sh in g ton , P r o f . P a p . 492 .