geochemistry g3 volume 9 geophysics 7 march 2008 geosystems · puna [whitman et al., 1996]. thinned...

13
Composition and structural control of crustal domains in the central Andes Mirian Mamani Abteilung Geochemie, Universita ¨t Go ¨ttingen, Goldschmidtstrasse 1, D-37077 Go ¨ttingen, Germany ([email protected]) Andre ´ s Tassara Departamento de Geofı ´sica, Universidad de Chile, Blanco Encalada 2002, Santiago, Chile Gerhard Wo ¨rner Abteilung Geochemie, Universita ¨t Go ¨ttingen, Goldschmidtstrasse 1, D-37077 Go ¨ttingen, Germany [1] Present-day ratios of Pb isotopes (324 published samples, 435 new) and Nd-Sr isotopes (150 published, 180 new) on Proterozoic to Holocene igneous, metamorphic, and sedimentary rocks define (at high spatial resolution) distinct isotopic domains of the crust in the central Andes. These domains correlate with the internal compositional structure of the crust as revealed by a three-dimensional density model. Pb-Nd isotopic boundaries thus correspond to variations in crustal compositional structure and reflect Proterozoic mafic-dominated and Paleozoic felsic-dominated crustal lithologies. Age and composition (mafic versus felsic) of these domains have controlled the rheology of the Andean crust, have influenced crustal deformation patterns, and correlate with the central Andean plateau segmentation. Components: 7380 words, 6 figures. Keywords: central Andes; mafic; felsic; crustal domains; density structure; isotopic composition. Index Terms: 8104 Tectonophysics: Continental margins: convergent; 1040 Geochemistry: Radiogenic isotope geochemistry; 1219 Geodesy and Gravity: Gravity anomalies and Earth structure (0920, 7205, 7240). Received 8 December 2007; Accepted 26 December 2007; Published 7 March 2008. Mamani, M., A. Tassara, and G. Wo ¨rner (2008), Composition and structural control of crustal domains in the central Andes, Geochem. Geophys. Geosyst., 9, Q03006, doi:10.1029/2007GC001925. 1. Introduction [2] Various studies have shown that lead isotopic compositions of igneous rocks in the central Andes reflect the composition of the underlying basement and thus can be used to (1) map crustal domains [Wo ¨rner et al., 1992; Aitcheson et al., 1995] and (2) constrain plate reconstructions [Tosdal, 1996; Loewy et al., 2004]. Macfarlane et al. [1990] suggested from Pb isotope data that Andean ore deposits are mixtures of mantle and crustal sources, reflecting distinct geological provinces. In this contribution, we analyze the results of 759 Pb and 230 Nd isotope analyses on metamorphic, intrusive and volcanic rocks ranging in age from Proterozoic to Holocene, for the central Andes (13° to 28°S and 75° to 65°W). This data set identifies present-day crustal domains and locates their boundaries at a high spatial resolution. These results show correlation with the crustal structure G 3 G 3 Geochemistry Geophysics Geosystems Published by AGU and the Geochemical Society AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Geochemistry Geophysics Geosystems Article Volume 9, Number 3 7 March 2008 Q03006, doi:10.1029/2007GC001925 ISSN: 1525-2027 Click Here for Full Articl e Copyright 2008 by the American Geophysical Union 1 of 13

Upload: others

Post on 09-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Composition and structural control of crustal domains in thecentral Andes

    Mirian MamaniAbteilung Geochemie, Universität Göttingen, Goldschmidtstrasse 1, D-37077 Göttingen, Germany([email protected])

    Andrés TassaraDepartamento de Geofı́sica, Universidad de Chile, Blanco Encalada 2002, Santiago, Chile

    Gerhard WörnerAbteilung Geochemie, Universität Göttingen, Goldschmidtstrasse 1, D-37077 Göttingen, Germany

    [1] Present-day ratios of Pb isotopes (324 published samples, 435 new) and Nd-Sr isotopes (150 published,180 new) on Proterozoic to Holocene igneous, metamorphic, and sedimentary rocks define (at high spatialresolution) distinct isotopic domains of the crust in the central Andes. These domains correlate with theinternal compositional structure of the crust as revealed by a three-dimensional density model. Pb-Ndisotopic boundaries thus correspond to variations in crustal compositional structure and reflect Proterozoicmafic-dominated and Paleozoic felsic-dominated crustal lithologies. Age and composition (mafic versusfelsic) of these domains have controlled the rheology of the Andean crust, have influenced crustaldeformation patterns, and correlate with the central Andean plateau segmentation.

    Components: 7380 words, 6 figures.

    Keywords: central Andes; mafic; felsic; crustal domains; density structure; isotopic composition.

    Index Terms: 8104 Tectonophysics: Continental margins: convergent; 1040 Geochemistry: Radiogenic isotope

    geochemistry; 1219 Geodesy and Gravity: Gravity anomalies and Earth structure (0920, 7205, 7240).

    Received 8 December 2007; Accepted 26 December 2007; Published 7 March 2008.

    Mamani, M., A. Tassara, and G. Wörner (2008), Composition and structural control of crustal domains in the central Andes,

    Geochem. Geophys. Geosyst., 9, Q03006, doi:10.1029/2007GC001925.

    1. Introduction

    [2] Various studies have shown that lead isotopiccompositions of igneous rocks in the central Andesreflect the composition of the underlying basementand thus can be used to (1) map crustal domains[Wörner et al., 1992; Aitcheson et al., 1995] and(2) constrain plate reconstructions [Tosdal, 1996;Loewy et al., 2004]. Macfarlane et al. [1990]suggested from Pb isotope data that Andean ore

    deposits are mixtures of mantle and crustal sources,reflecting distinct geological provinces. In thiscontribution, we analyze the results of 759 Pband 230 Nd isotope analyses on metamorphic,intrusive and volcanic rocks ranging in age fromProterozoic to Holocene, for the central Andes (13�to 28�S and 75� to 65�W). This data set identifiespresent-day crustal domains and locates theirboundaries at a high spatial resolution. Theseresults show correlation with the crustal structure

    G3G3GeochemistryGeophysicsGeosystemsPublished by AGU and the Geochemical Society

    AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES

    GeochemistryGeophysics

    Geosystems

    Article

    Volume 9, Number 3

    7 March 2008

    Q03006, doi:10.1029/2007GC001925

    ISSN: 1525-2027

    ClickHere

    for

    FullArticle

    Copyright 2008 by the American Geophysical Union 1 of 13

    http://dx.doi.org/10.1029/2007GC001925

  • derived from a 3-D density model, indicating thatchanges of Pb and Nd isotope compositions ofigneous and basement rocks are caused by varia-tions in the proportions of light, felsic to dense,mafic material of the crust in the central Andes.Such coherence implies that crustal evolution andstructure, major element composition, and traceelements are linked through time and controlmagma compositions and the structural grain dur-ing Andean orogeny.

    2. Tectonic Setting

    [3] The Andean margin has been shaped by con-vergence between oceanic plates of Pacific affinityand the western edge of South America sinceJurassic times [Allmendinger et al., 1997; Ramosand Aleman, 2000]. Currently, the oceanic Nazcaplate and the South American plate converge withan azimuth of N79�E and a rate of �63 mm/a forthe central Andean margin [Kendrick et al., 2003].This convergence direction is roughly parallel tothe axis of symmetry of the margin at �20�S,defined by Gephart [1994] in terms of surfacetopography and slab geometry.

    [4] The Peru-Chile trench has a maximum depth of8000 m. It is almost free of sediments and noaccretionary prism is observed along the centralAndean margin [von Huene et al., 1999]. Eastwardof the coastline, uplifted metamorphic rocks ofProterozoic and Paleozoic age and intermediate-to-basic Jurassic-Cretaceous magmatic rocks areexposed along the Coastal Cordillera. Subaerialforearc basins are filled with Cenozoic volcano-sedimentary deposits of the Moquegua Group andAzapa Formation [Roperch et al., 2006; Wörner etal., 2000b]. The Western Cordillera (max. eleva-tions 6000 m) is a chain of Quaternary stratovol-canic complexes (Figure 3a; see GeomorphologicalUnits). This geomorphological unit also containsexposures of well-preserved volcanic structures ofmiddle Miocene to Pliocene ages. The Altiplano(14–21�S) is an internally drained basin filled withgently deformed Cenozoic synorogenic sedimentsand volcanics [Allmendinger et al., 1997] with anaverage elevation of 3800 m [Isacks, 1988]. ThePuna (22–27�S) has an average elevation nearly akilometer higher than the Altiplano, which hasbeen attributed to thermal uplift caused by thinningof the lithosphere and delamination beneath thePuna [Whitman et al., 1996]. Thinned crust andlithosphere beneath the Puna plateau have alsobeen suggested on the basis of the chemistry andisotopic composition of back-arc volcanics [Kay et

    al., 1994]. The eastern boundary of the Altiplano-Puna Plateau is the Eastern Cordillera (max. ele-vations 5000 m), a doubly vergent deformation beltactive until the middle to late Miocene [McQuarrie,2002]. Present-day crustal shortening concentratesalong the Sierras Subandinas fold-thrust belt [Kleyet al., 1999].

    [5] Ramos [1988] and Ramos and Aleman [2000]defined the nature and regional distribution of var-ious terranes in the Andean belt on the basis oftectonostratigraphic analysis (Figure 1). These ter-ranes form a mosaic of old continental crust amal-gamated during the Late Proterozoic to earlyPaleozoic times [Tosdal, 1996; Loewy et al., 2004,and references therein] and a noncollisional Paleo-zoic mobile belt at the western edge of Gondwana[Lucassen et al., 2001; Lucassen and Franz, 2005;Chew et al., 2007]. Crucial for our reconstruction ofthe terrane assemblage of the central Andes is theProterozoic Arequipa terrane. This is formed bydiscontinuous outcrops of mafic Proterozoic base-ment rocks exposed in the Peruvian Coastal Cordil-lera, in the western Altiplano and along the ChileanPrecordillera to the north of 22�S [e.g., Tosdal, 1996;Wörner et al., 2000a; Loewy et al., 2004].

    3. Analytical Techniques

    [6] Major, trace elements, and strontium, neodym-ium and lead isotopes of the samples were mea-sured on whole-rock by X-ray fluorescenceanalysis (XRF) and thermal ionization mass spec-trometry (TIMS) at the ‘‘GeowissenschaftlicheZentrum’’ of the University of Göttingen.

    [7] For XRF 700 mg of powdered sample werethoroughly mixed with 4200 mg Spectroflux 100(Dilithiumtetraborate [Li2B4O7]) and melted to aglass disc by an automatic fusion device. Analyt-ical errors for major elements are around 1%(except for Fe and Na, 2%) and for trace elementsaround 5%. For the calibration of major and traceelement determination were used about 50 refer-ence materials: a wide variety of internationalgeochemical reference samples from the US Geo-logical Survey, the International Working Group‘‘Analytical standards of minerals, ores and rocks’’,the National Research Council of Canada, theGeological Survey of Japan, the South AfricanBureau of Standards, the National Institute ofStandards and Technology.

    [8] The isotope ratios of Sr, Nd and Pb on wholerocks were determined by TIMS (FinniganMAT262-RPQII). For Sr and Nd isotopic determi-

    GeochemistryGeophysicsGeosystems G3G3 mamani et al.: crustal domains in the central andes 10.1029/2007GC001925

    2 of 13

  • nation 100 mg of sample powder was dissolved in6 mL HF: HNO3 (1:1) for 16 hours at 200�C bakedwithin Savillex beakers. The solution was evapo-rated to complete dryness at 140�C on a hot plate,dissolved and evaporated two times again in 4 mL6 N HCl, and evaporation for the last time, it wasredissolved in 2.5 mL 2.6 N HCl, stored in PE vialsand centrifuged. For separation the sample solutionwas rinsed with 2.6 N HCl through columns

    containing ion exchange resin BIORAD AG 50W-X8Resin, 200–400mesh. The strontium-rich elutionfraction was collected and evaporated to dryness andstored until measuring. For Nd separation, the REErich fraction gained from the above separation se-quence was separated in a second set of columnscontaining Teflon powder which is impregnatedwith ion-exchanging HDEHP Bis-(2-etylhexy)-Phosphate. Elution of Nd was done with 0.18 NHCl. For measurement, Sr was dissolved in 0.5 NH3PO4andmountedonRe-double filaments (�1mg),and Nd was dissolved in 2 N HCl and mounted onRe-double filaments (�1 mg). The Sr and Nd isotoperatios were corrected for mass fractionation to87Sr/86Sr = 0.1194 and 143Nd/144Nd = 0.7219 andnormalized to values for NBS987 (0.710245), and LaJolla (0.511847), respectively. Measured values ofthese standards over the period of the study were0.710262 ± 24 (21 analyses) and 0.511847 ± 20(12 analysis). External 2s errors are estimated at

  • [2000] and Loewy et al. [2004] and 11 newsamples). Paleozoic basement rocks of the EasternCordillera, across the Western Cordillera and Alti-plano-Puna have a lower metamorphic grade (71samples from Lucassen et al. [2001, and referencestherein] and Kamenov et al. [2002] and 16 newsamples). Igneous Jurassic rocks have been ana-lyzed from the Coastal Cordillera (52 samples fromLucassen et al. [2006, and references therein] and14 new samples). These and 50 published [Rogersand Hawkesworth, 1989; Haschke et al., 2002] and8 new data on Cretaceous igneous rocks werecombined with 522 Pb isotope ratios of Cenozoicigneous rocks (136 samples from Kay et al. [1999,and references therein], Trumbull et al. [1999],Siebel et al. [2001], and Aitcheson et al. [1995]and 386 new data). The new database and thecompilation of the published data are available asauxiliary material1 (Tables S1 and S2).

    [10] This large number of Pb isotope measure-ments of Andean rocks (i.e., gneisses, intrusions,ignimbrites, and lavas), ranging in age from Pro-terozoic to Recent (Figure 2) allows to outline thecrustal domains (Figure 3a) much more preciselythan previously possible. We include data from

    rocks of very different ages. Even though theirpaleogeographic arrangement was different in Pro-terozoic, Paleozoic and Neogene times, we arguethat the crustal column (with the exception of thesub-Andean belts) largely remained unchangedunless significant differential movements occurredbetween upper and lower crust, which is beyondthe resolution of the domain boundaries outlinedbelow. In this case, a Mesozoic or Tertiary mag-matic rock will be within the geological andgeographical context of the Proterozoic crustaldomain into/onto which it was emplaced. If youn-ger volcanic rocks traverse (and assimilate) thiscrust, they again will represent this domain. How-ever, in more recent geological times (i.e.,2000 m of the western margin of theAltiplano that occurred with only limited shorten-ing [Sempere and Jacay, 2007; Hindle et al., 2005;Wörner et al., 1992; Isacks, 1988]. Lower crustalflow would cause the E boundary of the ArequipaDomain (see discussion below) to be more diffuseand shift its western boundary to the W toward theCoastal Cordillera. If the spatial resolution of ourdomain boundaries is near the distance of lowercrustal flow, then this process will have relativelylittle affect on their location. It is therefore justified

    Figure 2. The 206Pb/204Pb ratios as a function of latitude in the central Andes. Quaternary lavas (QL), Mio-Pliocenelavas (MPL), Miocene lavas (ML), Neogene ignimbrites (NIG), Eocene-Paleocene-Cretaceous intrusions (EPCIN),Jurassic intrusions (JIN), Paleozoic basement (PB), and Proterozoic basement (PrB). The shaded field highlights thelead isotope ratios of Miocene to Recent frontal arc lavas. Equivalent diagrams for 207Pb/204Pb and 208Pb/204Pb aregiven in the auxiliary material; see text for discussion.

    1Auxiliary materials are available in the HTML. doi:10.1029/GC001925.

    GeochemistryGeophysicsGeosystems G3G3 mamani et al.: crustal domains in the central andes 10.1029/2007GC001925

    4 of 13

  • to ‘‘mix’’ old and young rocks in our analysis. Onthis basis, we distinguish the following domains:

    [11] The Arequipa domain is represented by thelowest 206Pb/204Pb ratios (from 16.083 to 18.551),207Pb/204Pb ratios (15.435 to 15.650) and208Pb/204Pb ratios (37.625 to 38.655). The Neo-gene volcanics in this domain have lower eNdvalues from �4 to �12 (Figures 4 and 5c)and high 87Sr/86Sr ratios from 0.706 to 0.708(Figure 5d). The northern boundary (�16�S) ofthis domain is abrupt compared with the southernboundary (between 19.3�S and 21�S).

    [12] The Cordillera domains occur to the S and Nof the Arequipa domain and have the highest Pbisotope ratios: 206Pb/204Pb > 18.551, 207Pb/204Pb >15.650, and 208Pb/204Pb > 38.655. Neogene volca-

    noes in the northern Cordillera domain have low

    eNd from �1 to �4 (Figures 4 and 5c), low87Sr/86Sr ratios from 0.705 to 0.7064 (Figure 5d).The southern Cordillera Domain has eNd from �2to �8 (Figures 4 and 5c) and 87Sr/86Sr ratios from0.705 to 0.708 (Figure 5d).

    [13] Mesozoic rocks along the Coastal Cordillerahave 206Pb/204Pb = 18 to 19. These isotopes ratiosare generally higher than that of the Proterozoicbasement (206Pb/204Pb = 16.7 to 18.4) on whichthey are located. However, 207Pb/204Pb,208Pb/204Pb and in some cases 206Pb/204Pb (e.g.,between 22�S–27�S, at 18�S and 20.2�S) aresimilar to the basement where they are located.Their higher eNd values (5 to �1, Figure 4) and low87Sr/86Sr ratios (0.703 to 0.705) are relatively closeto mantle values and thus representative of a

    Figure 3. (a) Spatial distribution of Pb isotope ratios in the central Andes (compositions of Proterozoic and Meso-Cenozoic igneous and metamorphic rocks (color code for 206Pb/204Pb values in Figure 3b)). Map also shows principalgeomorphological units. (b) Map of the ‘‘crustal structure index CSI’’ for the central Andes and compared to Pbisotope values. AD, Arequipa domain; CD, Cordillera domain. Dashed black line is the approximate contour of theArequipa domain. Dashed black lines are depth contours of the subducting slab at 100 km.

    GeochemistryGeophysicsGeosystems G3G3 mamani et al.: crustal domains in the central andes 10.1029/2007GC001925

    5 of 13

  • largely juvenile magma addition to the crust inJurassic and Cretaceous times [Lucassen et al.,2006; Bock et al., 2000].

    5. Crustal Structure Index DerivedFrom 3-D Density Modeling

    [14] The three-dimensional density model ofTassara et al. [2006] was designed to representthe current distribution of mass along the Andeanmargin (5�S–45�S) at continental scales. Thestructure of the model is formed by a number ofbodies simulating the subducted slab, the subcon-tinental mantle and the continental crust. Eachbody has one value of density, which is appropri-ated for its expected chemical composition, meta-morphic pressure-temperature conditions, water

    content and degree of partial melting. The geom-etries of the slab, lithosphere-asthenosphere bound-ary, and continental Moho were prefixed, as far asavailable geophysical data allow (for location andsources of data, see Tassara et al. [2006]). Becausethe geophysical database for the central Andesconstrains the subcrustal slab geometry very well,the geometry of the intracrustal density distributionremains as the unique degree of freedom during theforward modeling of the Bouguer anomaly. Thisintracrustal density discontinuity (ICD) is theboundary between an upper-crustal body with adensity of 2.7 g/cm3 and a lower-crustal body withdensity 3.1 g/cm3. Following empirical relation-ships between density, silica content and hydrationdegree of crystalline crustal rocks [Tassara, 2006],the upper-crustal body simulates a granitic uppercrust with �70 wt% SiO2, whereas the denselower-crustal body represents a garnet-pyroxenedry granulite of 55–58 wt% SiO2 or a more basicbut hydrated amphibolite with 55–48 wt% SiO2.

    [15] The geometry of the ICD is a proxy toregional-scale (several tens to a few hundred kilo-meters) lateral density variations within the crustproduced by variations in the bulk compositionalstructure of the crust, i.e., the vertically integratedproportion of felsic to mafic crust. On the basis ofthe geometries of the 3-D density model of Tassaraet al. [2006], we computed the ‘‘crustal structureindex (CSI)’’ for the study area as the ratio betweenthe thicknesses of the lower-density upper-crustalbody and the total crustal thickness. Low or highvalues of CSI indicate a predominance of mafic or,respectively, felsic material in the crust (Figure 3b).

    6. Correlations Between GeochemicalDomains and Crustal Density Structure

    [16] Variations in ‘‘crustal structure index CSI’’along the central Andes strongly correlate withisotope domains (Figure 3b). Low CSI (0.2) correlatewith the Cordillera Domains.

    [17] These observed CSI geometry, combined withcorrelated isotope domains, indicate that signifi-cantly higher CSI values are found for relativelymore felsic Andean basement, which are locatedtoward the north and south of the more maficArequipa basement with low CSI.

    [18] Such a correlation between 3-D density struc-ture and Pb domains then also indicates that the

    Figure 4. Regional variation of eNd values. Theboundary of the Arequipa Domain as defined in Figure 3is outlined by dashed line. Black lines are the principal faultsystems. Urcos-Ayaviri-Copacabana-Coniri fault system(UACCFS), Incapuquio fault system (IFS), West fissurefault system (WFFS) and Iquipi fault (IF).

    GeochemistryGeophysicsGeosystems G3G3 mamani et al.: crustal domains in the central andes 10.1029/2007GC001925

    6 of 13

  • proportion between felsic and mafic crust are themain factors controlling the density structure aswell as isotopic and geochemical variations of thecentral Andean crust. With age, the compositionaldifferences will translate into enhanced isotopicdifferences.

    [19] Nd values further support our crustal domaindistinctions and corroborate the domain boundariesdefined here on the basis of Pb isotopes (Figure 4).In some areas (e.g., to the southern boundary ofArequipa domain, Figure 5d) Sr isotope variationsdo not constrain the boundaries of crustal domains

    Figure 5. Variations in 206Pb/204Pb isotope ratios, eNd values, 87Sr/86Sr isotope ratios, and Sr/Y ratios in lavas

  • very well. This is because the domain boundarymay be cutting the crust at a shallow angle and thusassimilation and mixing from different domains atdifferent depths will cause a transition rather than asharp boundary (Figure 5b) [Wörner et al., 1992].Also Sr isotopic compositions are much less dis-tinctive in the crust from different domains.

    [20] By contrast, the northern boundary of theArequipa domain is very well constrained also bySr isotopes (Figure 5d) and this suggests that thenorthern edge of Arequipa terrane is relativelyabrupt and steep. The crustal density structure(Figures 3b and 5a) at this boundary also changesabruptly, unlike the southern boundary (between21�S and 22�S) where the transition between maficand felsic is wide (Figures 3, 5a, and 5b).

    [21] Major juvenile additions to the crust are lo-cated along the Coastal Cordillera. Here, the Ju-rassic and Cretaceous igneous rocks have isotopiccompositions close to mantle sources [Lucassen etal., 2006] and the crust seems to be mostly mafic(CSI < 0.1).

    7. Geochemical Signatures and IsotopicCrustal Domains

    [22] Upper and lower crust will likely have similarage and tectonic history within the resolution of thedomain boundaries (�50 km) unless large scalelateral differential movements occurred recentlybetween upper and lower crust. However, similarages and similar evolution with a crustal columndoes not necessarily imply that upper and lowercrust must be of the same composition. Therefore,the very sparse surface outcrops of basement willnot be fully representative of the lower crust of thecentral Andes and even if sparse examples of uppercrustal rocks tend to be relatively silicic [Cobbinget al., 1977; Shackleton et al., 1979; Wasteneys etal., 1995; Tosdal, 1996], the lower crust could stillbe largely and relatively more mafic. Therefore, theanalysis of igneous rocks that traverse the Andeancrust may well be a better ‘‘probe’’ to the compo-sition of the bulk crust than sparse outcrops.

    [23] As we argue here, a larger portion of the crustin the Arequipa domain tends to be more mafic.However, at least toward the N, the supposedly lessmafic crust is lower in Sr and higher in Nd isotopes(Figures 5c and 5d). This apparent contradictioncould have the following explanation: The isotopiccomposition of basement rocks will be the result ofthe combination of composition and age. If ‘‘de-

    pleted’’ mafic lower crust is very old, it still can,for example, grow in more radiogenic Sr than ayounger, more silicic crust. Moreover, the effect onthe isotopic composition of the younger volcanicrocks, which ‘‘probe’’ the crust through assimila-tion will be different for different isotopic systems.Pb will be easily overwhelmed by the crustalsignature even at low degrees of assimilation,whereas Sr and Nd isotopes will not only bedependant on the isotopic composition of theassimilant but also on the amount of assimilation.Sr and Nd isotope signatures thus could be partlyand variably decoupled from each other and fromthe nature of the crust (mafic versus silicic). Bycontrast, Pb isotopes should represent the mostreliable crustal signature. Therefore, the isotopicsignature of ‘‘mafic’’ crust as represented by mag-matic rocks that have traversed this crust, does notnecessarily imply that Sr must be less radiogenicand Nd more radiogenic.

    [24] Another argument with respect to the mafic/silic composition of the crust comes from traceelement variations in Neogene volcanic rocks. Ithas been proposed [e.g., Kay et al., 1999; Haschkeet al., 2002] that high Sr/Y in magmas traversingthickened crust in the central Andes implies a roleof garnet in magma genesis, either in a high-pressure mineral assemblage in the crustal residueafter assimilation or as a fractionating phase. How-ever, the stability of garnet in crustal rocks does notonly increases with pressure (i.e., depth) but it alsodecreases with increasing silica content in thecrustal reservoir [Sobolev and Babeyko, 1994;Tassara, 2006]. Figure 5e shows that the highestSr/Y ratios of young volcanoes (65 km[Tassara et al., 2006]. Low Sr/Y even on thickcrust would imply either felsic bulk crustal com-position, as could be the case of volcanoes on thesouthern Cordillera domain, or assimilation oc-curred mostly in the upper crust as can be inferredfor some volcanoes with low Sr/Y ratios on theArequipa domain.

    [25] The 206Pb/204Pb ratios show the largest abso-lute variations and have thus been used here tooutline the domain boundaries. However, the samegeneral pattern is shown for 207Pb/204Pb and208Pb/204Pb ratios (auxiliary material Figures S1and S2). These diagrams and maps also show thatwherever ‘‘extreme’’ low values in crustal rocks(gneisses, granulites) occur, the spatially associated

    GeochemistryGeophysicsGeosystems G3G3 mamani et al.: crustal domains in the central andes 10.1029/2007GC001925

    8 of 13

  • volcanic rocks also show ‘‘excursions’’ from thegeneral pattern (e.g., 206Pb/204Pb at 16.5�S,Figure 2). 207Pb/204Pb would be expected to showless variability due to the faster decay rates of 235Uto 207Pb if the U/Pb fractionation process in thecrust occurred within the last 1 to 2 Ga. This is inaccord with the known crustal formation andmetamorphic ages of the Central Andean Basement[Loewy et al., 2004; Tosdal, 1996; and referencestherein]. Comparing 207Pb/204Pb and 208Pb/204Pbwith 206Pb/204Pb regional trends (Figure 2 andauxiliary material Figures S1 and S2) shows thatin detail there is a finer-scale pattern to the data:The lowest 206Pb/204Pb ratios (17.62 to 18.20),lowest 207Pb/204Pb ratios (15.52 to 15.63) andhigher 208Pb/204Pb ratios (38.30 to 38.75) arebetween 15�S and 17�S, contrarily between17.5�S and 19�S lavas have higher 206Pb/204Pbratios (17.8 to 18.3), 207Pb/204Pb ratios (15.57 to15.65) and low 208Pb/204Pb ratios (37.77 to 38.70).This indicates the existence of ‘‘subdomains’’ inthe Arequipa Domain with different ages and U/Pband Th/Pb fractionation histories [see also Loewy etal., 2004].

    8. Compositional and StructuralSegmentation of the Central AndeanCrust

    [26] The northern boundary between the Arequipadomain and the northern Cordillera domain shouldbe relative sharp within the crust, because samplesites close to each other systematically show verydifferent isotopic compositions and the CSIchanges quite markedly along this boundary.Therefore the northern boundary of Arequipa do-main would follow a deep E–W structure, whichexactly coincides with a crustal reverse fault rec-ognized at the surface as the Iquipi fault (Figure 4)[see Roperch et al., 2006]. This is in contrast withthe southern boundary of the Arequipa domain thatseems to be more diffuse both in terms of Pbisotopic composition and CSI geometry [Wörneret al., 1992].

    [27] Schmitz et al. [1997] and Yuan et al. [2002]showed that the Moho depth changes at 21�S to22�S (southern boundary of Arequipa domain)from 70 km in the N to 60 km in the S without asignificant change in the Bouguer anomaly. On thebasis of this observation they suggest that the crustin the region N of 21�S contains a relatively thickerportion of mafic lower crust. Other studies (e.g.,Lucassen et al. [2001], Lucassen and Franz

    [2005], and discussion below) confirm that thelower crust below the Puna region is rather fel-sic-dominated than mafic-dominated.

    [28] A striking feature of the central Andean pla-teau (i.e., Altiplano and Puna) is thus the along-strike variation in topography and tectonic styles[Whitman et al., 1996]. The Altiplano is essentiallyan internally drained, intermontane basin betweenthe Western and Eastern Cordilleras. In contrast,the Puna is characterized by smaller and morefragmented basins and greater relief. This along-strike change in the plateau topography is alsoreflected in the different elevation distributions ofthe two segments: Altiplano elevations are concen-trated near 3.8 km while in the Puna elevations aremore evenly distributed about a mean elevation of4.4 km, reflecting the greater local relief [Isacks,1988] and contrasting tectonic histories of therespective segments since the Late Oligocene[Sempere et al., 1990]. The Altiplano also differsfrom the Puna in the fact that it has a welldeveloped thin-skinned thrust belt to the east whichis absent in the Puna foreland [Allmendinger et al.,1997]. North of 23�S, compressional deformationon the Altiplano plateau and in the Eastern Cordil-lera ceased by 9 Ma, and the locus of horizontalshortening shifted eastward to the low-elevationSub-Andean fold-thrust belt [Allmendinger andGubbels, 1996]. South of 23�S, however, compres-sional deformation on the Puna plateau continuedto at least 4 Ma and in some locations even to 2 Ma,before changing to strike-slip kinematics[Allmendinger and Gubbels, 1996].

    [29] Several authors have discussed the role ofinherited pre-Andean crustal structures of the upperplate on the Cenozoic geodynamic evolution, de-formation and segmentation of the central Andesplateau [e.g., Allmendinger and Gubbels, 1996;Sempere et al., 2002]. McQuarrie and DeCelles[2001] suggested that the thick Paleozoic sedimen-tary sequences forming the axis of the EasternCordillera may have localized thin-skinned tecton-ics during shortening in this particular region. Forthe Puna Plateau, the thick-skinned tectonics of theSanta Barbara System and Sierras Pampeanas hasbeen proposed to have developed over a thermallythinned continental lithosphere and that this seg-mentation is controlled by the internal crustal struc-ture and delamination in this segment [Whitman etal., 1996]. Delamination was explained as a conse-quence of the gravitational removal of dense high-grademafic metamorphic lower crust. Such a processwas also suggested by Kay et al. [1994] for the Puna

    GeochemistryGeophysicsGeosystems G3G3 mamani et al.: crustal domains in the central andes 10.1029/2007GC001925

    9 of 13

  • plateau to explain timing and occurrence of intraplatemafic volcanism in the area.

    [30] The crustal domain boundaries defined hereshould help to further constrain the role of preex-isting crustal heterogeneities in the evolution anddeformation pattern of the central Andes. Figure 3ashows that the segmentation of the central Andean

    plateau and its adjacent foreland is in fact spatiallyrelated to the crustal domains defined here: TheArequipa domain is largely coincident with thebroad high Altiplano plateau (3.8 km high and240 km wide). Moreover, the largest amount ofshortening in the Eastern Cordillera and sub-Andean belt during Andean Orogeny is located tothe E and NE [Sheffels, 1990], but is doubtful,

    Figure 6. Grey shaded topography (SRTM 1 km) of the central Andes. Dashed black line is the approximatecontour of the Arequipa domain as defined in Figure 3. Compilation of tectonic rotations for the central Andes fromRousse et al. [2005], Arriagada et al. [2006], and Roperch et al. [2006]. Sedimentary basins: a, Corque basin; b,Huaccochullo basin; c, Moquegua-Azapa basin. Axis rotation from Richards et al. [2004].

    GeochemistryGeophysicsGeosystems G3G3 mamani et al.: crustal domains in the central andes 10.1029/2007GC001925

    10 of 13

  • absent or very minor, W and SW of the Arequipadomain [Sempere and Jacay, 2007]. The southernboundary of Arequipa domain (between 21�S and22�S) thus coincides with the transition betweenthe Altiplano and Puna segments. Therefore weargue that the nature, i.e., the bulk composition andthus the different rheologies (i.e., mechanicalstrength) of the lithosphere and crust are an impor-tant factor in controlling the deformation pattern ofthe central Andes and the localization of theAndean plateau.

    [31] Crustal architecture and evolution are alsodifferent with respect to Neogene sedimentationpatterns with respect to the Arequipa domain:Neogene erosion products deposited during upliftof the central Andes (e.g., Moquegua Group andAzapa Formations and equivalents (Figure 6) [e.g.,Roperch et al., 2006; Wörner et al., 2000b]) appearto be much thicker on the forearc of the Arequipadomain.

    [32] We will now discuss Andean deformationpatterns based on paleomagnetic data. Arriagadaet al. [2006] described block vertical-axis rotations(clockwise up to 35� to 40�) in the forearc between22�S and 28�S during the Jurassic to Oligocene,yet the area of rotation and their boundaries are alloutside the Arequipa domain (Figures 3b and 6).More to the north in southern Peru, Roperch et al.[2006] presented paleomagnetic results from Eo-cene-Oligocene (�35–25 Ma) sediments from theforearc between 18.3�S and 16�S and observed agradient in counterclockwise rotations, between�0� in Arica (18.3�S) to 50� in Caravelı́ (16�S).These rotations are coeval with, of similar magni-tude, but in the opposite sense of the clockwiseblock rotations in the forearc between 22� and 28�S[Arriagada et al., 2006]. However, on the Altiplano,i.e., on the Arequipa Domain, the Tertiary Huac-cochullo and Corque basins (Figure 6) are de-formed and rotated counterclockwise as a moreor less coherent region [Rousse et al., 2005]. Thecentral Andean rotation pattern as described byRousse et al. [2005], Arriagada et al. [2006] andRoperch et al. [2006] in fact seems to be related toindividual crustal blocks with increased deforma-tion and shear near their margins. Only sinceNeogene times, the entire central Andes movedcoherently (Figure 6) and the structural identity ofthe earlier blocks is lost.

    [33] The Altiplano and its western margin hassuffered only limited deformation since about10 Ma [Oncken et al., 2006, and references therein;Sempere and Jacay, 2007], while deformations to

    the N, S and E continued to more recent times.While the Altiplano and Arequipa domain has beenlargely undeformed since Miocene times, the de-formation pattern of Tertiary differential horizontalshortening is focused in the eastern boundary of theArequipa domain (Eastern Cordillera) and in thesouthern Cordillera domain (Puna plateau). TheEastern Cordillera reaches its highest elevationsand steepest gradient toward the Altiplano justwere it interacts with the eastern margin of theArequipa Domain.

    [34] Moreover, Richards et al. [2004] defined avertical axis rotation (Figure 6) of the CentralAndean Orocline on the basis of Euler pole anal-ysis of along strike variations in crustal shorteningsince 35 Ma and 10 Ma. This axis rotation appearsto coincide with the southern boundary of theArequipa domain.

    [35] We conclude from these observations that themafic Arequipa Domain reacts as a somewhatcoherent and rigid block while more diffuse defor-mation with large vertical axis rotations and fault-ing are located outside of it. Therefore, therheological (i.e., mechanical strength) and structuralidentity of the Arequipa Domain appears to haveplayed an important role during Andean Orogeny.

    9. Conclusions

    [36] Crustal domains for the central Andes havebeen identified here on the basis of geochemicaland geophysical data. These are interpreted asdistinct basement domains of different ages andcompositions. Of particular interest is the ArequipaDomain, for which we found evidence that it mayhave an overall more mafic (higher density) com-position. Higher Sr/Y ratios in magmas that tra-verse the Arequipa Domain (compared to thesurrounding Cordillera Domain) could be the resultfrom a garnet-bearing in residual mineralogy in arelatively mafic lower crust. Lower Sr/Y ratios,which are found mostly (but not exclusively) in theCordillera Domain may imply a minor role forgarnet and thus a more felsic crust (or shallowerassimilation in the Arequipa Domain) even thoughthe crust has similar thicknesses (>65 km). Theinterpretation of the Arequipa Domain as a rela-tively more mafic and possibly more rigid block istentatively supported by the Cenozoic deformationpattern in the central Andes as well as the distri-bution and thickness of syn-deformational sedi-mentary deposits. Deformations and axis rotationsare mostly concentrated at its boundaries or in the

    GeochemistryGeophysicsGeosystems G3G3 mamani et al.: crustal domains in the central andes 10.1029/2007GC001925

    11 of 13

  • surrounding Cordillera Domain. The Coastal Cor-dillera domain is interpreted as a rigid block withmajor mafic Mesozoic juvenile (i.e., mafic) contri-bution to the crust.

    Acknowledgments

    [37] This work was supported by scholarships of the GermanAcademic Exchange Service (DAAD) to M.M. and A.T. and

    German Science Foundation grant Wo362/18 to G.W. A.T.

    thanks the further support of the Chilean Bicentennial Program

    in Science and Technology grant ANILLO ACT-18. We thank

    G. Hartmann for providing analytical support, B. Hansen for

    access to the isotope laboratory, and D. Cassard for invaluable

    help during data processing. We are thankful to H. Götze, who

    initiated the comparison between geochemical and geophysi-

    cal data. Suggestions from S. Kay and C. Hawkesworth on a

    former version of this manuscript are also acknowledged. We

    would like to thank T. Sempere and anonymous reviewers for

    critical reviews of earlier versions of this manuscript.

    References

    Aitcheson, S. J., R. S. Harmon, S. Moorbath, A. Schneider,P. Soler, E. E. Soria, G. Steele, I. Swainbank, and G. Wörner(1995), Pb isotopes define basement domains of the Altiplano,central Andes, Geology, 23, 555–558.

    Allmendinger, R. W., and T. Gubbels (1996), Pure and simpleshear plateau uplift, Altiplano-Puna, Argentina and Bolivia,Tectonophysics, 259, 1–13.

    Allmendinger, R. W., T. E. Jordan, M. S. Kay, and B. L. Isacks(1997), The evolution of the Altiplano-Puna Plateau of thecentral Andes, Annu. Rev. Earth Planet. Sci., 25, 139–174.

    Arriagada, C., P. Roperch, C. Mpodozis, and R. Fernandez(2006), Paleomagnetism and tectonics of the southern Ata-cama Desert (25–28�S), northern Chile, Tectonics, 25,TC4001, doi:10.1029/2005TC001923.

    Bock, B., H. Bahlburg, G. Wörner, and U. Zimmermann(2000), Tracing crustal evolution in the southern centralAndes from Late Precambrian to Permian using Nd andPb isotopes, J. Geol., 108, 515–535.

    Chew, D., U. Schaltegger, J. Kosler, M. J. Whitehouse,M. Gutjahr, R. A. Spikings, and A. Miskovı́c (2007), U-Pb geochronologic evidence for the evolution of theGondwanan margin of the north-central Andes, Geol.Soc. Am. Bull., 119, 697–711, doi:10.1130/B26080.1.

    Cobbing, E. J., J. M. Ozard, and N. J. Snelling (1977), Re-connaissance geochronology of the crystalline basementrocks of the Coastal Cordillera of southern Peru, Geol.Soc. Am. Bull., 88, 241–246.

    Gephart, J. W. (1994), Topography and subduction geometryin the central Andes: Clues to the mechanics of a non-collisional orogen, J. Geophys. Res., 99, 12,279–12,288.

    Haschke, M., W. Siebel, A. Günther, and E. Scheuber (2002),Repeated crustal thickening and recycling during the Andeanorogeny in north Chile (21�–26�S), J. Geophys. Res.,107(B1), 2019, doi:10.1029/2001JB000328.

    Hindle, D., J. Kley, O. Oncken, and S. Sobolev (2005), Crustalbalance and crustal flux from shortening estimates in thecentral Andes, Earth Planet. Sci. Lett., 230, 113–124.

    Isacks, B. L. (1988), Uplift of the central Andean plateau andbending of the Bolivian Orocline, J. Geophys. Res., 93,3211–3231.

    Kay, M. S., B. Coira, and J. Viramonte (1994), Young maficback-arc volcanic rocks as indicators of continental litho-spheric delamination beneath the Argentine Puna plateau,central Andes, J. Geophys. Res., 99, 24,323–24,339.

    Kay, M. S., C. Mpodozis, and B. Coira (1999), Neogene mag-matism, tectonism and mineral deposits of the central Andes(22�–33�S latitude), in Geology and Ore Deposits of theCentral Andes, Spec. Publ., vol. 7, edited by B. Skinner,pp. 27–59, Soc. of Econ. Geol., Littleton, Colo.

    Kamenov, G., A. W. Macfarlane, and L. R. Riciputi (2002),Sources of lead in the San Cristobal, Pulacayo, and Potosimining districts, Bolivia, and a reevaluation of regional orelead isotope provinces, Econ. Geol., 97, 573–592.

    Kendrick, E., M. Bevis, R. Smalley, B. Brooks, R. Barriga,E. Laurı́a, and L. Souto (2003), The Nazca–South Amer-ica Euler vector and its rate of change, J. S. Am. EarthSci., 16, 125–131.

    Kley, J., C. R. Monaldi, and J. A. Salfity (1999), Along-strikesegmentation of the Andean foreland: Causes and conse-quences, Tectonophysics, 301, 75–94.

    Loewy, S. L., J. N. Connelly, and I. W. D. Dalziel (2004), Anorphaned basement block: The Arequipa-Antofalla basementof the central Andean margin of South America, Geol. Soc.Am. Bull., 116, 171–187.

    Lucassen, F., and G. Franz (2005), The early Paleozoic orogenin the central Andes: A non-collisional orogen comparable tothe Cainozoic high plateau?, Geol. Soc. Spec. Publ., 246,257–273.

    Lucassen, F., R. Becchio, R. Harmon, S. Kasemann, G. Franz,R. Trumbull, H. G. Wilke, R. L. Romer, and P. Dulski(2001), Composition and density model of the continentalcrust in an active continental margin—The central Andesbetween 18� and 27�S, Tectonophysics, 341, 195–223.

    Lucassen, F., W. Kramer, V. Bartsch, H. Wilke, G. Franz, R. L.Romer, and P. Dulski (2006), Nd, Pb, and Sr isotope com-position of juvenile magmatism in the Mesozoic large mag-matic province of northern Chile (18–27�S): Indications fora uniform subarc mantle, Contrib. Miner. Petrol., 152, 571–589.

    Macfarlane, A. W., P. Marcet, A. P. LeHuray, and U. Petersen(1990), Lead isotope provinces of the central Andes inferredfrom ores and crustal rocks, Econ. Geol., 85, 1857–1880.

    McQuarrie, N. (2002), Initial plate geometry, shortening varia-tions, and evolution of the Bolivian orocline, Geology, 30,867–870.

    McQuarrie, N., and P. DeCelles (2001), Geometry and struc-tural evolution of the central Andean back thrust belt, Boli-via, Tectonics, 20, 669–692.

    Oncken, O., D. Hindle, J. Kley, K. Elger, P. Victor, andK. Schemmann (2006), Deformation of the central Andeanupper plate system—Facts, fiction, and constraints for pla-teau models, in The Andes—Active Subduction Orogeny,Frontiers in Earth Sciences, edited by O. Oncken et al.,pp. 3–28, Springer, Berlin.

    Ramos, V. A. (1988), Late Proterozoic-Early Paleozoic ofSouth America—A collisional history, Episodes, 11, 168–174.

    Ramos, V. A., and A. Aleman (2000), Tectonic evolution ofthe Andes, in Tectonic Evolution of South America, edited byU. J. Cordanni et al., pp. 635–685, Int. Geol. Congr., Rı́o deJaneiro, Brazil.

    Richards, D. R., R. F. Butler, and T. Sempere (2004), Vertical-axis rotations determined from paleomagnetism of Mesozoicand Cenozoic strata of the Bolivian Andes, J. Geophys. Res.,109, B07104, doi:10.1029/2004JB002977.

    GeochemistryGeophysicsGeosystems G3G3 mamani et al.: crustal domains in the central andes 10.1029/2007GC001925

    12 of 13

  • Rogers, G., and C. J. Hawkesworth (1989), A geochemicaltraverse across the north Chilean Andes: Evidence for crustalgeneration from the mantle wedge, Earth Planet. Sci. Lett.,91, 271–285.

    Roperch, P., T. Sempere, O. Macedo, C. Arriagada, M. Fornari,C. Tapia, M. Garcı́a, and C. Laj (2006), Counterclockwiserotation of late Eocene–Oligocene fore-arc deposits insouthern Peru and its significance for oroclinal bending inthe central Andes, Tectonics, 25, TC3010, doi:10.1029/2005TC001882.

    Rousse, S., S. Gilder, M. Fornari, and T. Sempere (2005), In-sight into the Neogene tectonic history of the northern Bo-livian Orocline from new paleomagnetic and geochronologicdata, Tectonics, 24, TC6007, doi:10.1029/2004TC001760.

    Schmitz, M. A., W. D. Heinsohn, and F. R. Schilling (1997),Seismic, gravity and petrological evidence for partial meltbeneath the thickened central Andean crust (21–23�S), Tec-tonophysics, 270, 313–316.

    Sempere, T., and J. Jacay (2007), Synorogenic extensionaltectonics in the forearc, arc and southwest Altiplano ofsouthern Peru, Eos Trans. AGU, 88(23), Joint Assemb.Suppl., Abstract U51B-04.

    Sempere, T., G. Herail, J. Oller, and M. G. Bonhomme (1990),Late Oligocene-early Miocene major tectonic crisis and re-lated basin in Bolivia, Geology, 18, 946–949.

    Sempere, T., G. Carlier, P. Soler, M. Fornari, V. Carlotto,J. Jacay, D. Néraudeau, J. Cárdenas, S. Rosas, and N. Jiménez(2002), Late Permian-Middle Jurassic lithospheric thinning inPeru and Bolivia, and its bearing on Andean-age tectonics,Tectonophysics, 345, 153–181.

    Shackleton, R. M., A. C. Ries, M. P. Coward, and P. R. Cobbold(1979), Structure, metamorphism and geochronology of theArequipa Massif of coastal Peru, J. Geol. Soc. London, 136,195–214.

    Sheffels, B. M. (1990), Lower bound on the amount of crustalshortening in the central Bolivian Andes, Geology, 18, 812–815.

    Siebel, W., W. B. W. Schnurr, K. Hahne, B. Kraemer, R. B.Trumbull, P. van den Bogaard, and R. Emmermann (2001),Geochemistry and isotope systematics of small- to medium-volume Neogene-Quaternary ignimbrites in the southerncentral Andes: Evidence for derivation from andesitic magmasources, Chem. Geol., 171, 213–237.

    Sobolev, S., and A. Babeyko (1994), Modelling of mineralo-gical composition, density and elastic wave velocities in theunhydrous rocks, Surv. Geophys., 15, 515–544.

    Tassara, A. (2006), Factors controlling the crustal densitystructure underneath active continental margins with impli-cations for their evolution, Geochem. Geophys. Geosyst., 7,Q01001, doi:10.1029/2005GC001040.

    Tassara, A., H.-J. Götze, S. Schmidt, and R. Hackney (2006),Three-dimensional density model of the Nazca plate and theAndean continental margin, J. Geophys. Res., 111, B09404,doi:10.1029/2005JB003976.

    Tosdal, R. M. (1996), The Amazon-Laurentian connection asviewed from the Middle Proterozoic rocks in the centralAndes, western Bolivia and northern Chile, Tectonics, 15,827–842.

    Trumbull, R. B., R. Wittenbrink, K. Hahne, R. Emmermann,W. Büsch, H. Gerstenberger, and W. Siebel (1999), Evidencefor Late Miocene to Recent contamination of arc andesitesby crustal melts in the Chilean Andes (25�–26�S) and itsgeodynamic implications, J. S. Am. Earth Sci., 12, 135–155.

    von Huene, R., W. Weinrebe, and F. Heeren (1999), Subduc-tion erosion along the North Chile margin, Geodynamics, 27,345–358.

    Wasteneys, H. A., A. H. Clark, E. Farrar, and R. J. Langridge(1995), Grenvillian granulite-facies metamorphism in theArequipa Massif, Peru: A Laurentia-Gondwana link, EarthPlanet. Sci. Lett., 132, 63–73.

    Whitman, D., B. Isacks, and S. M. Kay (1996), Lithosphericstructure and along strike segmentation of the central An-dean plateau, 17�S–29�S, Tectonophysics, 259, 29–40.

    Wörner, G., S. Moorbath, and R. S. Harmon (1992), AndeanCenozoic volcanics reflect basement isotopic domains, Geol-ogy, 20, 1103–1106.

    Wörner, G., J. Lezaun, A. Beck, V. Heber, F. Lucassen,E. Zinngrebe, R. Rössling, and H. G. Wilke (2000a), Pre-cambrian and Early Paleozoic evolution of the Andean base-ment at Belén (northern Chile) and Cerro Uyarani (westernBolivia Altiplano), J. S. Am. Earth Sci., 13, 717–737.

    Wörner, G., K. Hammerschmidt, F. Henjes-Kunst, J. Lezaun,and H. Wilke (2000b), Geochronology (40Ar-39Ar-, K-Ar-,and He-exposure-) ages of Cenozoic magmatic rocks fromnorthern Chile (18�–22�S)—Implications for magmatismand tectonic evolution of the central Andes, Rev. Geol. Chile,27, 205–240.

    Yuan, X., S. Sobolev, and R. Kind (2002), Moho topographyin the central Andes and its geodynamic implication, EarthPlanet. Sci. Lett., 199, 389–402.

    GeochemistryGeophysicsGeosystems G3G3 mamani et al.: crustal domains in the central andes 10.1029/2007GC001925

    13 of 13

  • Mamani et al. data

    SampleLocationLon (X)Lat (Y)Geological ageTypeSiO2MgOYSrSr/Y87Sr/86Sr87Sr/86Sr initial143Nd/144NdeNd206Pb/204Pb207Pb/204Pb208Pb/204Pb

    AND-99-01Andagua-72.3-15.4Holocenelava62.42.012781650.70640.70640.51242-418.56815.60238.626

    AND-99-04Andagua-72.3-15.4Holocenelava60.42.415936620.70630.70630.51244-4

    AND-99-05Andagua-72.3-15.4Holocenelava61.22.21290175

    AND-99-06Andagua-72.3-15.4Holocenelava55.73.2191239650.70590.70590.51249-3

    AND-99-07Andagua-72.3-15.4Holocenelava59.32.614106876

    AND-99-08Andagua-72.3-15.4Holocenelava67.31.112492410.70650.70650.51238-518.53015.55938.461

    AND-99-10Andagua-72.3-15.4Holocenelava61.42.114845600.70630.70630.51242-418.55115.57738.549

    AND-99-15Andagua-72.3-15.4Holocenelava64.31.811701640.70630.70630.51243-4

    AND-99-17Andagua-72.4-15.5Holocenelava59.02.5141116800.70610.70610.51247-3

    AND-99-18Andagua-72.4-15.5Holocenelava58.12.6141272910.70610.70610.51246-418.62915.58338.621

    AND-99-19Andagua-72.4-15.5Holocenelava57.83.013118091

    AND-99-20Andagua-72.3-15.5Holocenelava57.62.9131149880.70610.70610.51247-318.60415.55838.520

    AND 99-21Andagua-72.3-15.5Holocenelava57.62.912117598

    AND 99-22Andagua-72.3-15.5Holocenelava57.93.0131115860.70610.70610.51246-318.60715.57138.561

    AND 99-24Andagua-72.3-15.6Holocenelava58.53.316796500.70630.70630.51246-3

    AND 99-27Andagua-72.3-15.6Holocenelava56.53.4141196850.70620.70620.51246-318.58615.57338.523

    HUAM-99-03Huambo-72.1-15.9Holocenelava59.02.815917610.70620.706218.57615.60138.643

    HUAM-99-04Huambo-72.1-15.9Holocenelava53.74.317950560.70670.70670.51234-618.29815.55838.489

    HUAM-99-05Huambo-72.1-16.0Holocenelava55.04.115938630.70690.70690.51232-618.31515.56838.545

    HUAM-99-06Huambo-72.1-16.0Holocenelava58.83.015101167

    HUAM-02-01Solarpampa-72.1-15.7Holocenelava58.23.31670944

    SAB-99-01Sabancaya-71.8-15.8Holocenelava61.42.715780520.70690.70690.51234-618.21515.55638.420

    SAB-99-02ASabancaya-71.8-15.8Holocenelava63.62.011704640.70680.70680.51237-5

    SAB-99-02BSabancaya-71.8-15.8Holocenelava64.81.815601400.70700.70700.51233-6

    SAB-3 (1990)Sabancaya-71.9-15.8Holocenelava61.02.814799580.70670.70670.51236-5

    SAB-9215Sabancaya-71.9-15.8Holocenelava60.82.813787590.70680.70680.51236-5

    SAB-944Sabancaya-71.9-15.8Holocenelava62.02.61477958

    SAB-969Sabancaya-71.9-15.8Holocenelava61.32.41472252

    NIC-01-22Nicholson-71.7-16.3Holocenelava52.35.522921420.70650.70650.51234-618.23515.62038.740

    CHA-99-01Chachani-71.6-16.3Holocenelava59.63.219639340.70760.70760.51213-1017.78115.62138.741

    CHA-99-02Chachani-71.6-16.1Holocenelava57.63.718724400.70760.70760.51220-817.98015.61038.697

    CHA_02_07_JCChachani-71.6-16.2Holocenelava59.93.11283369

    CHA_02_30Chachani-71.5-16.2Holocenelava61.32.51381663

    CHA_04_05Chachani-71.5-16.2Holocenelava60.92.91473452

    CHA-02-01Chachani-71.5-16.2Holocenelava57.14.41475254

    CHA_02_07Chachani-71.6-16.3Holocenelava57.72.91674747

    CHA-04-01Chachani-71.5-16.2Holocenelava56.94.41483660

    CHA-04-02Chachani-71.6-16.3Holocenelava59.73.32161029

    CHA_04_04Chachani-71.6-16.2Holocenelava62.72.71465447

    CHA_02_18Chachani-71.5-16.1Holocenelava64.42.01659637

    CHA_02_19Chachani-71.6-16.1Holocenelava57.43.71673946

    CHA_02_20Chachani-71.6-16.1Holocenelava65.01.81458542

    CHA_02_21Chachani-71.6-16.1Holocenelava59.53.21765939

    CHA_02_26Chachani-71.5-16.1Holocenelava58.93.31573049

    MIS-02-05Q. Pastores-71.5-16.3Holocenelava61.61.6176854017.79315.57138.513

    MIS-99-10A (mafic)Q. Pastores-71.5-16.4Holocenelava58.03.314862620.70760.70760.51216-917.82915.52738.425

    MIS-99-10B (dacitic)Q. Pastores-71.5-16.4Holocenelava59.52.913786600.70760.70760.51209-11

    MIS-02-04aQ. Pastores-71.5-16.3Holocenelava59.72.8167754817.80715.60738.652

    MIS-02-06Aguada Blanca-71.4-16.3Holocenelava59.53.4147785617.72015.58538.607

    MIS-02-10 aSan Lazaro-71.5-16.4Holoceneignimbrite61.82.1117206517.39615.51738.366

    MIS-99-04Misti-71.5-16.4Holocenelava60.52.713793610.70750.70750.51212-1017.76815.52138.411

    MIS-99-10AMisti-71.5-16.4Holocenelava58.03.314862620.70760.70760.51216-917.82915.52738.425

    MIS-99-10BMisti-71.5-16.4Holocenelava59.52.913786600.70760.70760.51209-11

    MIS-00-20Misti-71.3-16.2Holocenelava58.03.115788530.70750.70750.51213-1017.84415.61038.655

    El Misti FLOW1San Lazaro-71.5-16.4Holoceneignimbrite60.72.412759630.70770.70770.51214-1017.68115.58238.560

    El Misti FLOW 2San Lazaro-71.5-16.4Holoceneignimbrite59.03.012802670.70760.70760.51215-917.77915.53635.625

    UBI-99-01Ubinas-70.9-16.4Holoceneignimbrite67.20.712492410.70700.70700.51228-718.14615.54938.441

    UBI-99-02Ubinas-70.9-16.4Holocenelava61.41.915694460.70680.70680.51231-6

    UBI-99-03Ubinas-70.9-16.4Holoceneignimbrite60.32.115720480.70670.70670.51232-6

    UBI-99-04Ubinas-70.9-16.4Holoceneignimbrite63.01.617657390.70680.70680.51229-7

    UBI-99-06Ubinas-70.9-16.4Holoceneignimbrite58.32.418764420.70690.70690.51230-718.12815.55238.423

    UBI-99-08Ubinas-70.9-16.4Holoceneignimbrite56.52.421754360.70690.70690.51230-7

    Ubi-30aUbinas-70.9-16.3Holocenelava66.02.017486280.70690.70690.51229-7

    Ubi 48aUbinas-70.9-16.4Holoceneignimbrite66.90.713491380.70690.70690.51228-7

    UBI-99-10Ubinas-70.9-16.3Holocenelava55.54.7181135630.70670.70670.51231-618.19015.56638.420

    HUAY-99-01Huanynaputina-71.0-16.7Holocenelava63.01.88704880.70690.70690.51221-818.09115.59738.610

    HUAY-99-02Huanynaputina-71.0-16.7Holocenelava63.11.89724800.70690.70690.51222-8

    HUAY-99-03Huanynaputina-71.0-16.7Holocenelava63.31.910734730.70690.70690.51224-818.12815.64338.759

    HUAY-99-04Huanynaputina-71.0-16.7Holocenelava63.51.810724760.70690.70690.51222-8

    HUAY-99-05Huanynaputina-71.0-16.7Holocenelava63.21.98740930.70690.70690.51221-818.11915.62638.702

    HUAY-99-07Huanynaputina-71.0-16.7Holocenelava63.81.88722900.70680.70680.51225-818.09115.52638.418

    HUAY-99-09Huanynaputina-71.0-16.7Holoceneignimbrite64.41.89727810.70680.70680.51224-818.09615.53138.438

    HUAY-99-15Huanynaputina-70.8-16.7Holoceneignimbrite64.11.88721900.70680.70680.51224-818.10515.54838.491

    HUAY-99-16BHuanynaputina-70.8-16.7Holoceneignimbrite65.11.712717600.70680.70680.51225-8

    HUAY-99-18AHuanynaputina-70.8-16.7Holocenelava63.61.911740670.70680.70680.51225-8

    HUAY-99-18BHuanynaputina-70.8-16.7Holoceneignimbrite67.61.08612770.70640.70640.51226-7

    HUAY-99-19Huanynaputina-70.8-16.7Holocenelava63.21.89704780.70680.70680.51225-8

    HP 97-217 DHuanynaputina-70.9-16.6Holoceneignimbrite62.61.997619018.15015.56638.530

    HP 97-217 AHuanynaputina-70.9-16.6Holoceneignimbrite63.61.610722760.70680.70680.51222-8

    HP-217BHuanynaputina-70.9-16.6Holocenelava0.70710.70710.51223-8

    HP 218Huanynaputina-70.8-16.6Holocenelava59.62.6131036830.70660.70660.51229-7

    HP96 135AHuanynaputina-70.8-16.7Holocenelava63.71.7107007418.11115.54638.489

    TC-02Ticsani-70.6-16.8Holocenelava65.61.812705590.70680.70680.51229-718.11415.53438.402

    TC-02Ticsani-70.6-16.8Holocenelava65.61.812705590.70670.70670.51226-718.11415.58038.514

    TC-04Ticsani-70.6-16.8Holocenelava65.11.710665670.70670.70670.51226-718.15715.63138.693

    TC-6Ticsani-70.6-16.8Holocenelava64.51.610681680.70670.70670.51226-718.15515.62738.681

    TC-09Ticsani-70.6-16.7Holocenelava63.21.69715790.70680.7068

    TC-12ATicsani-70.6-16.7Holocenelava59.72.512825690.70670.70670.51228-718.19515.64138.688

    TICS-99-01Ticsani-70.6-16.7Holoceneignimbrite62.91.78677850.70680.70680.51226-7

    TICS-99-03Ticsani-70.6-16.7Holoceneignimbrite65.41.711667610.70680.70680.51229-7

    TUTU-99-01Tutupaca-70.3-17.0Holoceneignimbrite62.01.917525310.70650.70650.51233-618.11515.61138.670

    TUTU-99-03Tutupaca-70.3-17.1Holoceneignimbrite65.21.610784780.70680.70680.51229-718.12315.53938.380

    TUTU-99-05Tutupaca-70.4-17.0Holocenelava55.33.927892330.70600.70600.51231-618.12015.54238.423

    YUC-00-01Yucamane-70.2-17.2Holocenelava55.54.218928520.70640.70640.51232-618.17015.59238.479

    YUC-00-04 aYucamane-70.2-17.2Holoceneignimbrite61.52.216682430.70680.70680.51228-718.18915.63638.685

    YUC-00-07Yucamane-70.2-17.2Holocenelava55.24.318909510.70640.70640.51233-618.15115.58738.474

    YUC-00-15Yucamane-70.2-17.2Holocenelava58.43.116597370.70640.70640.51227-718.06615.58438.547

    YUC-00-18Yucamane-70.2-17.3Holocenelava58.63.820758380.70650.70650.51229-718.22015.64338.676

    YUC-00-19Yucamane-70.2-17.3Holocenelava58.32.520682340.70650.70650.51226-718.07715.61138.626

    YUC-00-21Yucamane-70.3-17.2Holoceneignimbrite63.01.915569380.70650.70650.51231-618.23415.67238.797

    TIT-00-03Titire-69.8-17.3Holocenelava56.82.722706320.70630.70630.51239-518.30115.61838.514

    CAS-00-01Casiri-69.8-17.5Holocenelava60.33.618719400.70570.70570.51237-518.27715.64938.587

    CAS-00-02Casiri-69.8-17.5Holocenelava59.64.017617360.70580.70580.51236-518.24815.59738.463

    TAC-002Tacora-69.8-17.7Holocenelava60.82.414726520.70670.706718.22315.63238.619

    TAC-006Tacora-69.8-17.7Holocenelava55.74.419739390.70630.70620.51235-618.11615.61338.113

    TAP-97-40Taapaca-69.5-18.1Holoceneignimbrite68.20.55438880.70680.70670.51228-7

    TAP-97-17Taapaca-69.5-18.1Holocenelava63.61.610980980.70670.70670.51228-7

    TAP-97-18Taapaca-69.5-18.1Holoceneignimbrite64.12.088781100.70660.70660.51228-7

    TAP-97-06Taapaca-69.5-18.1Holocenelava61.52.610719720.70670.70670.51231-6

    TAP-97-37Taapaca-69.5-18.1Holocenelava62.51.912559470.70630.70630.51233-6

    TAP-97-37-1Taapaca-69.5-18.1Holocenelava53.24.522647290.70590.70590.51236-6

    TAP-97-34Taapaca-69.5-18.1Holocenelava65.51.50.70670.70670.51229-7

    TAP-97-28Taapaca-69.5-18.1Holocenelava65.21.710775780.70650.70650.51230-6

    TAP-02-02-bTaapaca-69.5-18.1Holocenelava56.83.5151439960.70670.70670.51230-7

    TAP 97-29/1Taapaca-69.5-18.1Holocenelava55.53.6131101850.70650.70650.51229-718.16615.66438.585

    TAP-87-002Taapaca-69.5-18.2Holocenelava64.41.712751630.70670.70670.51230-7

    TAP-001Taapaca-69.5-18.1Holocenelava65.01.98752940.70670.7067

    TAP-002Taapaca-69.5-18.1Holocenelava54.73.6171430840.70650.70650.51234-618.09915.61938.399

    CAQ-001Caquena-69.2-18.1Holocenelava61.72.2161220760.70670.70670.51227-718.06415.60138.328

    CAQ-002Caquena-69.2-18.1Holocenelava56.63.619584310.70580.70580.51252-218.22815.61038.420

    CAQ-003Caquena-69.2-18.1Holocenelava74.60.42112460.70770.70770.51233-618.11515.59538.364

    CAQ-094Caquena-69.2-18.1Holocenelava57.53.2171343790.70650.70640.51236-518.09015.60538.339

    POM152Pomerape-69.1-18.1Holocenelava52.85.718790440.70670.70670.51235-618.18015.61238.470

    POM154Pomerape-69.1-18.1Holocenelava54.24.920885440.70670.706718.18215.60138.341

    CHU-171Chucullo-69.3-18.2Holocenelava58.83.2181136630.70690.70680.51230-718.03315.59638.210

    CHU-173Chucullo-69.3-18.2Holocenelava55.84.2191085570.70670.70670.51231-618.04615.59638.198

    PAR 118Parinacota-69.1-18.2Holocenelava59.92.9141075770.70670.70660.51230-718.05115.60238.304

    PAR 121Parinacota-69.2-18.2Holocenelava59.03.0161068670.70670.706718.07215.61238.348

    PAR 007Parinacota-69.2-18.2Holocenelava67.51.113642490.70680.706817.97815.59138.218

    PAR91-014Parinacota-69.2-18.2Holocenelava69.01.08522650.70680.706817.98815.60238.238

    PAR 27Parinacota-69.2-18.2Holocenelava74.80.57136190.70680.706817.98815.60238.238

    PAR 31Parinacota-69.2-18.2Holocenelava71.70.67287410.70690.706918.01415.60938.284

    PAR 48Parinacota-69.2-18.2Holocenelava69.01.17629910.70670.70670.51227-717.99315.61238.283

    PAR 130Parinacota-69.2-18.2Holocenelava66.01.317676400.70700.707018.18515.61738.448

    PAR 183Parinacota-69.2-18.2Holocenelava67.01.211652590.70680.706817.99515.59738.240

    PAR 16Parinacota-69.1-18.2Holocenelava64.62.011895810.70690.70680.51229-718.02615.61338.320

    PAR 61Parinacota-69.1-18.2Holocenelava63.42.00.70680.706818.04615.61738.083

    PAR 82Parinacota-69.2-18.2Holocenelava60.53.1181147640.70670.70670.51228-717.99815.60138.242

    PAR 159Parinacota-69.2-18.2Holocenelava59.23.2181139630.70670.706718.00815.60438.277

    PAR 160Parinacota-69.2-18.2Holocenelava63.32.417983580.70660.706617.96515.59038.196

    PAR 165Parinacota-69.2-18.2Holocenelava56.44.220984490.70670.70670.51230-718.12215.60538.304

    PAR 166Parinacota-69.2-18.2Holocenelava63.32.215910610.70660.706617.99515.60438.236

    PAR 169Parinacota-69.2-18.2Holocenelava56.54.220986490.70680.706718.13815.61138.373

    PAR 61Parinacota-69.2-18.2Holocenelava63.42.00.70680.706818.04615.61738.083

    DBF 91Parinacota-69.2-18.2Holocenelava62.62.014862620.70680.70670.51230-718.10815.61438.366

    PAR-15Parinacota-69.2-18.2Holoceneignimbrite63.01.316819510.70710.70710.51225-818.13415.59338.385

    PAR 34Parinacota-69.2-18.2Holocenelava58.63.6191092570.70700.70690.51230-717.98215.60638.206

    PAR 123Parinacota-69.2-18.2Holocenelava61.82.118861480.70690.706918.15815.59438.374

    PAR 162Parinacota-69.2-18.2Holocenelava61.92.218874490.70690.70690.51233-618.16915.61238.417

    PAR 163Parinacota-69.2-18.2Holocenelava59.33.219999530.70660.706618.16215.61138.406

    PAR 68Parinacota-69.2-18.2Holocenelava58.93.3191009530.70690.70690.51228-718.12315.61138.373

    PAR 86Parinacota-69.2-18.2Holocenelava59.03.319993520.70690.706918.11715.60238.335

    PAR 73Parinacota-69.2-18.2Holocenelava56.54.119794420.70670.70670.51230-718.06715.60337.988

    PAR 220Parinacota-69.2-18.2Holocenelava56.84.119784410.70670.706718.06715.60337.988

    PAR 219Parinacota-69.2-18.2Holocenelava56.74.220802400.70670.7067

    PAR 11Parinacota-69.2-18.2Holocenelava54.04.8241760730.70610.70610.51238-518.08415.61438.375

    PAR 72Parinacota-69.2-18.2Holocenelava53.55.0211865890.70610.706118.07515.59638.306

    GUL-004Guallatiri-69.3-18.4Holocenelava61.62.217759450.70680.70680.51223-818.18015.61938.458

    GUL-015Guallatiri-69.3-18.4Holocenelava62.42.415777520.70670.706718.10115.63338.453

    GUL-017Guallatiri-69.3-18.4Holocenelava57.43.6181007560.70670.706718.09315.62438.392

    GUL-019Guallatiri-69.3-18.4Holoceneignimbrite74.20.312299250.70690.70690.51224-818.07115.61638.035

    IS1-022Isluga-68.9-19.2Holocenelava64.52.027494180.70590.705918.26415.61538.439

    IS2-012Isluga-68.9-19.2Holocenelava60.82.418731410.70590.70580.51223-817.88815.59737.946

    IS3-010Isluga-68.9-19.2Holocenelava60.12.418738410.70590.705918.24815.61038.366

    IS3-029Isluga-68.9-19.2Holocenelava60.82.118779430.70590.705918.24315.61738.410

    IS3-030Isluga-68.9-19.2Holocenelava60.92.019766400.70590.705918.22815.60438.369

    IS3-046Isluga-68.9-19.2Holocenelava61.02.817812480.70600.706018.25515.62238.434

    POR2Porquesa-68.8-20.0Holocenelava67.11.07664950.70580.70580.51238-518.53415.60738.520

    IRU1aIrrutupuncu-68.6-20.7Holocenelava63.91.915487320.70530.70530.51244-418.59415.59338.470

    IRU1dIrrutupuncu-68.6-20.7Holocenelava59.72.517963570.70550.7055

    IRU6Irrutupuncu-68.6-20.7Holocenelava62.52.814607430.70540.7054

    IRU10Irrutupuncu-68.6-20.7Holocenelava62.42.814664470.70530.70530.51243-418.61015.60538.496

    IRU-98-01Irruputunco-68.6-20.7Holocenelava62.42.913613460.70550.70550.51245-418.59815.57738.440

    IRU-98-05Irruputunco-68.6-20.7Holocenelava62.52.316576360.70540.70540.51245-4

    IRU-98-07Irruputunco-68.6-20.7Holocenelava62.62.514571410.70550.70550.51243-4

    OLC1Olca-68.5-20.9Holocenelava60.92.622621280.70570.7056

    OLC3Olca-68.5-20.9Holocenelava61.42.315692460.70560.7056

    OLC4Olca-68.5-20.9Holocenelava63.52.015654440.70550.7055

    OLC5Olca-68.5-20.9Holocenelava62.32.417585340.70550.705518.63215.60638.504

    OLC6Olca-68.5-20.9Holocenelava59.13.721654310.70580.70580.51234-618.67615.63638.559

    OLC7Olca-68.5-20.9Holocenelava60.62.420667330.70570.705718.63215.62638.528

    AUC1Aucanquilcha-68.5-21.2Holocenelava64.61.911567520.70600.70600.51233-618.67815.62438.566

    PORU2Porunita-68.3-21.3Holocenelava60.53.317609360.70670.70670.51227-718.67115.63738.478

    OLA1Ollague-68.2-21.3Holocenelava62.42.217507300.70710.707118.76715.63238.613

    OLA3Ollague-68.2-21.3Holocenelava61.62.217487290.70730.7073

    OLA10Ollague-68.3-21.3Holocenelava66.21.213420320.70830.70830.51218-918.78615.65438.622

    OLA11Ollague-68.2-21.3Holocenelava63.82.117486290.70770.707718.78015.63738.620

    OLA13Ollague-68.2-21.3Holocenelava62.22.418515290.70690.70690.51226-718.77615.64638.657

    OLA14Ollague-68.2-21.3Holocenelava56.43.921603290.70670.7067

    OLA17Ollague-68.2-21.3Holocenelava62.72.619471250.70740.707418.77515.65038.656

    OLA19Ollague-68.2-21.3Holocenelava63.52.117483280.70760.707618.78615.64238.623

    OLA21Ollague-68.2-21.3Holocenelava62.12.420535270.70730.7073

    OLA23Ollague-68.2-21.3Holocenelava60.43.620479240.70740.7074

    OLA24Ollague-68.2-21.3Holocenelava63.42.114524370.70750.7075

    OLA25Ollague-68.2-21.3Holocenelava62.12.719443230.70770.7077

    OLA26Ollague-68.2-21.3Holocenelava63.22.218418230.70810.7081

    OLA29Ollague-68.2-21.3Holocenelava61.72.821498240.70780.7078

    OLA31Ollague-68.2-21.2Holocenelava64.71.817460270.70780.7078

    OLA32Ollague-68.2-21.3Holocenelava53.15.220641320.70710.7071

    OLA33Ollague-68.2-21.3Holoceneignimbrite66.41.213424330.70830.7083

    SPP-98-54San Pedro San Pablo-68.5-21.9Holocenelava63.01.717518300.70670.70670.51235-618.74615.63238.714

    SPP-98-56San Pedro San Pablo-68.5-21.8Holocenelava62.92.318512280.70570.70570.51235-618.74615.65838.760

    SP1San Pedro Poruña-68.5-21.9Holocenelava56.45.719578300.70660.70660.51238-518.73715.63838.674

    PUT-98-44-2Cerro Putana-67.9-22.6Holocenelava59.83.732412130.70820.70820.51227-7

    COR-98-72C°Colorado-67.9-22.7Holocenelava62.42.718445250.70800.70800.51222-8

    COR-98-87C°Colorado-67.9-22.6Holocenelava63.12.517437260.70830.70820.51226-718.83115.66638.840

    COR-98-87-2C°Colorado-67.9-22.6Holocenelava56.43.917522310.70630.70630.51243-418.85615.69038.940

    SAI-98-40C. Sairecabur-67.9-22.7Holocenelava62.62.720429210.70820.70820.51222-8

    SAI-98-41C. Sairecabur-67.9-22.7Holocenelava60.53.1224542118.79215.63338.747

    SAI-98-42C. Sairecabur-67.9-22.7Holocenelava63.02.722419190.70830.70830.51222-818.83015.64338.817

    SAI-98-42-BC. Sairecabur-67.9-22.7Holocenelava61.52.522481220.70810.70810.51226-718.82215.65638.808

    LIC-98-11Licancabur-67.9-22.9Holocenelava60.92.522506230.70800.70800.51243-418.83015.64438.756

    LIC-98-12Licancabur-67.9-22.9Holocenelava60.42.824489200.70770.70770.51227-718.85215.69038.893

    LIC-98-37Licancabur-67.9-22.8Holocenelava60.82.724496210.70790.70790.51226-7

    LAS-98-47Lascar-67.8-23.3Holocenelava59.53.823448190.51240-518.82315.65338.827

    LAS-98-48Lascar-67.8-23.3Holocenelava57.53.621697330.70710.70710.51244-418.76615.62738.675

    LAS-98-49Lascar-67.8-23.3Holocenelava58.74.422458210.70640.70640.51241-518.82215.65938.843

    SOC-98-27-2Socompa-68.3-24.3Holocenelava63.72.113640490.70680.70680.51241-418.66715.59338.583

    SOC-98-27-3Socompa-68.3-24.3Holocenelava56.44.615716480.70790.70790.51227-718.70915.63238.715

    SOC-98-29Socompa-68.4-24.4Holocenelava63.02.314644460.70660.70660.51226-718.84015.63638.727

    LUL-98-31LLullaillaco-68.6-24.8Holocenelava65.51.611627570.70660.70660.51240-518.76415.66338.848

    LUL-98-32LLullaillaco-68.6-24.7Holocenelava65.61.6116265718.71715.59938.650

    LTA-98-81-2Lastaria-68.5-25.1Holocenelava59.53.621560270.70700.70700.51246-318.87215.65938.916

    LTA-98-82Lastaria-68.5-25.1Holocenelava60.14.320494250.70720.70720.51242-418.89115.66538.923

    LTA-98-83Lastaria-68.5-25.1Holocenelava58.74.220517260.70710.70710.51243-418.91915.70039.066

    OJO-98-86Ojos del Salado-68.5-27.1Holocenelava63.41.916535330.70630.70630.51246-418.84015.65638.975

    SHO-01-65Quinzachatas-71.4-14.2Pleistocenelava56.85.5271244460.70710.70710.51234-618.72715.64138.884

    SHO-01-66-2Oroscocha-71.4-14.1Pleistocenelava50.17.9292564880.70570.70570.51243-418.71115.66638.876

    8_11_01Rumicolca-71.7-13.6Pleistocenelava64.32.325999400.70690.70690.51236-518.93315.69339.061

    SHO-01-74Pisaq-71.8-13.4Pleistocenelava64.02.424963400.70670.70670.51240-518.90615.66939.002

    SAR-00-03Sara Sara-73.3-15.3Plio-Pleistocenelava65.41.39697770.51246-418.67815.69638.939

    SAR-00-05Sara Sara-73.4-15.3Plio-Pleistocenelava55.23.618697390.51246-418.57015.65038.757

    SAR-00-08Sara Sara-73.3-15.1Plio-Pleistocenelava58.92.3131219940.51247-318.67015.66938.880

    SAR-00-09Sara Sara-73.4-15.3Plio-Pleistocenelava60.72.017491290.51251-218.63815.68538.858

    SAR-00-12Sara Sara-73.6-15.4Plio-Pleistocenelava68.90.712529440.51246-318.63115.64038.734

    SAR-00-13Sara Sara-73.4-15.3Plio-Pleistocenelava60.62.2161030640.51246-418.66715.68638.897

    OCO-03-01Ocoña-73.2-16.1Plio-Pleistocenelava57.14.1206553318.57815.65038.757

    ANT-00-02Antapuna-72.7-15.4Plio-Pleistocenelava57.73.0181109620.70600.70600.51247-318.74515.68938.966

    FIR-00-01Firura-72.7-15.3Plio-Pleistocenelava58.32.8141165830.70580.70580.51249-318.78515.70639.039

    SolimamaSolimama-72.9-15.4Plio-Pleistocenelava0.70590.70590.51248

    CORO-99-01Coropuna-72.6-15.5Plio-Pleistocenelava62.32.110874870.70610.70610.51246-318.55415.57238.555

    CORO-99-02Coropuna-72.5-15.5Plio-Pleistocenelava60.42.213972750.70600.70600.51246-318.64315.59338.639

    COR-00-03Coropuna-72.5-15.7Plio-Pleistocenelava60.12.615869580.51244-418.58515.63938.745

    COR-00-04Coropuna-72.5-15.7Plio-Pleistocenelava61.42.113808620.51244-418.58215.65238.782

    COR-00-05Coropuna-72.5-15.7Plio-Pleistocenelava61.12.314789560.51245-418.56515.64838.760

    COR-00-09Coropuna-72.5-15.6Plio-Pleistocenelava59.82.816797500.51246-318.58715.65638.792

    COR-00-11Coropuna-72.5-15.6Plio-Pleistocenelava58.62.8161022640.51246-318.64715.63838.774

    COR-00-18Coropuna-72.7-15.6Plio-Pleistocenelava61.82.314808580.51245-418.59515.67038.841

    COR-00-20Coropuna-72.7-15.4Plio-Pleistocenelava60.22.314963690.51244-418.57415.62838.699

    COR-00-21Coropuna-72.7-15.4Plio-Pleistocenelava62.51.712745620.70600.70600.51245-418.62415.67538.869

    COR-00-22Coropuna-72.7-15.5Plio-Pleistocenelava63.31.912744620.51243-418.54015.64738.733

    BAR-01-61Chivay-71.6-15.6Plio-Pleistocenelava59.13.218762420.70620.70620.51243-418.61915.63338.723

    BAR-01-62Chivay-71.6-15.6Plio-Pleistocenelava58.62.6181160640.70590.70590.51249-318.77715.66738.931

    BAR-01-59Hualca Hualca-71.8-15.6Plio-Pleistocenelava58.63.513792610.70620.70620.51243-418.35715.62538.585

    BAR-02-01Hualca Hualca-72.1-15.7Plio-Pleistocenelava55.83.714761540.70670.70670.51235-618.31915.65738.724

    BAR-02-14Paquetane-71.5-16.1Plio-Pleistocenelava57.02.220741370.70810.70810.51211-1017.88415.61138.600

    SUA-013Aritinca-69.1-18.7Plio-Pleistocenelava73.90.410225230.70650.70650.51222-818.13515.62138.401

    SUP-020Puquintica-69.0-18.7Plio-Pleistocenelava60.52.5151146760.70650.706518.01915.59738.247

    SUP-022Puquintica-69.0-18.7Plio-Pleistocenelava56.03.427918340.70660.70660.51223-818.13415.62138.365

    SUP-023Puquintica-69.0-18.7Plio-Pleistocenelava63.91.813858660.70640.706418.05715.58138.226

    ELR-NEl Rojo Norte-69.2-18.5Plio-Pleistocenelava54.14.7211298620.70660.70660.51223-817.83415.61538.131

    ELR1El Rojo Sur-68.6-20.9Plio-Pleistocenelava54.94.3261347520.70650.70650.51227-717.87315.60238.113

    CUEV1Las Cuevas-68.5-21.6Plio-Pleistocenelava53.05.222796360.70560.7056

    CUEV4Las Cuevas-68.5-21.6Plio-Pleistocenelava59.73.815711470.70590.705918.69915.63738.593

    YAH-00-14Yarihuato-73.4-15.5Mio-Pliocenelava54.03.820650330.70560.70560.51252-218.60615.65938.780

    YAH-00-16Yarihuato-73.5-15.5Mio-Pliocenelava61.61.726508200.70560.70560.51252-2

    YAH-00-17Yarihuato-73.4-15.5Mio-Pliocenelava54.42.818707390.70550.70550.51252-218.56015.63938.697

    BAR-00-19Yarihuato-73.7-15.2Mio-Pliocenelava59.82.223546240.70570.70560.51252-218.63715.66838.810

    BAR-02-17Cotahuasi-72.7-15.1Mio-Pliocenelava60.92.212971810.70590.70580.51248-318.80415.67338.953

    BAR-00-35Cotahuasi-72.9-15.2Mio-Pliocenelava55.43.2161041650.70600.70600.51248-318.66515.66138.844

    BAR-00-33Chuquibamba-72.7-15.6Mio-Pliocenelava53.84.4191182620.70570.70570.51250-318.67015.67238.881

    BAR-02-10Tuti-71.5-15.5Mio-Pliocenelava57.93.71812637018.71615.67038.865

    BAR-01-79Morane-71.3-15.0Mio-Pliocenelava60.71.620639320.70510.70500.51256-218.91915.67539.050

    BAR-01-85Colca-71.3-15.4Mio-Pliocenelava53.33.119933490.70600.70600.51246-318.61715.64838.775

    BAR-00-28Pampacolca-72.6-15.7Mio-Pliocenelava56.54.430524170.70690.70690.51227-718.18615.62438.541

    BAR-02-04Hualto-71.8-15.9Mio-Pliocenelava65.90.529401140.70740.70730.51224-818.13715.62638.674

    BAR-02-05Hualto-71.8-15.9Mio-Pliocenelava62.42.521528250.70690.70680.51225-818.11615.66538.782

    BAR-02-13Huacullani-71.4-15.9Mio-Pliocenelava58.83.118748420.70710.70710.51216-917.98415.62738.669

    BAR-00-27Salinas-71.3-16.2Mio-Pliocenelava56.43.024631260.70740.70740.51213-1017.82615.58938.509

    BAR-01-32Salinas-71.1-16.3Mio-Pliocenelava58.13.321677320.70710.70710.51220-917.99415.61438.602

    BAR-01-38Salinas-71.1-16.4Mio-Pliocenelava58.43.511836760.70730.70730.51213-1018.00015.62138.687

    BAR-02-15Base Misti-71.4-16.3Mio-Pliocenelava58.04.312699580.70770.70770.51204-1217.65415.60238.461

    PIP-01-026Pichu Pichu-71.3-16.4Mio-Pliocenelava60.22.713751580.70730.70730.51213-1017.94015.62038.709

    PIP-01-42Pichu Pichu-71.2-16.5Mio-Pliocenelava62.12.413722560.70760.70760.51210-1117.79615.59538.595

    BAR-01-43Pichu Pichu-71.2-16.5Mio-Pliocenelava60.12.411914830.70700.70700.51215-1018.03315.59738.576

    BAR-01-44Pichu Pichu-71.2-16.5Mio-Pliocenelava58.43.120849420.70630.70630.51218-918.15415.63838.710

    BAR-00-37Tarata-70.3-17.1Mio-Pliocenelava57.93.717685400.70650.70650.51228-718.13415.65838.779

    BAR-00-39Tarata-70.3-17.1Mio-Pliocenelava61.12.115682450.70660.70660.51223-818.05115.60538.647

    AJO 177Ajoya-69.2-18.2Mio-Pliocenelava60.82.419565300.70690.70680.51232-618.28315.61938.556

    CMA 10Cerro Margarita-69.5-18.7Mio-Pliocenelava61.52.414726520.70680.70680.51223-818.22015.60038.430

    ANO 07Anocarire-69.2-18.8Mio-Pliocenelava57.03.3181340740.70690.70690.51220-917.90115.59638.067

    LAU 005Lauca-69.4-18.3Mio-Pliocenelava58.72.822534240.70670.70660.51229-718.20315.61538.518

    LAU 102C° Tejene-69.4-18.3Mio-Pliocenelava61.52.119503260.70680.70670.51233-618.16215.60538.357

    LAU 105Lauca-69.4-18.3Mio-Pliocenelava66.21.518444250.70690.70680.51230-718.17615.61938.467

    LAU 94-172Lauca-69.0-18.5Mio-Pliocenelava50.76.217526310.70560.70550.51242-418.24515.60438.419

    TOM 94-209 BQ. Carcones-69.7-18.4Mio-Pliocenelava56.83.119563300.70620.70610.51240-518.34015.61338.670

    ACH 04Achecalane-69.3-18.8Mio-Pliocenelava55.83.119644340.70610.70610.51236-618.39515.61138.564

    CUM-07Chuzmiza-69.1-19.6Mio-Pliocenelava53.55.116751470.70600.70600.51231-618.38115.63038.527

    CUM-02Chuzmiza-69.2-19.7Mio-Pliocenelava57.63.026503190.70610.70600.51241-518.66715.65538.810

    MAM 24Mamuta-69.3-19.1Mio-Pliocenelava53.25.619607320.70570.70570.51237-518.35315.61138.473

    MAM 14Mamuta-69.4-19.0Mio-Pliocenelava57.62.516676420.70590.70590.51242-418.47315.61738.601

    HUA1Huailla-68.8-20.4Mio-Pliocenelava59.92.219695370.70550.705418.63715.60238.576

    PUN1Puntilla-68.3-21.4Mio-Pliocenelava56.52.721618290.70560.70550.51243-418.60615.61638.480

    MIN2Miño-68.6-21.2Mio-Pliocenelava61.82.813596460.70550.705518.65015.62338.591

    CHE6Chela-68.5-21.4Mio-Pliocenelava71.80.3109090.70580.70560.51243-4

    CHE8Chela-68.5-21.4Mio-Pliocenelava57.14.716616390.70560.70560.51245-418.68915.62338.544

    CAR1Carcote-68.4-21.4Mio-Pliocenelava58.13.819563300.70620.70620.51234-618.71415.62438.535

    PAL4Palpana-68.5-21.6Mio-Pliocenelava58.13.018652360.70560.70550.51240-518.66015.61938.529

    CEB5Cebollar-68.5-21.6Mio-Pliocenelava61.62.217549320.70580.705718.75315.63638.644

    CHAN1Chanca-68.3-21.8Mio-Pliocenelava66.21.719357190.70690.706818.79315.65938.775

    CHAN3Chanca-68.3-21.8Mio-Pliocenelava65.21.615493330.70610.706018.72415.62438.657

    BAR-00-21Puquio-74.0-14.8Miocenelava70.70.42213960.70600.70540.51253-218.65215.64538.765

    BAR-00-22Puquio-74.3-14.7Miocenelava54.62.818414230.70500.70480.51263-018.71915.65938.836

    BAR-00-20Cora cora-73.7-15.2Miocenelava50.76.620689340.70500.70490.51257-118.61315.59738.550

    BAR-01-81Condoroma-71.2-15.1Miocenelava53.43.926678260.70550.70530.51254-218.65315.64838.744

    BAR-01-83Condoroma-71.2-15.3Miocenelava59.82.622510230.70560.70540.51253-218.84815.66639.047

    BAR-01-87Colca-71.4-15.5Miocenelava51.96.322472210.70520.70510.51259-118.59915.66238.701

    SHILAArequipa-72.2-15.6Miocenelava18.82015.665

    BAR-02-11Huarancante-71.4-15.7Miocenelava61.02.722522240.70650.70650.51233-618.30615.63638.700

    BAR-01-55Ananto-71.6-15.7Miocenelava61.22.417526310.70650.70650.51235-618.31515.64138.699

    BAR-00-40Tarata-70.1-17.4Miocenelava60.02.219642340.70610.70610.51238-518.18315.57238.557

    BAR-00-42Tarata-69.6-17.5Miocenelava58.12.715735490.70630.70630.51235-618.27215.65038.552

    BAR-00-43Tarata-69.8-17.6Miocenelava59.22.714755540.70650.70650.51232-618.23215.61038.500

    BAR-00-36Moquegua-70.7-17.0Miocenelava57.82.817630370.70600.70590.51240-518.32215.63638.747

    CNE 94-161Co, Negro-69.7-18.2Miocenelava61.32.025593240.70620.70610.51234-618.18415.60638.618

    GUG-182Guane Guane-69.3-18.1Miocenelava58.43.820681340.70610.70600.51241-418.18515.59738.431

    ZAP-1Cordon Quevilque-69.6-18.3Miocenelava61.12.116565340.70600.70590.51235-618.22115.60638.646

    ZAP-3Cordon Quevilque-69.6-18.3Miocenelava60.82.1186533518.26015.60038.560

    COP 94-216Cerro Copaquilla-69.6-18.4Miocenelava54.64.019672350.70650.70640.51232-618.30515.60838.630

    LAC 95-268Quebrada Laco-69.6-18.4Miocenelava56.23.520561280.70620.70610.51239-518.33715.61338.677

    ANTA-01-72Cusco-72.2-13.6Eocenelava51.51.226560220.51261-118.66615.61438.705

    TAZ-00-01Cotahuasi-72.9-15.3Eocenelava58.02.820559280.70550.70530.51250-318.57715.63038.691

    TAZ-00-02Cotahuasi-72.9-15.3Eocenelava58.12.625558220.70550.70530.51250-318.56315.62438.663

    TAZ-00-03Cotahuasi-72.9-15.2Eocenelava46.84.522815370.70460.70450.51261-118.90415.65338.951

    PIG-00-06Caravelli-73.5-15.7Plio-Holoceneignimbrite72.20.32011060.70630.70620.51246-3

    PIG-00-30Cotahuasi-72.9-15.2Plio-Holoceneignimbrite72.70.1158560.70620.70590.51245-418.63415.63538.749

    PIG-00-28Cotahuasi-72.9-15.2Plio-Holoceneignimbrite70.90.2306720.70650.70500.51249-318.79215.65638.890

    Pig-03-120Ocoña-73.2-16.1Plio-Holoceneignimbrite64.70.3145940.71010.70930.51248-318.72415.60738.753

    Pig-03-125Cuno Cuno-73.1-16.0Plio-Holoceneignimbrite50.90.9109390.70860.70810.51249-318.80415.71939.168

    Pig-03-126Ocoña-73.1-16.0Plio-Holoceneignimbrite69.80.216190120.70780.70770.51249-318.76815.76139.180

    PIG-03-123Ocoña-73.1-15.6Plio-Holoceneignimbrite66.61.014481340.70610.70600.51246-318.62015.71438.992

    PIG-02-85Salamanca-72.8-15.5Plio-Holoceneignimbrite64.20.63516350.70620.70610.51246-3

    PIG-00-25Chuquibamba-72.7-15.8Plio-Holoceneignimbrite69.10.32110250.70670.70650.51246-418.61915.73039.042

    PIG-00-24Chuquibamba-72.6-15.7Plio-Holoceneignimbrite70.40.52015880.70620.70610.51245-418.57015.66738.824

    PIG-02-76Vitor-71.8-16.4Plio-Holoceneignimbrite73.20.1156240.70750.70710.51223-8

    PIG-02-78Yura-71.8-16.4Plio-Holoceneignimbrite72.50.2101261317.84515.64538.854

    PIG-03-118bYura-71.8-16.4Plio-Holoceneignimbrite70.21.21513990.70900.70870.51223-818.09615.69038.879

    Pig-03-131Sumbay-71.4-16.0Plio-Holoceneignimbrite75.00.0166640.70750.70690.51224-818.19815.66938.847

    PIG- 03-101Sumbay-71.4-16.0Plio-Holoceneignimbrite72.30.2207940.70750.70700.51224-818.27215.64338.732

    Pig-03-130Sumbay-71.3-16.0Plio-Holoceneignimbrite70.60.613217170.70940.70920.51200-1217.73115.62938.790

    PIG-00-12Chachani-71.6-16.3Plio-Holoceneignimbrite57.23.815853570.70730.70730.51223-8

    PIG-03-106Chachani-71.7-16.2Plio-Holoceneignimbrite73.50.21413190.70810.70780.51222-818.09815.66538.829

    PIG-00-19BAguada Blanca-71.3-16.2Plio-Holoceneignimbrite74.70.1169660.70730.70690.51225-818.15915.62438.692

    PIG-00-20Aguada Blanca-71.3-16.2Plio-Holoceneignimbrite71.30.2204720.70720.7063

    PIG-00-22Arequipa-71.6-16.3Plio-Holoceneignimbrite73.20.314208150.70870.70870.51206-11

    PIG-00-34Arequipa-71.8-16.5Plio-Holoceneignimbrite72.80.1168250.70750.70700.51223-818.17515.62238.693

    MIO-IG-99-01Moquegua-70.9-16.8Plio-Holoceneignimbrite75.20.49113130.70760.70740.51263-018.54015.60738.625

    LAU-188Lauca/Pérez-69.4-18.4Plio-Holoceneignimbrite75.20.2173820.70800.70680.51227-718.01515.61338.146

    LAU-189Lauca/Pérez-69.4-18.4Plio-Holoceneignimbrite74.30.5145240.70690.70610.51226-718.03215.69138.308

    DUNKEL TOP-SUCerro Pichican-69.2-18.6Plio-Holoceneignimbrite65.92.620343170.70600.70590.51234-6

    HELL LAB 16/32Cerro Pichican-69.2-18.6Plio-Holoceneignimbrite74.80.1132120.70840.70700.51227-7

    PIG-00-31Cotahuasi-72.9-15.3Mioceneignimbrite72.70.52118090.70680.70620.51243-418.63715.71038.991

    PIG-00-07Pausa-73.3-15.3Mioceneignimbrite69.10.715285190.70570.70560.51251-3

    PIG-00-03Caravelli-73.4-15.8Mioceneignimbrite73.00.41816190.70590.70560.51251-318.63215.63538.716

    PIG-00-04Caravelli-73.4-15.8Mioceneignimbrite72.90.315193130.70580.70550.51251-318.64815.64838.765

    PIG-00-10Puquio-74.5-14.7Mioceneignimbrite74.40.3199850.70600.70600.51265018.80315.68138.995

    PIG-02-78Yura-71.8-16.4Mioceneignimbrite71.80.212131110.70900.70860.51207-11

    PIG-00-16Chili-71.5-16.3Mioceneignimbrite72.10.314206150.70940.70910.51206-11

    PIG-00-17bChili-71.5-16.3Mioceneignimbrite71.10.5187540.70770.70630.51224-8

    PIG-00-33Sihuas-72.1-16.4Mioceneignimbrite64.22.018301170.70700.70670.51236-518.50215.65838.792

    PIG-00-32Corire-72.4-16.3Mioceneignimbrite70.20.51613080.70860.70860.51229-718.40015.66138.755

    PIG-00-38Moquegua-70.6-16.9Mioceneignimbrite71.70.816159100.70780.70780.51225-818.13715.60038.687

    PIG-00-41Moquegua-70.2-17.4Mioceneignimbrite59.81.619276150.70720.70720.51226-718.05515.60438.650

    SUR 112Chucal-69.2-18.7Mioceneignimbrite71.80.515144100.70690.70650.51227-718.31415.67938.750

    SUR 113Chucal-69.2-18.7Mioceneignimbrite72.10.414154110.70680.70650.51226-718.29215.65638.674

    PER 95 273Mauri Turco-68.7-18.5Mioceneignimbrite71.40.88469590.70710.70690.51219-917.75915.72238.396

    PER 95 275 AMauri Turco-68.3-18.0Mioceneignimbrite71.20.97491700.70700.70690.51219-917.67215.63538.115

    CRD 38 121/2Oxaya-69.7-18.4Mioceneignimbrite75.50.296770.70880.70880.51231-618.25615.69938.875

    CRD 15 124/2Oxaya-69.7-18.4Mioceneignimbrite63.01.318361200.70780.70780.51213-1018.19215.71038.885

    POC-94 (29) 137AOxaya-70.1-18.5Mioceneignimbrite62.63.7129980.70730.70730.51227-7

    S.LUCIA- 04-01Santa Lucia-70.5-15.7Oligoceneintrusion62.01.6216723218.39015.61538.490

    GTC-01Cerro Guatacondo-69.0-21.0Paleogeneintrusion65.41.93625870.70580.704919.25015.67039.060

    GTC-02Cerro Guatacondo-69.0-21.0Paleogeneintrusion61.22.427384140.70780.707419.35015.66038.670

    BLA-21Quebrada Blanca-68.8-21.0Paleogeneintrusion63.91.414600430.70510.705018.65015.63038.620

    CEU-25Cerro Ceucis-68.8-21.0Paleogeneintrusion62.32.424361150.70760.707018.64015.63038.520

    COL-17Cerro Colorado-68.7-21.9Paleogeneintrusion60.71.128964340.70380.703418.64015.64038.680

    OCO-03-06Ocoña-73.1-15.7Cretaceousintrusion72.30.843328318.63015.64138.682

    CLE-18Clemesi-71.3-17.1Cretaceouslava56.12.226573220.70490.51262-018.60015.61538.559

    CLE-03Clemesi-71.1-17.5Cretaceouslava58.02.729340120.70520.51264018.78915.65838.764

    CLE-23Clemesi-71.4-17.2Cretaceouslava56.93.721427200.70510.51272218.61715.58438.555

    APT-4-3Q. Cardones-69.7-18.4Cretaceousintrusion63.22.34219350.70490.70040.51260-118.18615.63438.756

    HUA-01Cerro Huarallapo-69.1-19.9Cretaceousintrusion61.22.63228690.70630.705418.74015.62038.690

    ABR-02El Abra-68.8-21.9Cretaceousintrusion65.71.310693690.70460.7044

    MUR-44Q. Murmuntani-69.5-18.3Cretaceousintrusion60.33.030374120.70690.70610.51223-818.03815.54437.772

    APT-11-rockArica-70.3-18.5Jurassiclava54.63.742411100.70480.70440.51285418.80515.62739.250

    APT-11-glasArica-70.3-18.5Jurassiclava18.64015.60038.510

    APT-11-matrixArica-70.3-18.5Jurassiclava18.90015.61038.780

    ANB-01-01Tocopilla-70.2-22.5Jurassicintrusion565272851118.59315.61738.539

    YaradaLa Yarada-70.7-18.2Jurassiclava59.13.221446210.70780.51265018.52515.62438.526

    IloIlo-71.2-17.6Jurassicintrusion63.92.419394210.70490.51267118.76615.63838.675

    PC-02Pachia-70.0-17.6Jurassiclava59.81.917479280.70700.70700.51222-817.97815.63038.900

    PC-03Palca-70.0-17.7Jurassiclava54.52.92920470.70750.70680.51244-417.89215.59438.937

    ARE-05Arequipa-71.8-16.3Jurassicintrusion60.92.716563350.70510.70450.51255-218.57115.60938.899

    PB-03Punta de Bombon-71.7-17.1Jurassiclava50.35.816369230.70700.70540.51242-4

    PB-12Punta de Bombon-71.5-17.0Jurassiclava52.53.018426240.70540.70410.51267118.49615.57238.471

    IQ-04-01Iquique-70.1-21.1Jurassicintrusion64.12.0293221119.05215.60839.008

    LAN_04_01Antofagasta-70.2-22.5Jurassicintrusion52.54.532292918.06015.59237.953

    LAN_04_02Antofagasta-70.1-22.1Jurassicintrusion55.34.2243251418.21515.58938.108

    CHJ-01Choja-69.1-20.0Paleozoicintrusion55.94.43021670.71400.714018.80315.67338.685

    CHJ-02Choja-69.1-20.0Paleozoicintrusion72.70.28144180.73030.730318.50415.64238.376

    CHJ-09Choja-69.1-20.0Paleozoicintrusion52.211.719714

    CHJ-10Choja-69.1-20.0Paleozoicintrusion51.98.32311850.71450.714519.15315.65838.788

    CHJ-11Choja-69.1-20.0Paleozoicintrusion51.38.32311450.71370.713719.03315.64638.685

    Bel-12-ABBelen-69.5-18.5Paleozoicgneiss18.49715.64740.594

    Bel-45-VHBelen-69.5-18.5Paleozoicamphibolite46.65.5313671217.23415.54039.003

    Bel-43-ABBelen-69.5-18.5Paleozoicamphibolite57.83.4233291417.60115.60938.755

    Bel-48-VHBelen-69.5-18.5Paleozoicamphibolite17.62715.55138.539

    Bel-53-JLBelen-69.5-18.5Paleozoicamphibolite47.67.536149417.08615.54138.544

    BEL-02Belen-69.5-18.5Paleozoicgneiss68.31.514382270.71280.711517.73115.56639.307

    BEL-03Belen-69.5-18.5Paleozoicdike53.52.02465827

    BEL-05Belen-69.5-18.5Paleozoicgneiss54.54.44329570.71340.710217.76315.58938.475

    BEL-06Belen-69.5-18.5Paleozoicamphibolite48.68.9231697

    BEL-08Belen-69.5-18.5Paleozoicgneiss52.64.930345120.71190.709017.86715.62638.757

    BEL-11Belen-69.5-18.5Paleozoicgneiss43.33.5

    RCH-04-234Arequipa-71.8-16.4Proterozoicdike64.41.95374750.70560.70020.51275218.42815.62538.416

    RCH-04-230Arequipa-71.5-16.3Proterozoicintrusion73.20.56241400.74930.72330.51135-2516.99715.58038.963

    RCH-04-232Arequipa-71.7-16.4Proterozoicintrusion65.01.920376190.70750.70050.51226-717.94015.58038.809

    OCO-04-01Arequipa-73.2-16.1Proterozoicintrusion71.51.63711930.78550.71770.51175-1717.89215.73538.597

    OCO-04-01_2Arequipa-73.2-16.1Proterozoicintrusion46.78.65241480.71250.69230.51186-1517.80915.62938.767

    BAS_21Arequipa-71.5-16.5Proterozoicgneiss67.11.96315530.73030.70250.51146-2317.11815.59538.197

    041031_HPescadores-73.3-16.4Proterozoicintrusion17.31615.50437.428

    041108_MHuacano-70.1-17.6Proterozoicintrusion71.21.4179150.77710.71270.51130-2616.71915.57340.714

    Uya-06Cerro Uyarani-68.7-18.5ProterozoicCharnokite71.61.073154517.27315.63138.955

    Uya-07Cerro Uyarani-68.7-18.5Proterozoicamphibolite47.97.0212131017.27515.55737.380

    JK 11Cerro Uyarani-68.7-18.5Proterozoicintrusion17.39815.64438.469

    Compiled data

    SampleLocationLon (X)Lat (Y)SourceGeological ageTypeSiO2MgOSr/Y87Sr/86Sr87Sr/86Sr initial143Nd/144NdeNd206Pb/204Pb207Pb/204Pb208Pb/204Pb

    Cda_1_4C. de Azufre-68.5-25.3Trumbull et al. 1999Holocenelava58.13.624.50.70650.70650.5124-418.80715.62838.784

    Last_rw_3Lastaria-68.6-25.2Trumbull et al. 1999Holocenelava61.03.529.50.70690.70690.5125-418.83715.63238.784

    N_1Argentina_Negrillar-68.7-24.3Kay et al. 1999Holocenelava0.70670.70670.5124-4

    N_2Argentina_Negrillar-68.7-24.3Kay et al. 1999Holocenelava0.70650.70650.5124-418.69015.60938.637

    PNArgentina_Negrillar-68.7-24.3Kay et al. 1999Holocenelava0.70630.70630.5125-3

    LP199Argentina_La_Poma-66.3-24.6Kay et al. 1999Pleistocenelava52.68.90.70710.70710.5124-4

    LP36Argentina_La_Poma-66.3-24.7Kay et al. 1999Pleistocenelava54.38.90.70760.70760.5124-418.75315.67139.074

    P24_4Argentina_Chorrillos-66.5-24.3Kay et al. 1999Pleistocenelava52.16.90.70630.70630.5125-218.65815.66938.971

    SJ25_2Argentina_geronimo-66.2-24.1Kay et al. 1999Pleistocenelava58.64.40.70750.70750.5124-418.73015.65938.861

    T162Argentina-66.5-24.2Kay et al. 1999Pleistocenelava0.70630.70630.5124-418.76115.66638.844

    Y83Argentina-66.5-24.1Kay et al. 1999Pleistocenelava0.70770.70770.5123-618.73915.66338.792

    5213-S-23-b1Salar Isla-68.4-26.0Siebel et al. 2001Plioceneignimbrite74.10.110.20.70900.70870.5124-519.10015.65038.910

    CO 339Incahuasi group-68.4-27.2Kay et al. 1999Pliocenelava53.69.40.70520.70520.5125-218.97915.61838.976

    CO 340Incahuasi group-68.4-27.2Kay et al. 1999Pliocenelava53.19.00.70580.705818.89016.63139.008

    Cy-94-1Salar Isla-68.6-26.2Siebel et al. 2001Plioceneignimbrite74.30.310.10.70710.70680.5124-418.85015.65038.920

    Cy-94-2-b1Salar Isla-68.6-26.2Siebel et al. 2001Plioceneignimbrite73.50.27.818.89015.67038.970

    JUNC-97-4Salar Isla-68.8-26.5Siebel et al. 2001Plioceneignimbrite73.20.25.90.70660.70600.5124-418.83015.63038.850

    León-T2/13Salar de la Isla-68.5-25.9Siebel et al. 2001Plioceneignimbrite66.51.218.518.82015.62038.780

    Pari_2-17Salar Isla-68.4-26.0Siebel et al. 2001Plioceneignimbrite70.21.016.50.70790.70780.5124-419.05015.62038.770