generalized gelfand-zeitlin systems - cornell universitypi.math.cornell.edu/~bsh68/geneve.pdf ·...

39
Generalized Gelfand-Zeitlin systems Benjamin Hoffman Department of Mathematics Cornell University Groupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systems Groupes de Lie et espaces des modules 28 Ap / 38

Upload: others

Post on 20-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Generalized Gelfand-Zeitlin systems

    Benjamin Hoffman

    Department of MathematicsCornell University

    Groupes de Lie et espaces des modules 28 April 2020

    Joint with Jeremy Lane (McMaster/Fields)

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 1

    / 38

  • Outline

    Gelfand-Zeitlin systemsCanonical bases and their parametrizationsGeneralized Gelfand-Zeitlin systemsProof of the main result

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 2

    / 38

  • Linear Poisson manifolds

    For a Lie group K , let (k, [·, ·]) be the Lie algebra of K , and k∗ its lineardual.

    Define a Poisson bracket on C∞(k∗):

    {X ,Y }(ξ) = 〈ξ, [X ,Y ]〉

    for X ,Y ∈ k ∼= (k∗)∗ ⊂ C∞(k∗) and ξ ∈ k∗. Then (k∗, {·, ·}) is a linearPoisson manifold.

    Symplectic leaves of k∗ are the coadjoint orbits.

    If (M, ω, µ) is a Hamiltonian K -manifold, then the moment mapµ : M → k∗ is a Poisson map.

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 3

    / 38

  • Gelfand-Zeitlin functions on u(n)∗

    Consider the unitary group U(n).Identify u(n)∗ with H(n), the set of n × n Hermitian matrices.

    For 1 ≤ i ≤ j ≤ n, let

    µij : H(n)→ R

    where µij(M) is the ith largest eigenvalue of the j × j submatrix M[1,j],[1,j].

    The functions µin are Casimirs of the Poisson structure on H(n).

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 4

    / 38

  • Some properties of the Gelfand-Zeitlin system

    Collectively:µ : H(n)→ Rn(n+1)/2.

    It is smooth on an open dense subset.

    The vector fields {µij , ·} and {µi′j ′ , ·} commute, for all i , i ′, j , j ′. The

    flows of these vector fields descend to an effective torus action(S1)n(n−1)/2 on the smooth locus of µ.

    ? Completely integrable, on a dense subset. ?

    The image of µ is the polyhedral cone in Rn(n+1)/2 cut out by theinequalities µij+1 ≥ µij ≥ µ

    i+1j+1

    This is the Gelfand-Zeitlin system

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 5

    / 38

  • Generalizations of the Gelfand-Zeitlin system

    Guillemin-Sternberg (83): Original construction for u(n) and o(n).The construction uses a chain of subalgebras, eg:

    o(1) ⊂ o(2) ⊂ · · · ⊂ o(n − 1) ⊂ o(n).

    Harada (04): Completely integrable system on sp(2n)∗.

    Harada-Kaveh (15): Completely integrable systems on integralcoadjoint orbits, for arbitrary compact k.

    Goal: give a generalization of the GZ system on k∗ for all compact K .

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 6

    / 38

  • Outline

    Gelfand-Zeitlin systemsCanonical bases and their parametrizationsGeneralized Gelfand-Zeitlin systemsProof of the main result

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 7

    / 38

  • Lie Theory Notation

    Throughout what follows:

    K is a compact Lie group, and G is its complex form.

    B,B− ⊂ G is choice of opposite Borels. N ⊂ B,N− ⊂ B− aremaximal unipotent subgroups.

    H = B ∩ B− is Cartan subgroup, and T = H ∩ K is maximal torus.Fraktur letters denote Lie algebras.

    P = Hom(H,C×) ↪→ h∗ is the set of weights of G .P+ is the set of dominant weights of g, and t

    ∗+ is the positive Weyl

    chamber.

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 8

    / 38

  • Canonical bases

    Theorem (Lusztig): There is a canonical basis B of U(n−).

    If λ ∈ P+ is a dominant integral weight of G , letV (λ) be the irreducible G module with high weight λ

    vλ ∈ V (λ) be a fixed highest weight vectorThen Bλ = B · vλ is a weight basis of V (λ). The dual basis B∗λ is a weightbasis of V (λ)∗.

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 9

    / 38

  • Parametrizations of canonical bases

    Let λ ∈ P+. A polyhedral parametrization of Bλ (or B∗λ) is a bijection

    Bλ ↔4λ

    where 4λ ⊂ Zm is the set of lattice points of a rational convex polytope inRm.

    A polyhedral parametrization of B∗ :=∐λ∈P+ B

    ∗λ is

    C =∐λ∈P+

    {λ} ×4λ ⊂ P × Zm.

    We require that C is the set of lattice points of a rational convexpolyhedral cone in Rm+r .

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 10

    / 38

  • Gelfand-Zeitlin cone

    Let G = GLnC. Then P ∼= Zn and λ ∈ P+ can be written:

    λ =(λ1, λ2, . . . , λn) ∈ Zn

    λ1 ≥ λ2 ≥ · · · ≥ λn

    The Gelfand-Zeitlin pattern 4GZλ associated with λ is the set of λij ∈ Z,1 ≤ i ≤ j ≤ n, so that

    λij+1 ≥ λij ≥ λi+1j+1There exists a bijection Bλ ↔4GZλ .

    Moreover,CGZ =

    ∐λ∈P+

    {λ} ×4GZλ ⊂ Zn × Zn(n−1)/2

    is the set of integral points of a convex polyhedral cone.

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 11

    / 38

  • String parametrizations

    Let G be a reductive complex Lie group. Let i = (i1, i2, . . . , im) be areduced expression for the longest element w0 of the Weyl group W of G .

    There is a polyhedral parametrization 4iλ of B∗λ which depends only on thechoice of i. Each 4iλ is a string polytope (Berenstein-Zelevinsky).

    Moreover,Ci =

    ∐λ∈P+

    {λ} ×4iλ ⊂ P × Zm

    is the set of integral points of a convex polyhedral cone (Littelmann).

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 12

    / 38

  • String parametrizations, in detail

    Fix λ ∈ P+, and consider b∗ ∈ B∗λ ⊂ V (λ)∗. Define

    vi(b∗) = (v1, . . . , vN) ∈ 4iλ ⊂ ZN

    by:

    v1 = max{v | F vi1b∗ 6= 0}

    v2 = max{v | F vi2Fv1i1b∗ 6= 0}

    ...

    vN = max{v | F viNFvN−1iN−1

    · · ·F v1i1 b∗ 6= 0}

    Then vi is a bijection B∗λ ↔4iλ.

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 13

    / 38

  • Example

    Let G = SL3C. Let i = (1, 2, 1). Generators of Ci:

    F : N6 → Ci ⊂ P+ × N3

    (a1, a2, a3, a12, a13, a23) 7→

    ∑i

    ai ,∑ij

    aij , a2 + a23, a3 + a13 + a23, a3

    Then:

    F (0, 1, 0, 0, 1, 0) = F (1, 0, 0, 0, 0, 1).

    C[Ci] =C[z1, z2, z3, z12, z13, z23]

    (z2z13 − z1z23)

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 14

    / 38

  • Outline

    Gelfand-Zeitlin systemsCanonical bases and their parametrizationsGeneralized Gelfand-Zeitlin systemsProof of the main result

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 15

    / 38

  • Problem statement

    The moment map image µ(u(n)∗) of the Gelfand-Zeitlin system isR≥0 · CGZ .

    The integral points CGZ parametrize∐λ∈P+ B

    ∗λ, the dual canonical bases

    of GLn(C) modules.

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 16

    / 38

  • Problem statement

    Let k be the Lie algebra of a compact Lie group K , and let C ⊂ ZN be apolyhedral parametrization of of

    ∐λ∈P+ B

    ∗λ. Find a proper continuous map

    µ : k∗ → RN which satisfies the following:1 For each open face σ of t∗+, the map µ is smooth on an open dense

    subset of K · σ.2 On its smooth locus, µ : K · σ → RN generates a completely

    integrable torus action.

    3 µ(k∗) = R≥0 · C.

    Theorem (H.-Lane)

    For all compact Lie groups K and all string parametrizations Ci, such amap µ : k∗ → RN exists.

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 17

    / 38

  • Problem statement

    Let k be the Lie algebra of a compact Lie group K , and let C ⊂ ZN be apolyhedral parametrization of of

    ∐λ∈P+ B

    ∗λ. Find a proper continuous map

    µ : k∗ → RN which satisfies the following:1 For each open face σ of t∗+, the map µ is smooth on an open dense

    subset of K · σ.2 On its smooth locus, µ : K · σ → RN generates a completely

    integrable torus action.

    3 µ(k∗) = R≥0 · C.

    Theorem (H.-Lane)

    For all compact Lie groups K and all string parametrizations Ci, such amap µ : k∗ → RN exists.

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 17

    / 38

  • Outline

    Gelfand-Zeitlin systemsCanonical bases and their parametrizationsGeneralized Gelfand-Zeitlin systemsProof of the main result

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 18

    / 38

  • Proof outline

    1 Pass to a stratified space ET ∗K which is symplectic realization of k∗.2 Identify ET ∗K with the affine variety G � N.3 Take a toric degeneration of G � N to a toric variety XCi .4 Use gradient-Hamiltonian flow to build a map G � N → XCi .5 Compose with a moment map XCi → RN , and divide by a small torus

    action, to getk∗ → RN

    satisfying the desired properties.

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 19

    / 38

  • Symplectic implosion

    Step 1: Pass to a space ET ∗K which is a symplectic realization of k∗.

    The symplectic implosion ET ∗K of T ∗K is a stratified space constructedby Guillemin-Jeffrey-Sjamaar.

    As a set: ET ∗K =∐σ≤t∗+

    (K/[Kσ,Kσ])× σ.

    It is a topological space. Each piece (K/[Kσ,Kσ])× σ is a smoothsymplectic manifold.

    There is a proper map ET ∗K → k∗. It is piecewise Poisson.

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 20

    / 38

  • Ambient affine space

    Step 2: Identify ET ∗K with the affine variety G � N.

    Fix a string parametrization Ci of∐λ∈P+ B

    ∗λ. It is a semigroup.

    Let Π ⊂ P+ be a finite subset so that∐λ∈Π{λ} ×4iλ generates Ci as a

    semigroup.

    Let E = ⊕λ∈ΠV (λ). It is a G -module.

    Example: G = SL3(C), Π = {ω1, ω2}, E = V (ω1)⊕ V (ω2).

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 21

    / 38

  • Base affine space

    C[G ] ∼= ⊕λ∈P+V (λ)∗ ⊗ V (λ) as a G × G module.

    C[G ]1×N ∼= ⊕λ∈P+V (λ)∗ ⊗ Cvλ ∼= ⊕λ∈P+V (λ)∗.Then B∗ =

    ∐λ∈P+ B

    ∗λ is a basis for C[G ]N .

    Let G � N = SpecC[G ]N .

    ⊕λ∈ΠV (λ)∗ generates C[G ]N , so

    G � N ↪→ ⊕λ∈ΠV (λ) = E .

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 22

    / 38

  • Example

    Let G = SL3C, Π = {ω1, ω2}. Then

    C[G ]N ∼=C[z1, z2, z3, z12, z13, z23](z2z13 − z1z23 − z3z12)

    Since

    C[V (ω1)] ∼= C[z1, z2, z3]C[V (ω2)] ∼= C[z12, z13, z23]

    this embedsG � N ↪→ V (ω1)⊕ V (ω2).

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 23

    / 38

  • Example

    C[G ]N ∼= C[z1,z2,z3,z12,z13,z23](z2z13−z1z23−z3z12)

    The dual canonical basis B∗ of C[G ]N is the set of monomials in

    z1, z2, z3, z12, z13, z23

    which are not divisible by z2z13.

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 24

    / 38

  • Kähler structure

    Give E a K -invariant Hermitian form 〈·, ·〉.Then E is Kähler, with Kähler form ωE = −=〈·, ·〉.

    Theorem (Guillemin-Jeffrey-Sjamaar, Hilgert-Manon-Martens): ET ∗K isisomorphic to G � N, equipped with the restriction of ωE .

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 25

    / 38

  • High weight map

    E = ⊕λ∈ΠV (λ) is a Hamiltonian K × T space.

    T moment map:

    hw : E → t∗+ ⊂ t∗∑λ∈Π

    uλ 7→ π∑λ∈Π||uλ||2λ, uλ ∈ V (λ)

    Key fact: hw is proper.

    Recall ET ∗K =∐σ≤t∗+

    K[Kσ ,Kσ]

    × σ. Stratification:

    K

    [Kσ,Kσ]× σ ∼= G � N ∩ hw−1(σ)

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 26

    / 38

  • Toric degenerations

    Step 3: Take a toric degeneration of G � N to a toric variety XCi .

    Let XCi = SpecC[Ci].

    Theorem (Caldero): There is a flat family π : X → C whereπ−1(C×) ∼= G � N × C× and π−1(0) ∼= XCi

    Reformulation, due to Kaveh: The string parametrization can be extendedto a valuation

    vi : C[G � N]→ P × ZN

    with one dimensional leaves.

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 27

    / 38

  • Toric degenerations

    Embed it into E × C:X E × C

    C

    ←↩ →←

    →π

    ←→ pr2

    Technical point: Let T be the compact torus of XCi . Then the embeddingX ↪→ E × C can be chosen so that T acts on E via unitarytransformations (and hence is a Hamiltonian action).

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 28

    / 38

  • Example

    Let G = SL3C, i = (1, 2, 1) as before. Then

    C[Ci] =C[z1, z2, z3, z12, z13, z23]

    (z2z13 − z1z23)

    Take the algebra:

    R = C[z1, z2, z3, z12, z13, z23, t](z2z13 − z1z23 − tz3z12)

    R is a C[t] module. X = SpecR → SpecC[t] = C.R[t−1] ∼= C[G ]N ⊗ C[t±1]R/(t) ∼= C[Ci].

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 29

    / 38

  • Stratified gradient-Hamiltonian flow

    Step 4: Use gradient-Hamiltonian flow to build a map G � N → XCi .

    For each σ ≤ t∗+, restrict attention to X ∩ (hw−1(σ)× C). Smooth awayfrom π−1(0). Let

    V σ = − ∇

  • Stratified gradient-Hamiltonian flow

    LetV =

    ∐σ≤t∗+

    V σ : X\π−1(0)→ T (E × C).

    Technical fact: V is continuous.(Note this doesn’t always happen for stratified gradient flows).

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 31

    / 38

  • Stratified gradient-Hamiltonian flow

    Fact: π∗V = − ddt .

    Let ϕt be the time t flow ofV (as long as it is defined). Then

    ϕt : π−1(1)→ π−1(1− t). (∗)

    for t ∈ [0, 1).

    Technical facts: This flow (∗)existsand is unique for t ∈ [0, 1);is continuous;

    preserves the symplecticform (stratum-wise).

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 32

    / 38

  • Stratified gradient-Hamiltonian flow

    Technical fact (partly following Harada-Kaveh): ϕt can be extended to acontinuous map

    ϕ1 : G � N ∼= π−1(1)→ π−1(0) ∼= XCi

    which, when restricted to

    G � N ∩ hw−1(σ)

    is a smooth symplectic isomorphism on an open dense subset.

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 33

    / 38

  • Step 5

    ET ∗K G � N XCi R≥0 · Ci RN

    ←→step 2 ←→ϕ1 ←→ ←↩ →

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 34

    / 38

  • Step 5

    ET ∗K G � N XCi R≥0 · Ci RN

    k∗←→step 2

    ←→

    ←→ϕ1 ←→ ←↩ →←

    →µ

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 35

    / 38

  • Collective Hamiltonians

    Let (M, ω, µ) be a compact connected Hamiltonian K -manifold.

    M is multiplicity free if µ−1(Oλ)/K is 0-dimensional, for all λ ∈ t∗+.

    An integrable system on M is collective if its moment map is of the form

    Mµ−→ k∗ → RN .

    Question: When does (M, ω, µ) have a collective integrable torus action?

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 36

    / 38

  • Collective Hamiltonians

    Theorem (H.-Lane)

    Let (M, ω, µ) be any compact connected Hamiltonian K -manifold. Then,

    the composition MΦ−→ k∗ µ−→ RN is continuous, proper, smooth on an open

    dense subset of M, and generates a Hamiltonian (S1)N action on itssmooth locus.

    In particular, if M is multiplicity free, then this is a completely integrabletorus action on an open dense subset of M.

    Proof:

    M → Msc = (EM × ET ∗K ) � T → (EM × XCi) � T → RN

    Benjamin Hoffman (Cornell University) Generalized Gelfand-Zeitlin systemsGroupes de Lie et espaces des modules 28 April 2020 Joint with Jeremy Lane (McMaster/Fields) 37

    / 38

  • Gelfand-Zeitlin systemsCanonical bases and their parametrizationsGeneralized Gelfand-Zeitlin systemsProof of the main result