generality and specificity of landforms of the korean peninsula, … · 2014-11-07 · generality...

19
- 656 - 대한지리학회지 제49권 제5호 2014(656~674) 한반도 지형의 일반성과 특수성, 그리고 지속가능성 박수진* Generality and Specificity of Landforms of the Korean Peninsula, and Its Sustainability Soo Jin Park* 요약 : 이 연구는 한반도 지형이 가지고 있는 특수성과 일반성을 파악하여 국토 및 환경관리에 응용될 수 있는 지형관리원칙을 찾으려는 목적으로 이루어졌다. 동아시아를 대상으로 대륙규모와 국가규모, 그리고 지역규모 지형분석을 순차적으로 진행하였다. 동아시아는 복잡한 지구조적 특성을 보이지만, 대륙규모에서 뚜렷한 북 동-남서 방향의 지형구조와 연결성이 나타난다. 한반도는 이러한 대륙규모의 지형특성을 따르면서도, 직각으 로 교차하는 북북서-남남동 방향(낭림산맥과 태백산맥)의 지형연결성이 특징적으로 나타난다. 한반도는 국가 적인 규모에서 동아시아에서 지형다양성이 가장 높은 곳 중의 하나로, 평균고도는 높지 않지만 인접한 지역에 비해 상대적으로 높은 경사도와 복잡한 지형다양성을 보인다. 한반도와 유사한 지형적 특성을 보이는 러시아 의 시호테알린, 중국의 화남, 그리고 일본과 비교할 경우, 한반도는 산지와 퇴적평지의 경계가 자연스럽게 이 어지는 반면, 다른 지역은 산지와 퇴적평지가 뚜렷하게 구분되는 특징을 보인다. 동아시아 지역규모에서 나타 나는 지형의 특수성과 다양성에도 불구하고 산정상부에서 하천으로 이어지는 사면의 연결성은 모든 지역에서 동일하게 적용되는 지형의 일반적인 원칙이었다. 이러한 공간적인 연결성과 그와 관련된 각종 지형 및 생태현 상들을 종합적으로 고려하는 것이 지속가능한 지형관리의 가장 핵심적인 요인이 될 것이다. 주요어 : 지형의 특수성, 지형의 일반성, 지속가능한 지형관리, 지형분석, 사면, 카테나 Abstract : The objective of this study was to examine the distinctiveness and generality of landforms of the Korean peninsula, and further discover geomorphological principle that can be applied to land and environmental management in Korea. The research targeted East Asia and Korea, with terrain analysis conducted at a continental scale, national scale, and regional scale sequentially. East Asia displays complicated characteristics and evolutionary history of geotectonics, but exhibits distinct northeast- southwest geomorphological structure and connectivity at the continental level. While the Korean peninsula follows this pattern on a continental scale, it also features NNW-SSE direction (Nangrim and Taebaek Mountains) geomorphological connectivity that intersects at a right angle. From a national perspective, the Korean peninsula hosts the most diverse geomorphological features within East Asia. It does not have a high average altitude, but has relatively high slope angle and intricate topographical distribution in comparison to neighboring areas. While the mountains and plains of the Korean peninsula display a smooth connection, geomorphologically similar areas such as Shikhote-Alin, Huanan in China, and Japan have clear characteristics that divide the mountains and plains. Despite the distinctiveness and diversity that appear in East Asian topography on the regional scale, the connectivity that links the top 이 논문은 2010년 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2010-413-B00006) * 서울대학교 사회과학대학 지리학과 교수/서울대학교 아시아연구소 겸임연구원(Professor, Department of Geography , Seoul National University/Adjunct Researcher, Asia Center, Seoul National University), catena@snu.ac.kr

Upload: others

Post on 27-Jan-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

49-502c.indd*
Generality and Specificity of Landforms of the Korean Peninsula, and Its Sustainability
Soo Jin Park*
:
. ,
. ,
- . ,
- ( ) .
,
.
, , ,
, .

.
.
: , , , , ,
Abstract : The objective of this study was to examine the distinctiveness and generality of landforms of the Korean peninsula, and further discover geomorphological principle that can be applied to land and environmental management in Korea. The research targeted East Asia and Korea, with terrain analysis conducted at a continental scale, national scale, and regional scale sequentially. East Asia displays complicated characteristics and evolutionary history of geotectonics, but exhibits distinct northeast- southwest geomorphological structure and connectivity at the continental level. While the Korean peninsula follows this pattern on a continental scale, it also features NNW-SSE direction (Nangrim and Taebaek Mountains) geomorphological connectivity that intersects at a right angle. From a national perspective, the Korean peninsula hosts the most diverse geomorphological features within East Asia. It does not have a high average altitude, but has relatively high slope angle and intricate topographical distribution in comparison to neighboring areas. While the mountains and plains of the Korean peninsula display a smooth connection, geomorphologically similar areas such as Shikhote-Alin, Huanan in China, and Japan have clear characteristics that divide the mountains and plains. Despite the distinctiveness and diversity that appear in East Asian topography on the regional scale, the connectivity that links the top
2010 () (NRF-2010-413-B00006)
* / (Professor, Department of Geography, Seoul National University/Adjunct Researcher, Asia Center, Seoul National University), [email protected]
- 657 -
1.
.

(
, 1980; , 2002; , 2005).


,
.

(, )
, ,

.
(superposition) ,

(spatial heterogeneity) .

.
,
,
.

,
,
.
,

.

, 30-40
(,
2011; , 2013a).1)


(, 2011).2)



(, 2008; , 2008).

,

. ,

.

,
. ,


.

of mountain (hill) to stream is identical among all areas as a general rule. It is collectively considering the connectivity and the geomorphological and ecological processes that arise within this connectivity that will serve as the focal point for sustainable landscape management.
Key Words : Generality of Landform, Specicity of Landform, Sustainable Land Management, Terrain Analysis, Slope, Catena
- 658 -


.

, 2) ,
.
, (Shik-
hote Alin)
. 3)


. 4)

.
147°E , 1,300km2
1. () ()
: (2013b)
- 659 -
. , ,
- -

. ,
( 1).


.


. 15 ,
150/km2 .
,
.

(UNEP RRC. AP, 2004).

(Digital Elevation Model,
DEM) .
DEM
. DEM
(NASA) Shuttle Radar Topographic
Mission(SRTM) (Reuter et al.,
2007).3)


(·,
2004).
DEM
.
500m DEM
,
1 ,
.4)
, .

(, 2007). DEM

,

. 4.5×4.5km
5) ,
.
( 2 ),
300m
, 1,000m
.
300m 1,000m, 2,000m ,
300m (), 300-1,000m
(), 1,000-2,000m (),
2,000m ()
( 2).

- 660 -

2 ). 1°

( 1 ).


10° (Morgan,
2005). 1°
(), 1°~3°
(), 3°~9° (), 10°
() ( 2).


.
10×10km(100km2)
.


.

.

,
,
,
.
SRTM 90m (3
1.
CV(%)1 2

448.5 452.9 101.0 -88 2676 390.9 390.8 100.0 -96 3663 312.8 283.7 90.7 -62 2126
507.0 304.1 60.0 -7 2055 782.2 845.6 108.1 -21 3830 3 910.2 869.8 95.6 -221 7120

5.7 4.4 76.0 0.0 32.7 5.4 4.8 88.9 0.0 41.0 5.0 4.7 94.7 0.0 37.2
5.2 3.8 72.3 0.0 30.0 9.6 8.7 90.9 0.0 54.1 3 3.9 4.8 123.1 0.0 54.1


2.8 0.9 34.0 1 7 2.9 1.1 38.8 1 9 3.0 1.1 35.9 1 7
2.6 1.0 40.4 1 7 2.8 1.4 50.2 1 7 3 2.3 1.1 46.7 1 9
1. CV: Coecient of Variation((/)×100) 2. SRTM 500m DEM . ,
DEM
- 661 -
arc second) DEM.
, , 3
, 3, 3
12 . 3
, 130km×140km
.
(Wilson and Gallant, 2000; Huggett, 2011).

(elevation),
(slope), (surface curvature),
(terrain characterization index)

. ,

(Dobos and Hengl, 2009). 3
3. () ().
(SHA1, SHA2, SHA3), (JPN1, JPN2, JPN3), (CHN1, CHN2, CHN3)
, KOR1, KOR2,
KOR3 .
,
(, 2004).

(Willson and
Gallant, 2000).
ln(As/tanb)6)
.

(, 2004).
, 12

(Analysis of Variance) .
(spatial dependency)
(semivariogram)
.7)
,
() ()
(),
(
1).

() , ()
.

.
2.


300m 1 9.60 13.98 16.86 5.70 22.09 15.84
300m 1-3° 18.48 18.17 19.13 11.35 10.54 7.18 300m 3-9° 26.23 23.52 22.70 12.30 11.95 5.94
300m 9° 0.31 0.72 0.56 0.11 1.71 0.11 300-1,000m 1 0.02 0.13 0.08 0.28 0.00 5.82
300-1,000m 1-3° 0.30 1.82 1.43 4.25 0.17 7.14 300-1,000m 3-9° 22.15 24.54 24.66 55.16 6.22 16.68
300-1,000m 9° 10.65 10.37 12.32 5.57 17.06 3.77 1,000-2,000m 1 0.06 0.00 0.00 0.00 0.00 9.24
1,000-2,000m 1-3° 0.51 0.03 0.00 0.07 0.00 6.64 1,000-2,000m 3-9° 6.53 1.73 0.57 3.33 0.01 10.01
1,000-2,000m 9° 4.99 4.64 1.68 1.88 19.52 3.67 2,000m 1 0.00 0.00 0.00 0.00 0.00 0.21
2,000m 1-3° 0.00 0.00 0.00 0.00 0.02 0.62 2,000m 3-9° 0.09 0.00 0.00 0.00 10.71 3.38
2,000m 9° 0.07 0.35 0.00 0.00 0.00 3.74
: 500m SRTM DEM 4.5×4.5km
- 663 -
,
,
.

.

-
.
( 3 ).
/()
. -
/
.
3° 9°
16.68% ( 2).
/--/
/ (9.24%),
.

, (10.01%)
.
,
- /
( 3 ).

,

.

(Burbank and Anderson, 2001).

.
,
(craton)
(McElhynny, 1981; (1999)
).8)
(orogeny)
.9) Sengör(1985) Man-
churides

Tethysides Nipponides

(Sengör and Natal’in,
2009).
Tethy-
sides . 3 (Eocene)

.
,

(Tapponnier et al., 1986).
,
.
4
(·, 1995).

, (-)

.
, ,
(, 1999).
,
3 (2,500 )
- 664 -

, 1993; , 1999).
Manchurides

(Zao, 1986). ,

,

.


-
.
()

.
. , Manchurides
, Tethysides
Nipponides

,
(·, 1995).


(Zao, 1986;
·, 1995).
-
-
( )
-
(, 1980; , 2005;
, 2007).

(back-arc basin)
(
, 1997; , 2007).

,
.
448m
(910m) . ,
(3.9°) 2°
5.7° .
(26.2%), (22.1%), (18.5%),
. 2.78(
0.95) 2.27(
1.06) ,
( 1 ).
,
,
,
.
,

( 1, 2).
.


(Ho, 1998; Chang et al., 2000).
,

.
,
, , , ,
( 2).
- 665 -
,
4. ( 2 KOR2) () (), ( 2 JPN2)
() (), ( 2 CHN3) () () .
, .
- 666 -

(507.0m)(448.5m)(390.9m)
(5.7°)(5.4°)(5.2°)
() , , ,
10%
. (3.0)(2.9)
(2.8)(2.6) .
()
,
.
, .
,
.
,

3. 12
1 (m) (°)
KOR1 277.99 11.27 4.67 0.03 8.35 -2.93
211.33 7.50 0.82 6.94 3.07 32.62
KOR2 244.41 11.74 4.69 -0.07 8.43 -3.32
201.12 7.79 0.84 7.23 3.24 33.59
KOR3 316.11 12.01 4.67 -0.03 8.43 -3.34
273.92 8.39 0.84 7.55 3.23 35.50
JPN1 400.77 9.62 4.68 0.04 8.71 -2.45
326.57 7.20 0.81 6.18 3.10 29.83
JPN2 598.77 12.19 4.68 -0.03 8.36 -3.61
364.98 8.90 0.80 7.99 3.01 38.89
JPN3 344.32 10.75 4.66 0.00 8.45 -3.12
223.06 7.12 0.82 6.46 3.22 33.18
CHN1 550.30 16.76 4.63 0.19 7.76 -3.87
330.45 10.08 0.78 10.42 2.77 50.17
CHN2 292.33 9.20 4.64 0.01 8.50 -2.76
153.64 6.63 0.88 6.08 3.17 28.67
CHN3 212.90 9.48 4.61 0.12 8.65 -2.24
197.19 7.69 0.86 6.49 3.40 30.39
SHA1 567.48 10.81 4.72 -0.09 8.37 -3.18
248.12 6.69 0.76 6.32 2.54 30.52
SHA2 716.10 12.47 4.69 0.16 8.08 -2.66
259.02 7.70 0.78 7.75 2.30 37.24
SHA3 830.41 12.76 4.73 -0.05 8.18 -3.71
256.85 7.79 0.75 7.71 2.34 37.80
446.86 11.59 4.67 0.02 8.36 -3.10
N 118987 118987 118987 119994 118987 118987 324.84 8.09 0.81 7.35 2.98 35.33
1. 3 .
- 667 -
.
. ,

,
.

(
4).

.
,
.
,

.
,
.
, .


.
.

.
,
.

. ,

,
.


.
5.

, ,


( 4). ,
(F) 13,030.0
5,931.5 .
F 116.2 660.6
,
4.
4 12
F F
13,030.07 0.000 5,931.57 0.000
116.28 0.000 660.61 0.000
1.73 0.158 1.47 0.136
0.31 0.818 2.06 0.020
55.49 0.000 17.43 0.000
53.82 0.000 72.41 0.000
1. (, , , ) 3, 118983
2. 11, 118973
- 668 -

,

.

F 50 ,
.
,
. 4

,
.
F
2 ,
.

. ,

(Burbank and Anderson,
2001).
,

(Huggett, 2011).


.

.
()--
-- (Carson and Kirkby,
1972). 12


,
.
,

,

.

,
/ . ,
/
,
.
/

(semivariogram) (
(range) ,
(27.2km)(10.1km)(1.1km)
(658.6m)(535.5m)
(535.2m) .
CV (56.8%)(46.77%)

,
( ,
2013). 10km


.

.
530m
, (CV) 11%
. ()
500m
,
. ,

,
,
- 669 -
,
. 6. :

.
.
5.
(range, m) (sills)
Exponential
27,221.25 55,855.00 7,850.10 10,855.40 31,958.07 4,677.23 13,944.37 18,399.85 837.89 54,123.08 113,715.28 15,805.73
CV(%) 39.88 57.22 59.58
Exponential
10,180.50 28.51 29.52 5,782.87 11.9 9.65 3,251.32 17.67 13.64 21,199.87 56.65 50.09
CV(%) 56.80 41.74 32.68
Spherical
658.65 0.37 0.26 247.73 0.15 0.16 411.62 0.18 0.00 1,142.98 0.66 0.52
CV(%) 37.61 39.61 60.02
Spherical
535.23 1,213.81 5.33 57.42 463.25 12.52 440.66 834.97 0.00 615.58 2,527.38 35.32
CV(%) 10.73 38.17 235.10
Spherical
1,185.06 3.79 4.92 554.22 1.82 4.81 499.62 1.06 0.22 2,192.77 6.26 19.71
CV(%) 46.77 47.94 97.85
Spherical
658.65 0.37 0.26 247.73 0.15 0.16 411.62 0.18 0.00 1,142.98 0.66 0.52 CV(%) 37.61 39.61 60.02
- 670 -


.

,

.


(, 2011; , 2013a),

.

(, )
, ,

. ,



.

.
(scale)
(Gibson et al., 1998).
,

.
,


(Blöschl et al., 1995; Cash and
Moser, 2000).
(Carson and Kirkby, 1972; Huggett,
2011).

(Gilbert, 1877; Davis, 1909; Penck, 1953;
King, 1953; Hack, 1960; Kirkby, 1971; Conacher
and Dalymple, 1977).


(Gilbert, 1987; Hack, 1960).
(Davis, 1909; Penck, 1953; King, 1953)
( ),
.10)

,
,

(Kirkby, 1971; Huggett, 2011).

,

. 1930
Milne (catena)
(Milne, 1936),
Conacher and Darlymple(1977) Nine-unit Soil
Landscape Model
(normal slope standard slope)
.
,

.
,

. ,


.
,
DEM
. ,
, --
- 671 -

.
,

,


.


.

.

,
.


(
, 2008). , ,

.


,

.

,
.
,
(resilience)

.

.
,

. ,

.
-
.

.
,
.
,
.

. ,
, ,

,
.


.
,
, --

. /
. ,
- 672 -

.
.

,

.


.



.

, .


.
1970 289ha 2000 713ha
, 14
867 (
, 2013a). 1974 2003
10 3.2
2002 2006
2.7 (, 2011).
, 2.7,
4.2(, 2011, p.136)
Consortium for Spatial Information(CGIAR-CSI)
DEM (http://
srtm.csi.cgiar.org ).
.
iogram) ,
(spatial dependency) 4.5km
(, 2007).
(Willson and Gallant, 2000).
.
(spatial depen-
dency) ,
.
8) Sengör(1985)
(Angaran craton), (Indian Craton),
(Arabian Craton), (Kontum craton),
(North China Craton), (South China Cra-
ton), (North Tarim fragment)
.
(Angaran
Cratons, Siberian Platform)
.
Altaids, Manchurides, Scythides, Chukotkalaskides,
Tethysides, Verkhoyansk-Kolyma,
Natal’in(2009) 2 ).
10)
.

weathering-limited slope
,
transport-limited slope . Weathering-
limited slope
,
- 673 -
. Penck(1953)
transport-limited slope
.
, 5, 1-15.
.
, 2007, “ (I): DEM
,” ,
42(3), 368-387.
, 11(3), 113-136.
.
, 2002, ,
.
Tectonic , .
,”
, 47(5), 654-676.
,” , 62-69.
, .
.
Blöschl, G., Grayson, R.B. and Sivapalan, M., 1995, On
the representative elementary area (REA) concept
and its utility for distributed rainfall-runo mod-
elling, In: Kalma, J.D. and Sivapalan, M.(eds),
Scale Issues in Hydrological Modelling, John Wiley
& Sons, Chichester, 71-88.
morphology, Blackwell Science.
Process, Cambridge University Press, Cambridge.
Cash, D. W. and Moser, S.C., 2000, Linking global and
local scales: designing dynamic assessment and
management processes, Global Environmental
Change, 10, 109-120.
Chang, C. P., Angelier, J. and Huang, C. Y., 2000, Ori-
gin and evolution of a melange: the active plate
boundary and suture zone of the Longitudinal
Valley, Taiwan: Tectonophysics, 325, 43-62.
Conacher, A.J. and Dalrymple, J.B., 1977, The nine unit
landsurface model: An approach to pedogeomor-
phic research, Geoderma, 18, 1-153.
Davis, W.M., 1909, Geographical Essays, Boston.
Dobos, E. and Hengl, T., 2009, Soil Mapping Applica-
tions, In: T. Hengl, and H. I. Reuter (eds.), Geo-
morphometry: Concepts, Software, Applications,
Gibson, C., Ostrom, E. and Ahn, T.K., 1998, Scaling Issues
in the Social Sciences, A Report for the Interna-
tional Human Dimensions Programme on Global
Environmental Change, IHDP Working Paper
No. 1, IHDP, Bonn.
Gilbert, G.K., 1877, Report on the Geology of the Henry
Mountains, US Geological and Geographical Sur-
vey.
humid temperate regions, American Journal of Sci-
ence, 258A, 80-97.
Ho, C. S., 1988, An introduction to the geology of Taiwan:
explanatory text of the geologic map of Taiwan, Cen-
tral Geological Survey, Taiwan.
ledge, New York.
cal Society of America Bulletin, 64, 721-752.
Kirkby, M.J., 1971, Hillslope process-response models
based on the continuity equation, Institute of Brit-
ish Geographers Special Publication 3.
McElhynny, M.W., 1985, Permian paleomagnetism of the
western Yangtze block, China: A reinterpretation,
Journal of Geodynamics, 2, 115-117.
Milne, G., 1936, Normal erosion as a factor in soil profile
development, Nature 138: 548-549.
translated, by H. Czech and K.C. Boswell, Lon-
don: Macmillan.
Reuter, H.I., Nelson, A. and Jarvis, A., 2007, An evalu-
ation of void f illing interpolation methods for
SRTM data, International Journal of Geographical
Information Science, 21, 983-1008.
318, 1-17.
Sengör, A.M.C. and Natal’in, B.A., 2009, Geology of Asia,
Geology, vol IV, Encyclopedia of Life Support Sys-
tems (EOLSS).
Tapponnier, P., Peltzer, G. and Armijo, R., 1986, On the
mechanism of the collisim between India and
Asia, Geological Society London, Special Publica-
tion, 19, 115-157.
and the Pacic (UNEPRRC.AP).
Willson, J. P. and Gallant, J. C., 2000, Terrain analysis:
Principles and applications, John Wiley & Sons
Inc, New York.
John Wiley & Sons.
(: catena@snu.
Correspondence: Soo Jin Park, Department of Geography,
College of Social Sciences, Seoul National University, 1
Gwanak-ro, Gwanak-gu, Seoul, 151-742 Korea (e-mail:
[email protected], phone: +82-2-880-9007, fax: +82-2-
876-9498)