general concepts of primer design

Upload: idamelis-rodriguez-garcia

Post on 02-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 General Concepts of Primer Design

    1/9

    1993 3: S30-S37Genome Res.C W Dieffenbach, T M Lowe and G S Dveksler

    General concepts for PCR primer design.

    Referenceshttp://genome.cshlp.org/content/3/3/S30.refs.html

    This article cites 30 articles, 15 of which can be accessed free at:

    serviceEmail alerting

    click heretop right corner of the article orReceive free email alerts whennew articles cite this article - sign up in the box at the

    http://genome.cshlp.org/subscriptionsgo to:Genome ResearchTo subscribe to

    Copyright Cold Spring Harbor Laboratory Press

    Cold Spring Harbor Laboratory Presson March 31, 2010 - Published bygenome.cshlp.orgDownloaded from

    http://genome.cshlp.org/content/3/3/S30.refs.htmlhttp://genome.cshlp.org/content/3/3/S30.refs.htmlhttp://genome.cshlp.org/content/3/3/S30.refs.htmlhttp://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=genome;3/3/S30&return_type=article&return_url=http://genome.cshlp.org/content/3/3/S30.full.pdfhttp://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=genome;3/3/S30&return_type=article&return_url=http://genome.cshlp.org/content/3/3/S30.full.pdfhttp://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=genome;3/3/S30&return_type=article&return_url=http://genome.cshlp.org/content/3/3/S30.full.pdfhttp://genome.cshlp.org/subscriptionshttp://genome.cshlp.org/subscriptionshttp://genome.cshlp.org/subscriptionshttp://genome.cshlp.org/subscriptionshttp://genome.cshlp.org/subscriptionshttp://www.cshlpress.com/http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/subscriptionshttp://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=genome;3/3/S30&return_type=article&return_url=http://genome.cshlp.org/content/3/3/S30.full.pdfhttp://genome.cshlp.org/content/3/3/S30.refs.html
  • 8/10/2019 General Concepts of Primer Design

    2/9

    General

    oncepts for

    P R Prim er

    Design

    C.W. Dief fenbach 1

    T.M.J. Lowe 2 and

    G.S. Dve ksler ~

    1Division of AIDS, Nat iona l

    Institute of Allergy and Infectious

    Diseases, National Institutes of

    Health, Bethesda, Maryland 20892;

    ZDepartment of Mo lecular Biology,

    Washington University, St. Louis,

    Missouri 63110; 3Department of

    Pathology, Uniformed Services

    University of the Health Sciences,

    Bethesda, Maryland 20814

    P C R i s a te c h n o l o g y b o r n o f t h e m o d e r n m o l e c u l a r b i o l o g y e r a. T h e e n z y m e

    used for PCR,

    Taq D N A p o l y me r a s e , s u p p l i e d w i t h t h e 1 0 x b u f f e r , is p u r -

    c h a s e d a s a c l o n e d p r o d u c t , a n d t h e n u c l e o s i d e t r i p h o s p h a t e s a r e u l t r a p u r e ,

    b u f f e r e d , a n d a v a i l a bl e a t a c o n v e n i e n t c o n c e n t r a t i o n . Y et , w i t h a l l o f t h e s e

    commerc ia l ly ava i l ab le s t a r t ing mater i a l s , PCR s t i l l fa i l s , par t i cu lar ly fo r the

    n o v i c e . A s s u mi n g t h a t a l l o f t h e r e a g e n t s h a v e b e e n a d d e d i n t h e p r o p e r

    c o n c e n t r a t i o n s , t w o c r i ti c a l PCR c o m p o n e n t s a r e l e ft t o t h e r e s e a r c h e r . T h e

    f i r s t i s t h e n u c l e i c a c i d t e mp l a t e , w h i c h s h o u l d b e o f s u f f i c i e n t q u a l i t y a n d

    c o n t a i n n o i n h i b i t o r s o f

    Taq

    D N A p o l y m e r a s e ( a l t h o u g h w h e n i t c o m e s t o

    t e m p l a t e p u r i t y, P C R is m o r e p e r m i s s iv e t h a n m a n y o t h e r m o l e c u l a r b i o l o g y

    t e c h n i q u e s ) . T h e s e c o n d i s t h e s e l e c t i o n o f t h e o l i g o n u c l e o t i d e p r i me r s . T h i s

    p rocess i s o f t en cr i t i ca l fo r the overa l l success o f a PCR exper iment , fo r wi th -

    o u t a f u n c t i o n a l p r i me r s e t, t h e r e w i l l b e n o PCR p r o d u c t . A l t h o u g h t h e

    s e l e c t i o n o f a s in g l e p r i me r s e t ma y b e t r iv i a l, t h e c o n s t r u c t i o n o f p r i me r s e ts

    f o r a p p l i c a t i o n s s u c h a s mu l t i p l e x o r n e s t e d PCR b e c o me s mo r e c h a l l e n g i n g .

    T h e ma n u a l s e l e c t i o n o f o p t i m a l PCR o l i g o n u c l e o t i d e p r i me r s e ts c a n b e

    q u i t e t e d i o u s a n d t h u s l e n d s i t se l f v e r y n a t u r a l l y t o c o mp u t e r a n a l y s is . T h e

    p r i m a r y f a c to r s t h a t a ff e c t t h e f u n c t i o n o f t h e o l i g o n u c l e o t i d e s - - t h e i r me l t -

    i n g t e m p e r a t u r e s a s w e l l a s p o s s i b l e h o m o l o g y a m o n g p r i m e r s - - a r e w e l l -

    d e f i n e d a n d s t r a i g h t f o r w a r d t a s k s t h a t a r e e a s i ly e n c o d e d i n c o m p u t e r s o f t -

    w a r e. O n c e t h e c o m p u t e r h a s p r o v i d e d a sm a l l n u m b e r o f c a n d i d a t e p r i m e r

    se t s , t he t ask o f se lec t ion can be (and s t i l l i s ) per fo rmed manual ly . In th i s

    a p p r o a c h , t h e r e s e a r c h e r i s t a k i n g a d v a n t a g e o f t h e r a w s p e e d o f c o m p u t e r

    c a l c u l a t io n s , t r y i n g a ll p o s s i b l e p e r m u t a t i o n s o f a p r i me r ' s p l a c e me n t , l e n g t h ,

    a n d r e l a t i o n t o t h e o t h e r p r i me r s t h a t me e t c o n d i t i o n s s p e c i f i e d b y t h e u s e r .

    F r o m t h e t h o u s a n d s o f c o m b i n a t i o n s t e st e d b y t h e c o m p u t e r , a so f tw a r e

    p r o g r a m c a n p r e s e n t j u st t h o s e t h a t a r e s u i ta b l e f o r t h e n e e d s o f t h e e x p e r i -

    me n t . T h u s , t h e o v e r a l l q u a l i t y ( as d e f i n e d b y t h e u s e r i n p r o g r a m p a r a m-

    e t e r s ) o f t h e p r i me r s s e l e c t e d i s a l mo s t g u a r a n t e e d t o b e b e t t e r t h a n t h e

    h a n d f u l c h o s e n a n d h a n d - t e s t e d b y th e r e s e a rc h w i t h o u t c o m p u t e r a ss is -

    t ance .

    A s w i t h a n y t o o l , u n d e r s t a n d i n g i ts f u n c t i o n w i l l m a k e t h e e n d p r o d u c t

    m o r e u s ef u l. A w i d e r a n g e o f p r o g r a m s h a v e b e e n w r i t t e n t o p e r f o r m p r i m e r

    s e l e c t i o n , v a r y i n g s i g n i f i c a n t l y i n s e l e c t i o n c r i t e r i a , c o mp r e h e n s i v e n e s s , i n -

    t e rac t ive des ign , and user - f r i end l ine ss . (1-1~ There a re a l so co m me rc i a l ly

    a v a i l a b l e s p e c i a l t y p r i me r d e s i g n s o f t w a r e p r o g r a ms t h a t o f f e r e n h a n c e d u s e r

    in ter faces , add i t iona l fea tu res , a nd up dat ed se lec t ion cr i t e r ia , (1'2 ) as wel l as

    p r i me r d e s i g n o p t i o n s t h a t h a v e b e e n a d d e d t o l a r g e r , mo r e g e n e r a l s o f t w a r e

    packages .

    A l t h o u g h m o s t p e o p l e w o u l d a g r e e t h a t a p p l i c a t i o n o f a n a l y t i c c o m p u t e r

    s o f t w a r e t o a w e l l - d e f i n e d p r o b l e m i s a s ma r t t h i n g t o d o , n o t a l l r e s e a r c h e r s

    a r e c o n v i n c e d t h a t PCR p r i me r s e l e c t i o n i s a n o n t r i v i a l t a s k, o r t h a t t h e

    s e l e c t i o n r u l e s t h a t ma k e a p r i me r a mp l i f y e f f i c i e n t l y a r e e v e n w e l l d e f i n e d .

    E v e n t h o u g h ma n y o f t h e r u l e s d i s c u s s e d h a v e b e e n f i n e - t u n e d b y c o l l e c t i v e

    e m p i r i c a l w is d o m , m o s t a re b a se d o n f i rm t h e o r e ti c a l g r o u n d , i f n o t c o m m o n

    s e n se . T h e p u r p o s e o f t h i s c h a p t e r i s t o e x p l a i n b a s i c r u l e s o f o l i g o n u c l e o t i d e

    p r i m e r d e s i g n . W i t h t h i s u n d e r s t a n d i n g o f p r i me r s e l e c t i o n c r it e r ia , t h e i n -

    f o r m a t i o n d e d u c e d b y p r i m e r d e s i g n s o f t w a r e c a n b e r a t i o n a l l y i n t e r p r e t e d

    a n d m a n i p u l a t e d t o fi t y o u r e x p e r i m e n t a l n e e d s .

    P R METERS USED IN B SIC PCR PRIME R DESIGN

    Pr i me r d e s i g n i s a i me d a t o b t a i n i n g a b a l a n c e b e t w e e n t w o g o a l s : s p e c i f i c i t y

    a n d e f f i c i e n c y o f a mp l i f i c a t i o n .

    pecificity

    s d e f i n e d a s t h e f r e q u e n c y w i t h

    w h i c h a mi s p r i mi n g e v e n t o c c u r s . P r i me r s w i t h me d i o c r e t o p o o r s p e c i f i c i t y

    t e n d t o p r o d u c e P C R p r o d u c t s w i t h e x t ra u n r e l a t e d a n d u n d e s i r a b l e a m p l i -

    3 0

    P R

    Me t h o d s a n d A p p l i c a t i o n s

    3:$30-S379 by Cold Spring Harbor Laboratory ISSN 1054-9805/93 $1.0

    Cold Spring Harbor Laboratory Presson March 31, 2010 - Published bygenome.cshlp.orgDownloaded from

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/
  • 8/10/2019 General Concepts of Primer Design

    3/9

    cons as visualized on an ethidium bromide-stained agarose gel. fficiency is

    defined as how close a primer pair is able to amplify a product to the theo-

    retical optimum of a twofold increase of product for each PCR cycle.

    Given a target DNA sequence, analysis software attempts to strike a balance

    between these two goals by using preselected default values for each of the

    primer design variables. These variables, listed below, have predictable effects

    on the specificity and efficiency of amplification. Depending on the experi-

    menta l requirements, these prime r search paramete rs can be adjusted to

    override the default values that are mean t to be effective for only general PCR

    applications. For example, in medical diagnostic PCR applications, search

    parameters and reaction conditions would be adjusted to increase specificity

    at the cost of some efficiency, because avoiding false-positive results is a

    higher priority in this case than producing large quantities of amplified prod-

    uct. By carefully considering the following parameters when using primer

    design software, more effective selection of primers will be achieved.

    Primer ength

    The specificity is generally controlled by the length of the primer and the

    annealing temperature of the PCR reaction. Oligonucleotides between 18 and

    24 bases tend to be very sequence specific if the a nnea ling te mperat ure of the

    PCR reaction is set within a few degrees of the primer Trn (defined as the

    dissociation temperature of the primer/template duplex). These types of oli-

    gonucleot ides work very well for standard PCR of defined targets that do n ot

    have any sequence variation. The longer the primer, the smaller the fraction

    of primed templates there will be in the annealing step of the amplification.

    In exponential amplification, even a small inefficiency at each annealing step

    will propagate to produce a significant decrease in amplified product. In

    summary , to optimiz e PCR, the utilizatio n of primers of a min ima l l engt h

    that ensures melting temperatures of 54~ or higher will provide the best

    chance for maintenance of specificity and efficiency.

    Short oligonucleotides of 15 bases or less are useful only for a limited

    am ou nt of PCR protocols such as the use of arbitrary or ran dom short p rimers

    in mappi ng simple genomes and in the subtraction library protocol described

    by Willi ams and Liang and Pardee. (11'12) Dep endin g on t he geno me size of

    the organism, there is a mi ni mu m pr imer length . In general, it is best to build

    in a marg in of specificity for safety. For each a dditiona l nucleoti de, a primer

    becomes four times more specific; thus, the minimum primer length used in

    most applications is 18 nucleotides. Clearly, if purified cDNA is being used, or

    genomic DNA is not present, the length could be reduced because the risk of

    nonspecific primer/template interactions will be greatly reduced. Yet, it is

    generally a good idea to design primers such that the synthesized oligonu-

    cleotides can be used in a variety of experiment al c onditi ons (18- to 24-mers),

    and the small marginal cost of oligonucleotides with four to five additional

    bases makes it worth the expense.

    The upper limit on primer length is somewhat less critical and has more to

    do with reaction efficiency. For entropic reasons, the shorter the primer, the

    more quickly it will anneal to target DNA and form a stable double-stranded

    template to which DNA polymerase can bind. In general, oligonucleotide

    primers 28--35 bases long are necessary when amplifying sequences where a

    degree of heterogeneit y is expected. This has proved to be generally useful i n

    two types of applications: (1) In amplifying sequences encoding closely re-

    lated molecules, such as isoforms of a protein or family of proteins within a

    species, as well as in the cloning of the homologous gene from a different

    species, O3) and (2) in ampl ifying the sequences of viruses such as HIV-1,

    where the possibility of having a set of primers with perfect complementary

    PCR M e t h o d s a n d A p p l i c a t io n s 3 1

    Cold Spring Harbor Laboratory Presson March 31, 2010 - Published bygenome.cshlp.orgDownloaded from

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/
  • 8/10/2019 General Concepts of Primer Design

    4/9

    to a l l the t em pla tes ( in th is exa mp le , a l l HIV-1 i so la te s) i s not exp ec ted . (14,1s)

    I n bo th c a se s , one f i rs t u se s p r im e r de s ign so f tw a r e t o c om p a r e a l l a va i l a b l e

    r e l a t ed s e q u e n c e s a n d , i n s u c h a m a n n e r , d e t e r m i n e s t h e D N A r e g i o n w i t h t h e

    l e a s t a m oun t o f s e que nc e va r i a b i l i t y . T he se r e g ions s e r ve a s s t a r t i ng p l a c e s f o r

    s e l e c t in g t h e p r i m e rs . I n s o m e i n s t a n c e s , t h e r e s e a r c h e r a lr e a d y k n o w s t h e

    f u n c t i o n o f t h e e n c o d e d p r o t e i n a n d t h e d o m a i n s e s s en t i al t o p e r f o r m i n g t h a t

    f u n c t i o n . I n t h e s e ca s es , c o m p a r i n g a v a i la b l e s e q u e n c e s i n t h e r e g i o n s c r i ti c a l

    f o r t h e f u n c t i o n a l a c t i vi t y of t h e r e l a t e d p r o t e i n s w i t h i n t h e f a m i l y w i ll a i d i n

    d e f i n i n g t h e s e q u e n c e s f o r d e s i g n i n g n e w p r i m e r s . E x a m p l e s i n c l u d e t h e P C R

    c l o n i n g o f a n e n z y m e o r r e c e p t o r w i t h a s i m i l a r s t r u c t u r e a n d f u n c t i o n f r o m

    a r e l a t e d s p e c i e s u s i n g t h e a v a i l a b l e s t r u c t u r a l d a t a . W i t h t h e a m i n o a c i d

    s e q u e n c e i n f o r m a t i o n a n d t h e h e l p o f c o d o n u s a g e t a b l e s f or d i f fe r e n t s p e -

    c ie s, b o t h p r i m e r s , o r a t l e as t o n e o f t h e m , c o u l d b e d e s i g n e d a r o u n d t h e

    c o n s e r v e d s e q u e n c e . W h e n s e l e c t i n g p r i m e r s t o a m p l i f y D N A f r o m a d if -

    f e r e n t s p e c i e s , s e q u e n c e s a t t h e 5 ' - o r 3 ' - u n t r a n s l a t e d r e g i o n s o f t h e m R N A

    s h o u l d b e a v o i d e d b e c a u s e t h e y m a y n o t n e c e s s a r i ly h a v e h i g h d e g r e e o f

    h o m o l o g y .

    T he p l a c e m e n t o f t he 3 ' e nd o f t he p r im e r i s c r i t i c a l f o r a suc c e s s f u l P C R

    r e a c t ion . I f a c onse r ve d a m i no a c id c a n be de f ine d , t h e f i r s t 2 ba se s o f t he

    c o d o n , o r 3 b a s es i n t h e c a s e o f a n a m i n o a c i d e n c o d e d b y a s in g l e c o d o n

    ( m e t h i o n i n e a n d t r y p t o p h a n ) , c a n s e rv e a s t h e 3 ' e n d . P e r f ec t b a s e - p a i r i n g

    b e t w e e n t h e 3 ' e n d o f t h e p r i m e r a n d t h e t e m p l a t e i s o p t i m a l f o r o b t a i n i n g

    g o o d r e su l ts ; m i n i m a l m i s m a t c h s h o u l d e x i st w i t h i n t h e l a st 5 t o 6 n u c l e -

    o t i d e s at t h e 3 ' e n d o f t h e p r i m e r. A t t e m p t s t o c o m p e n s a t e f o r t h e m i s m a t c h e s

    b e t w e e n t h e 3 ' e n d o f t h e p r i m e r a n d t h e t e m p l a t e b y l o w e ri n g t h e a n n e a l i n g

    t e m p e r a t u r e o f t h e r e a c t i o n s d o n o t i m p r o v e t h e r e s u lt s , a n d f a i l u re o f t h e

    r e a c t i o n is a l m o s t g u a r a n t e e d . W i t h t h i s c o n c e p t i n m i n d , o n e s h o u l d e v a l -

    u a t e a l l p o s s i b l e s t r a t e g i e s i n t h e d e s i g n o f p r i m e r s w h e n t h e n u c l e o t i d e

    s e q u e n c e o f t h e t e m p l a t e t o b e a m p l i f i e d i s n o t k n o w n w i t h c e r t a i n ty . C a s e s

    l i k e t h e o n e d e s c r i b e d a b o v e a r e r o u t i n e l y e n c o u n t e r e d w h e n t h e r e s e a r c h e r

    w i s h e s t o a m p l i f y a cD N A u s i n g i n f o r m a t i o n f r o m a p ar t i al p r o t e i n s e-

    q u e n c e . (13) S e v er a l a p p r o a c h e s t h a t i n c l u d e t h e u s e o f d e g e n e r a t e o l i g o n u c l e -

    o t i d e p r i m e r s c o v e r i n g a ll po s s i b le c o m b i n a t i o n s f o r t h e b a s e s a t t h e 3 ' e n d o f

    the p r im e r i n t he poo l , a s w e l l a s t he u se o f i nos ine t o r e p l a c e t he ba se

    c o r r e s p o n d i n g t o t h e t h i r d o r v a r i a b l e p o s i t i o n o f c e r t a i n a m i n o a c i d c o n -

    d o n s , h a v e b e e n s u c c es s f u l f o r c D N A c l o n i n g a n d f o r d e t e c t i o n o f s e q u e n c e s

    w i th pos s ib l e va r i a t i ons . (16) M u c h o f t h i s t ype o f P C R s tudy i s e m p i r i c a l , a nd

    d i f f e r e n t p r i m e r s m a y h a v e t o b e s y n t h e s i z e d t o o b t a i n t h e d e s i r e d m a t c h .

    L o n g e r p r im e r s c o u l d a l s o ar i se w h e n e x t ra s e q u e n c e i n f o r m a t i o n , s u c h a s

    T 7 R NA po ly m e r a se - b ind i ng s i te , r e s t r i c t i on s i t e s, o r G C c l a m p , i s a dd e d to

    p r im e r s . (17-19) I n ge ne r a l , t he a dd i t i on o f un r e l a t e d s e qu e nc e s a t t he 5 ' e n d o f

    t h e p r i m e r d o e s n o t a l te r t h e a n n e a l i n g o f t h e s e q u e n c e - s p e c i f i c p o r t i o n o f

    t h e p r i m e r . I n s o m e c a s es , w h e n a s i g n i f i c a n t n u m b e r o f b a s e s t h a t d o n o t

    m a t c h t h e t e m p l a t e s e q u e n c e a r e a d d e d t o t h e p r i m e r , f o u r t o f i v e c y c l e s o f

    a m p l i f i c a t i o n c a n b e p e r f o r m e d a t a l o w e r a n n e a l i n g t e m p e r a t u r e f o l l o w e d b y

    t h e r e s t o f t h e c y c l e s a t t h e a n n e a l i n g t e m p e r a t u r e , c a l c u l a t e d w i t h t h e a s -

    s u m p t i o n t h a t t h e s e q u e n c e a t t h e 5 ' e n d o f t h e p r i m e r i s a l r e a d y i n c o r p o -

    r a t e d i n t o t h e t e m p l a t e . A d d i t i o n a l b a s e s a t t h e 5 ' e n d o f t h e p r i m e r s a r e

    f r e q u e n t l y a d d e d w h e n t h e r e s e a r c h e r n e e d s t o c l o n e t h e P C R p r o d u c t . I n

    t h e s e c a se s, t h e r e s t r i c t io n e n z y m e s i te s of c h o i c e w i ll b e t h e o n e s t h a t d o n o t

    c u t w i t h i n t h e D N A a t s i t e s o t h e r t h a n t h e p r i m e r . T o e n s u r e s u b c l o n i n g o f

    t h e w h o l e a m p l i f i e d f r a g m e n t o f u n k n o w n s e q u e n c e a s a s i n g l e p i e c e, a d d i -

    t i o n o f s i t e s f o r e n z y m e s t h a t r e c o g n i z e 6 b a s e s o r t h e a d d i t i o n o f p a r t i a l l y

    o v e r l a p p i n g r e c o g n i t i o n s it e s f o r d i f f e re n t e n z y m e s i s r e c o m m e n d e d . A n i m -

    p o r t a n t c o n s i d e r a t i o n w h e n a d d i n g r e s t r ic t i o n s i te s t o a p r i m e r i s t h e f a ct t h a t

    m o s t e n z y m e s r e q u i r e t w o o r t h r e e n o n s p e c i f i c e x t r a b a s e s 5 ' t o t h e i r r e c o g -

    32

    P R M etho ds

    and pp l i c a t i o n s

    Cold Spring Harbor Laboratory Presson March 31, 2010 - Published bygenome.cshlp.orgDownloaded from

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/
  • 8/10/2019 General Concepts of Primer Design

    5/9

    nition sequence to cut efficiently, adding to the length of the nontemplate-

    specific porti on of the primer. (2~ Anothe r drawbac k of long pr imer sequences

    is in the calculation of an accurate melting temp eratur e necessary to establish

    the annealing temperature at which the PCR reaction is to be performed. For

    primers shorter than 20 bases, an estimate of Tm can be calculated as Tm = 4

    (G + C) + 2 (A + T), (21) whereas for lon ger pr imers the Tm requ ires the nearest-

    neighbor calculation, which takes into account thermodynamic parameters

    and is employed by most of the available computer programs for the design

    of PCR primers. (22'23)

    The Termi nal Nucleot ide in the PCR Prim er

    Kwok and colleagues have shown that the 3'-terminal position in the primer

    is essential for cont rol ling misp riming. (24) For certain appl icati ons as de-

    scribed above, this chance of mispriming is useful. The other issue concern-

    ing the 3' ends of the PCR primers is the prevention of homologies within a

    primer pair. Care has to be taken that the primers are not complementary to

    each other, particularly at their 3' ends. Complementarity between primers

    leads to the undesirable primer- dimer p hen ome na in which the PCR product

    obtaine d is the result of the a mplification of the primers themselves. This sets

    up a competitive PCR situation between the primer-dimer product and the

    native template and is detrimental to the success of the amplification. In cases

    when multiple primer pairs are added in the same reaction (multiplex PCR),

    it is very important to check for possible complementarity of all the primers

    added in the reaction. Generally, the computer programs do not allow primer

    pairs with 3'-end homologies and, in conjunction with the hot start tech-

    nique, the chances of formation of primer-dimer products are greatly re-

    duced. (25)

    Reasonable GC Content and T.

    PCR primers should maintain a reasonable GC content. Oligonucleotides 20

    bases long with a 50 G + C conte nt gen erally have Tm values in the range of

    56-62~ This provides a sufficient therma l window for efficient annea ling.

    Within a primer pair, the GC content and Tm should be well matched. Poorly

    matched primer pairs can be less efficient and specific because loss of spec-

    ificity arises with a lower Tm and the primer with th e hi gher Tm has a greater

    chance of mispriming under these conditions. If too high a temperature is

    used, the primer of the pair with the lower Tm may not function at all. This

    matching of GC content and Tm is critical when selecting a new pair of

    primers from a list of already synthesized oligonucleo tides with in a sequence

    of interest for a new application. For this reason we advocate the adop tion of

    a standardized criteria for primer selection within a laboratory. By planning

    ahead, it is easier to mix and match selected primers, as they will all have

    similar physical characteristics.

    PCR Product Length and Placement within the Target Sequence

    All of the computer programs provide a place for selecting a range for the

    length of the PCR product. In general, the length of the PCR product has an

    impa ct o n t he efficiency of amplification . (26) The l eng th of a PCR pro duc t for

    a specific application is dependent in part on the template material. Clinical

    specimens pre pared from fixed tissue samples tend to yield DNA that does n ot

    support the amplificatio n of large products. (27) From pure plasmid or h igh-

    molecula r-weight DNA, it is relatively straightforward to obt ain products >3

    kb. For the purpose of detecting a DNA sequence, generally PCR products of

    150-1000 bp are produced. The specifics of the size of the desired products

    PCR Me t h o d s a n d p p l i c a ti o n s 33

    Cold Spring Harbor Laboratory Presson March 31, 2010 - Published bygenome.cshlp.orgDownloaded from

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/
  • 8/10/2019 General Concepts of Primer Design

    6/9

    often depend on the application. If the purpose is to develop a clinical assay

    to detect a specific DNA fragment, a small DNA amplification product of

    120-300 bp may be optimal. The product should be specific and efficient to

    produce while containing enough information for use in a capture probe

    hyb ridi zat ion assay. ~28) Products in this size range can be produc ed usi ng t he

    two-step amplification cycling method, thereby shorte ning the length of the

    amplification procedure. Other PCR approaches have different optimal prod-

    uct lengths. For example, for the purpose of monitoring gene expression by

    quantita tive RNA PCR, the pr oduct must be large enou gh that a competitive

    template can be constructed and both can be easily resolved on a gel. These

    products generally are in the 250- to 750-bp range. Here, the issue is maxi-

    mizing the efficiency of both the reverse transcriptase step and the PCR. In

    terms of placemen t of the PCR primers wi thin a cDNA sequence, two specific

    points should be kept in mind. The first is to try to keep the primers and

    product within the coding region of the mRNA. This is the unique sequence

    that is responsible for the production of the protein, unlike the 3 - nonc odin g

    region that will share homologies with many different mRNAs. The second

    point is to try to place the primers on different exons. In so doing, the

    RNA-specific PCR product will be different in size from one arising from

    con tami nati ng DNA. If the purpose of the PCR is to clone a specific region of

    a gene or cDNA, then the size of the PCR product is preselected by the ap-

    plication. Here, the computer program can provide information about se-

    lected primer sets that flank the desired area. In some instances, when the

    complete sequence is required for further experiments and the PCR product

    to be obtained is above the ideal length, or the template is not of the best

    quality, overlapping PCR fragments can be amplified by designing primers

    flanking unique restriction sites in the template sequence. The production of

    a fragment containing the entire sequence will then be obtained by cutting

    and pasting the amplified pieces. When approaching this kind of application

    it is important beforehand to think about the ideal method for cloning the

    PCR products and how the clone will be used in the future. For example, if

    one wishes to utilize restriction endonuclease sites at the end of primers as

    described above, it is important to be sure that these enzymes do not cut

    within the amplified region. Software programs can provide this informa-

    tion. (2)

    A Simple Rule for Noncomputer based Selection

    Occasionally, the PCR primers must be selected from very defined regions at

    the 3 and 5 ends of a specific sequence. A simple met hod of prim er design

    is to choose regions that are deficient in a single nucleotide. By selecting

    primers in this way, the chance of extensive primer-primer homology is re-

    duced. Here, again, care must be taken to have a balanced primer pair in

    terms of length and base composition so that the Tm of the p rimers are well

    matched.

    Nested PCR

    In certain situations, there are unresolvable problems with the quantity and

    quality of the template to be amplified. Perhaps the actual quantity of target

    nucleic acid is very dilute relative the rest of the material present, or there is

    a limit on the purity of the starting material. In certain clinical applications,

    both of these prob lems occur simultan eously. (29) In these circumstances, one

    approa ch to synthe sizing a product reliably is to develop a nested PCR assay.

    Generally, the sample is first amplified for 20-30 cycles using the outer

    primer set; a very small aliquot of this reaction is then amplified a second

    time for 15-25 cycles using the inner primer set. The in ner set of PCR primers

    3 4 PCR M e t h o d s a n d A p p l i c a t i o n s

    Cold Spring Harbor Laboratory Presson March 31, 2010 - Published bygenome.cshlp.orgDownloaded from

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/
  • 8/10/2019 General Concepts of Primer Design

    7/9

    is positioned within the DNA so that the complementary sequence for the

    inner primer pair is present in the PCR product obtained in the first ampli-

    fication reaction and available to form a template/prime r complex. This has

    been shown to be more successful than diluting and reamplifying with the

    same primers. (29) The positi on of the inn er pr imer set is often t he det ermi n-

    ing factor in the overall structure of the nested approach and will be a factor

    in determining the final product size. For example, in the nested PCR detec-

    tion system, adapted from t he or iginal assay of Larder et al. (3~ for the ami no

    acid 215 mu tat ion in the H IV-1 reverse transcrip tase involved i n azi dothy mi-

    dine resistance, the 3 end of one of the inner primers must matc h the mu-

    tation. (3~ A contro l inn er p rimer set, ru n in parallel, detects t he wi ld-type

    sequence. In general, the product of the inner set is small, 120-270 bp. When

    selecting nested primer sets, special care must be given to eliminate potential

    primer dimers and matches between members of the inner and outer primer

    sets. Some of the software programs for primer design have the selection of

    nested primers as an option.

    U TIL IZ IN G P R IME R D E SIGN S OFTW R E

    It is important to stress that the primer selection parameters described here

    are general and are not necessarily implemented in the same manner among

    the different primer selection software. Thus, two programs using slightly

    different selection algorithms will rarely, if ever, select the exact same

    primers, ev en if the basic parameters are equi valent ly set. These discrepancies

    are attributable to differences in the calculation methods and the order in

    which the selection criteria are applied. For example, calculating the temper-

    ature of primer/template annealing can be performed in one of several

    ways. The origi nal formula of Suggs and co-workers, ~21~ Tm =2 ~ +

    4~215 G + C), is popular for its simplicity and rough ly accurate p redi ctio n of

    oligonucleotide Tm. More recentl y, Rhylick et al. ~26~ im pl em en te d Tm predic-

    tion based on neares t-ne ighbo r t her mod yna mi c parameter s, ~22 23~ whi ch ap-

    pear to be slightly more accurate. Other programs base primer annealing

    temperatures on formulas originally developed for DNA fragments ~ 100 nu-

    cleotides long. ~31~ Thus, specifying a desired p rime r ann eal ing tem per atu re to

    be 60~ will produce different primers from th e exact same target sequence.

    Further work by Rychlik and co-workers ~26~ prod uced an empiri cally derived

    equation for the optimal an nealing tempera ture of a primer pair that depends

    on near est n eighb or calcul ation s. Wu et al. ~32~ have also empi ric ally derived

    an equation, based on primer length and GC content, to determine optimal

    oligonucleotide annea ling temperature. These examples illustrate how some-

    thing as basic as primer Tm calculation can vary among the programs.

    Second, different programs attack the task of primer selection very differ-

    ently, applying selection criteria to reduce the number of possible primers

    that the program must consider while not eliminating potentially good can-

    didates. For example, t he progr am by Lowe and colleagues (2) only considers

    primers tha t have a 3 -end CC, GG, CG, or GC dinucleotide, whi ch may

    increase priming efficiency while allowing the user to specify a range of

    prim er lengths. In contrast, the progr am by Rychlik and Rhoads (1~ does n ot

    impose this requirement, but instead checks primers of a single length spec-

    ified by the user. Both of these approaches eliminate potentially good primers

    but will, in most cases, produce an adequate num ber of primers that meet all

    of the conditions considered to be important by the investigators.

    The researcher using the computer software should keep in mind that the

    broader the selection parameters are made, the more cases the comput er must

    consider, significantly affecting the time required for primer searches. This

    is one reason that search parameters should be kept as narrow and specific

    PCR Me t h o d s a n d A p p l i c a ti o n s 3 5

    Cold Spring Harbor Laboratory Presson March 31, 2010 - Published bygenome.cshlp.orgDownloaded from

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/
  • 8/10/2019 General Concepts of Primer Design

    8/9

    M an u a l Supp l em en t l l

    a s p o s s i b l e w h e n c l e a r l y d i c t a t e d b y e x p e r i m e n t a l d e s i g n . M o r e r e s t r i c t iv e

    s e a r c h p a r a m e t e r s u s u a l l y r e s u lt i n fa s t e r s e a r c h e s a n d p r o d u c e p r i m e r s o f

    g r e a t e r q u a l i t y . I n p r o g r a m s t h a t a t t e m p t m o r e d i f f i c u l t s e l e c t i o n t a s k s, s u c h

    a s c h o o s i n g p r i m e r s t h a t a r e h i g h l y c o n s e r v e d a c r o s s m a n y s p e c ie s , o r s e c t i o n

    o f d e g e n e r a t e p r i m e r s f r o m p r o t e i n s e q u e n c e s , t h e b a s i c c ri t e r i a f o r p r i m e r

    s e c t i o n o f t e n m u s t b e r e l a x e d b e f o r e t h e s o f t w a r e f i n d s a n y s u i t a b l e p r i m e r

    p a i r s .

    U s i n g o n e o f t h e a v a i l a b l e s o f t w a r e p r o g r a m s i n c o n j u n c t i o n w i t h t h e

    i n f o r m a t i o n p r e s e n t e d h e r e s h o u l d r e s u l t i n t h e s e l e c t i o n o f a g o o d p r i m e r

    s e t; t h e n e x t t a s k is t h e p r e p a r a t i o n o f a g o o d n u c l e i c a c i d t e m p l a t e .

    REFERENCES

    1. Rychl ik , W. and R .E. Rhoades. 1989. A comp uter pro gram for choosing op t imal o l igonucle-

    ot ides for f i l te r hybr idiza t ion, sequencing an d in vi t ro ampl i f ic a t ion of DNA.

    Nucleic Acids

    Res

    17: 8543-8551.

    2. Lowe, T., J. Shareifkin, S.Q. Yang, and C.W. Die ffenba ch. 1990. A com put er p rog ram for

    se lec t ion of o l igonucleot ide pr imers for polymerase chain react ion.

    Nucleic Acids Res

    8: 1757-1761.

    3. Pallansch , L., H. Beswick, J. Talian, and P. Zelenka. 1990. Use of an RNA fold ing alg ori thm t o

    choose regions for ampl i f ica t ion by the polymerase chain react ion. Anal Biochem 185 57 -

    62.

    4. Lucas, K., M. Busch, S. Mossinger, and J.A. Th om pso n. 1991. An imp rove d mi cro com pu ter

    program for f inding gene- or gene family-speci f ic o l igonucleo t ides sui table as pr imers for

    polymerase c hain react ions or as probes .

    CABIOS

    7: 525-529.

    5. O'Hara, P.J. and D. Venezia. 1991. PRIMGEN, a tool for designi ng primer s fro m mu ltip le

    a l ignments . CABIOS 7: 533-534.

    6. Tamu ra, T. , S.R. Holbroo k, and S -.H. Kim. 1991. A Mac intos h com put er pr ogra m fo r design-

    ing DNA sequences that code for speci f ic pept ides and prote ins .

    B ioTechn iques

    10: 782-784.

    7. Griffais, R., P.M. Andre, and M. Thi bon . 1991. K-tuple frequ ency in the h um an gen om e an d

    polymerase chain react ion.

    Nucleic Acids Res

    18: 1757-1761.

    8. Makarova , K.S. , A.V. Mazin, Y.I. Wolf, a nd V.V. Soloviev. 1992. DIROM: An exp erim ent al

    des ign in teract ive sys tem for d i rec ted mutagenesis and nucle ic ac id engineer ing.

    CABIOS

    8: 425-431.

    9. M ontpe tit , M .L. , S. Cassol, T. Salas, and M.V. O'Sha ughn essy. 1992. OLIGOSCAN: A com-

    puter program to ass is t in the des ign of PCR pr imers homologous to mul t ip le DNA se-

    quences .

    J Virol Methods

    36: 119-128.

    Osborne, B . I. 1992. HyperPCR: A Macintosh Hypercard program for deter mina t ion of opt i -

    mal PCR anneal ing temperature .

    CABIOS

    8 83.

    Williams, J.G.K. 1990. DNA pol ym orp hism s amplifie d by arbitrary primers are usefu l as

    genet ic markers . Nucleic Acids Res 18 6531-6535.

    Liang, P. and A. Pardee. 1992. Differential display of eukaryotic mRNAs by PCR. Science

    257:

    967-971.

    Dveksler, G.S. , C.W. Dief fenbach , C.B. Cardellichio, K. McCuaig, M.N. Pensiero, G.-S. Jiang,

    N. Beauchemin, and K.V. Holmes. 1993. Severa l membe rs of the m ouse carc in oem bryo nic

    ant igen-re la ted glycoprote in family are funct ional receptors for the co ronaviru s mouse hep-

    atitis virus-A59. J Virol 7 : 1-8.

    Ou, C.-Y., S. Kwok, S.W. Mitch ell, D.H. M ack, J.J. Snin sky, J.W. Krebs, P. Feo rino , D. W ar field,

    and G. Schochetman . 1988. DNA ampl i f ica t ion for d i rec t detec t ion of HIV-1 in DNA of

    per iphera l b lood mononuclear ce l l s .

    Science

    280: 295-297.

    15. Mack, D.H. and J.J. Sninsky. 1988. A sensitive met ho d for the id ent ific atio n of uncha racte r-

    ized vi ruses re la ted to kno wn vi rus groups: Hepadnavirus mo del sys tem.

    Proc Natl Acad Sci

    85:

    6977-6981.

    Lin, P .K .T. and D.M. Brown. 1992. Synthes is of o l ig odeox yr ibonuc leot ides conta i ning de-

    genera te bases and thei r use as pr imers in the poly merase chain react ion.

    Nucleic Acids Res

    19 5149-5152.

    Kain, K.C. , P.A. Orlandi, and D.E. Lanar. 1991. Universal pro mo ter for gene expre ssion with -

    out cloning: Expression-PCR.

    BioTechniques

    10: 366-374.

    Loh, E.Y., J.F. Elliot, S. Cwirla, L.L. Lanier, an d M.M. Davis. 1989. Polym erase c hai n reac tion

    with single-sided specificity; Analysis of T-cell receptor ga mm a c hain.

    Science

    2 4 3 : 2 1 7 - 2 2 0 .

    Sheffield, V.C., D.R. Cox, L.S. Lerman, and R.M. Myers. 1989. Atta chm ent of a 40-base p air

    G + C r ich sequence (GC-clamp) to ge nom ic DNA fragments by po lymerase c hain react ion

    resul ts in improve d detect ion of s ingle base changes . Proc Natl Acad Sci 86: 232-236.

    10.

    11.

    12.

    13.

    14.

    16.

    17.

    18.

    19.

    36 PCR Me t h o d s a n d A p p l i c at i o n s

    Cold Spring Harbor Laboratory Presson March 31, 2010 - Published bygenome.cshlp.orgDownloaded from

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/
  • 8/10/2019 General Concepts of Primer Design

    9/9

    l IIIIM an u a l Supp lem en

    20. New England Biolabs catalog 1993/1994, pp. 180-181.

    21. Suggs, S.V., T. Hirose, E.H. Myake, M.J. Kawashima, K.I . Joh nson , and R.B. Wallace. 1981.

    ICN-UCLA sym posiu m for develo pme ntal bi ology using purif ied gene. (ed. D.D. Brown), Vol.

    23, pp. 683-693. Academic Press, New York.

    22. Breslauer, K.J., F. Ronald, H . Blocker, and L.A. Marky . 1986. Pred icting DN A dup lex st abi lity

    from the base sequence. Proc. Natl. Acad. Sci. 83: 3746-3750.

    23. Freier, S.M., R. Kierzek, J.A. Jaeger, N. Sugimo to, M .H. Caruth ers, T. Neilso n, an d D.H. Tur ner.

    1986. Impr oved free-energy parame ters for predict ion s of RNA duplex stabil i ty. Proc. Natl.

    Acad. Sci.

    83:

    9 3 7 3 9 3 7 7 .

    24. Kwok, S., D.E. Kellog, N. McKin ney, D. Spasic, L. Goda, C. Levenson , an d J.J. Sninsky . 1990.

    Ef fec t s o f p r imer - templa te mismatches on the po lymerase cha in reac t ion : Human immun-

    odeficien cy virus 1 mode l studies. Nucleic Acids Res. 18: 999-1005.

    25. C hou, Q., M. Russell, D.E. Birch, J . Raymond, and W. Bloch. 1992. Preve ntion of pre-PCR

    mis-pr iming and pr imer d imer iza t ion improves low-copy number ampl i f i ca t ions . Nucleic

    Acids Res. 20: 1 7 1 7 1 7 2 3 .

    26. Rychlik, W., W.J. Spencer, and R.E. Rhoads. 1990. Op timi zatio n of ann eali ng temp eratur e for

    DNA amplif icat ion in vi tro. Nucleic Acids Res.

    18: 6409-6412.

    27. Greet , C.E., J .K. Lund, and M.M. Man os. 1991. PCR amp lif icat io n from p arafin -emb edde d

    tissues: Recommendations on f ixatives for long term storage and prospective studies. PCR

    Methods Appl ic . 1 46-50.

    28. Wh etsell , A., J. Drew, G. Milma n, R. Hoff, E. Drago n, K. Alder, J. Hui, P. Otto, P. Gupta, H.

    Farzadegan , S . Wol insky . 1992 . Com par i son of th ree nonrad io i so top ic po lymerase cha in

    reac t ion-based methods fo r de tec tion of hum an imm unode f ic iency v i rus

    type 1. J. Clin.

    Microbiol.

    30: 845-853.

    29. Albert , J . and E.M. Fenyo. 1990. Simple, sensi t ive and specif ic detec t ion o f hum an im mu n-

    odef ic iency vi rus type 1 in c l in ica l spec imens by po lymerase cha in reac t ions wi th nes ted

    primers. J. Clin. Microbiol. 28: 1560-1564.

    30. Larder, B.A., P. Kellam, and S.D. Kemp. 1991. Zido vudine resistance pred icted by direct

    de tec t ion of muta t ions in DNA from HIV- infec ted lymphocytes . A I DS 5: 137-144.

    31. McC onau ghy, B.L., C.L. Laird, and B.J. McCarthy. 1969. Nucleic acid rea ssociat ion in form a-

    mide. Biochemistry 8: 3289-3295.

    32. Wu, D.Y., W. Ugozzoli , B.K. Pal, J . Qian, an d R.B. Wallace. 1991. The effect of tempe rature

    and o l igonuc leo t ide p r imer l eng th on spec i fic i ty and e f f ic iency of ampl i f i ca t ion by th e

    polymerase cha in reac t ion . DN A Cel l B iol. 10: 233-238.

    PCR Me t h o d s a n d A p p l i c a t io n s 7

    Cold Spring Harbor Laboratory Presson March 31, 2010 - Published bygenome.cshlp.orgDownloaded from

    http://www.cshlpress.com/http://www.cshlpress.com/http://genome.cshlp.org/http://genome.cshlp.org/http://www.cshlpress.com/http://genome.cshlp.org/