ge component material

Upload: ahmed-adel-ibrahim

Post on 14-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Ge Component Material

    1/7

    Accessory Drive

    The accessory drive section is attached to the outside bottom or side of the engine and

    is where all the mechanically-driven components are mounted to the engine. This

    section takes mechanical energy from the engine to power the engine and aircraftaccessories mounted to the accessory gearbox.

    Afterburner

    The afterburner is an assembly aft of the turbine section that supplies atomized fuel into

    the exhaust airflow to increase exhaust temperature and pressure. Afterburners use

    large quantities of fuel, and thus are used for short periods of time only. Afterburners

    are used on turbojet engines to increase thrust for short periods of time during takeoff,

    climb and supersonic flight. Very few commercial aircraft use afterburners. Afterburners

    are usually on military aircraft only.Augmentor

    Augmentors are afterburners on low-bypass turbofan engines. Core airflow and bypass

    (fan) airflow are mixed aft of the turbines, in the exhaust. Fuel nozzles supply atomized

    fuel into the airflow and an igniter ignites the fuel/air mixture. Augmentors are used on

    low-bypass turbofan engines to increase thrust for short periods during takeoff, climb,

    and combat flight.

    Augmentor Exhaust Nozzles

    Augmentor exhaust nozzles make up the aft end of augmented low-bypass turbofanengines. It has a flame holder, fuel nozzles, an igniter, and a variable exhaust nozzle.

    The fuel nozzles supply atomized fuel into the exhaust airflow and the igniter makes the

    fuel/air mixture burn. Augmentor exhaust nozzles are used on low-bypass turbofan

    engines to increase thrust.

    Combustor

    In the combustor, compressed air generated by the compressor is mixed with fuel and

    then ignited. Nozzles spray fuel into the stream of air and the mixture of air and fuel is

    ignited providing an extremely hot and powerful airflow. The fuel burns with the oxygen

    in the compressed air, producing hot expanding gases. The inside of the combustor is

    often made of ceramic materials to provide a heat-resistant chamber. Temperatures in

    the combustor can reach 2700F.

    Compressor

  • 7/27/2019 Ge Component Material

    2/7

    The compressor is the first component in the core of the engine. It is made up of a

    series of fans with many blades and is attached to the shaft. The compressor squeezes

    air that enters it into progressively smaller areas, resulting in an increase in the air

    pressure. The result is an increase in the energy potential of the air. The compressed

    air is then forced into the combustion chamber.Convergent-Divergent Exhaust Nozzle

    A variable convergent-divergent (C-D) exhaust nozzle (Iris) is made up of flaps that

    interlock. The C-D exhaust nozzle is automatically controlled to improve subsonic and

    supersonic flight of jet aircraft.

    As the exhaust nozzle converges, the exhaust gases are subsonic. As the exhaust

    nozzle diverges the gases become supersonic. Supersonic flight requires a C-D

    exhaust nozzle. A variable C-D exhaust nozzle is used on modern supersonic aircraft. A

    variable C-D exhaust nozzle is more efficient than a fixed C-D exhaust nozzle.Core

    The core engine module is aft of the fan module and forward of the turbine stator case

    and is made up of three components: compressor rotor and stator, combustion liner and

    Stage 1 HPT nozzle. The core is responsible for supplying approximately 20 percent of

    the total engine thrust and the torque for operation of all accessories.

    Exhaust

    The exhaust section is located behind the turbine section and at the rear of the engine.

    It is made up of either a fixed or variable nozzle assembly, depending on the aircraftapplication. The exhaust section directs the exhaust gases aft and further accelerates

    the exhaust gases to produce forward thrust. Variable nozzles are usually found on

    military engines while fixed are typically associated with commercial turbofans.

    Fan

    The fan is the first component on the engine. The spinning fan sucks in large quantities

    of air. Most blades of the fan are made of titanium. It then speeds this air up and splits it

    into two parts. One part continues through the "core" or center of the engine, where it is

    acted upon by the other engine components. The fan module typically suppliesapproximately 80 percent of the engine thrust.

    The second part "bypasses" the core of the engine. It goes through a duct that

    surrounds the core to the back of the engine where it produces much of the force that

    propels the airplane forward. This cooler air helps to quiet the engine as well as adding

    thrust to the engine.

  • 7/27/2019 Ge Component Material

    3/7

    Gas Turbine

    Another term for an aircraft engine.

    High-Pressure Turbine (HPT)

    The HPT module is aft of the compressor rear frame and forward of the LPT stator

    case. The HPT module is made up of the HPT rotor and HPT stator and is removesenergy from the combustion gases to turn the high-pressure compressor and accessory

    gearbox.

    Inlet

    The inlet sends air to the forward end of the compressor. The inlet is aerodynamically

    designed to insure a smooth, evenly distributed airflow into the engine.

    Laws of Motion

    Sir Isaac Newton proposed three laws of motion.

    1. If an object is not moving, it will not start moving by itself. If an object is

    moving, it will not stop or change direction unless something pushes it.

    2. Objects will move farther and faster when they are pushed harder.

    3. When an object is pushed in one direction, there is always a resistance of the

    same size in the opposite direction.

    Lift

    A force that pushes objects upward.Low-Pressure Turbine (LPT)

    The LPT module is the in the rear of the engine, aft of the HPT stator case. LPT

    components include the LPT rotor, LPT nozzle stator case and turbine rear frame. The

    LPT removes energy from the combustion gases to drive the low-pressure compressor

    (N1) rotor assembly.

    Mach 1

    Breaking the speed of sound. Mach 1 is equivalent to 760 miles per hour.

    Nozzle

    The nozzle is the exhaust duct of the engine. This is the engine part that actually

    produces the thrust for the plane. The energy depleted airflow that passed the turbine,

    in addition to the colder air that bypassed the engine core, produces a force when

    exiting the nozzle that acts to propel the engine, and therefore the airplane, forward.

  • 7/27/2019 Ge Component Material

    4/7

    The combination of the hot air and cold air are expelled and produce an exhaust, which

    causes a forward thrust.

    Propulsion

    (as a field of study in relation to Aeronautics) is the study of how to design an engine

    that will provide the thrust that is needed for a plane to take off and fly through the air.

    Regimes of Flight

    The ranges of speed that airplanes fly. Subsonic: 100-350 MPH. Transonic: 350-750

    MPH. Supersonic:760-3500 MPH. Hypersonic: 3500-7000 MPH

    Shock Wave

    A series of air waves that form in front of a fast moving plane. In order to travel faster

    than sound the plane must push through these waves. This creates a sonic boom.

    Sonic BoomWhen a plane pushes through a shockwave it creates a sonic boom. The noise is the

    result of breaking through the airwaves that form in front of a fast moving plane. The

    sonic boom sounds when the plane is going faster than 760 MPH.

    Sound Waves

    Sound is made up of molecules of air that move. When they push together they form

    sound waves.

    Speed of Sound

    When a plane travels faster than 760 a sound barrier forms in front of the plane. If aplane is going at the speed of sound it is traveling at Mach 1.

    Subsonic

    Subsonic is a speed of 100-350 MPH. Small planes such as crop dusters and

    seaplanes are examples of planes that travel at this speed.

    Suck-Squeeze-Bang-Blow

    The term that is generally used to describe the operation of a jet engine. The fan sucks

    in the air, the compressor squeezes the air down, the combustor ignites the mixture

    (bang) and the turbine blows the air out the back creating thrust and turning the forwardfan.

    Supersonic

    Planes that travel faster than Mach 1 (or the speed of sound) are traveling at supersonic

    speeds. An example is the commercial Concorde. The aircraft's speed averages more

    than 760 miles per hour.

  • 7/27/2019 Ge Component Material

    5/7

    Thrust

    The forward force that pushes the engine and, therefore, the airplane forward. Sir Isaac

    Newton discovered that for "every action there is an equal and opposite reaction."

    Aircraft engine use this principle.

    Thrust Reverser

    Thrust reversers serve as an aircraft's main brakes on landing. There are three types of

    thrust reversers: translating cowl, clam shell and turboprop reverse pitch. All three

    literally reverse the engines thrust by closing in when deployed by the pilot pushing the

    air out the front of the engine rather than the back. This motion decreases the speed of

    the aircraft and is the loud noise you hear when landing.

    Transonic

    This speed of flight includes most of the commercial flights that carry passengers and

    cargo. Transonic speed is 350 - 750 MPH.

    Turbine

    Located behind the combustor, the turbine section uses energy in the rapidly moving,

    hot gases coming out of the combustion section to turn a shaft to drive the compressor

    and other engine accessories.

    Turbojet

    Air taken in from an opening in the front of the engine is compressed up to 3 to 12 times

    its original pressure in compressor. Fuel is added to the air and burned in a combustion

    chamber to raise the temperature of the fluid mixture to about 1,100F to1,300F. The resulting hot air is passed through a turbine, which drives the

    compressor. If the turbine and compressor are efficient, the pressure at the turbine

    discharge will be nearly twice the atmospheric pressure, and this excess pressure is

    sent to the nozzle to produce a high-velocity stream of gas which produces a thrust.

    Substantial increases in thrust can be obtained by employing an afterburner. It is a

    second combustion chamber positioned after the turbine and before the nozzle. The

    afterburner increases the temperature of the gas ahead of the nozzle. The result of this

    increase in temperature is an increase of about 40 percent in thrust at takeoff and a

    much larger percentage at high speeds once the plane is in the air.

    The turbojet engine is a reaction engine. In a reaction engine, expanding gases push

    hard against the front of the engine. The turbojet sucks in air and compresses or

    squeezes it. The gases flow through the turbine and make it spin. These gases bounce

    back and shoot our of the rear of the exhaust, pushing the plane forward.

  • 7/27/2019 Ge Component Material

    6/7

    Turboprop

    A turboprop is a jet engine attached to a propeller. The turbine at the back is turned by

    the hot gases generated by the engine, and this turns a shaft that drives the propeller. A

    variety of smaller aircraft are powered by turboprops.

    Like the turbojet, the turboprop engine consists of a compressor, combustion chamber,and turbine, the air and gas pressure is used to run the turbine, which then creates

    power to drive the compressor. Compared with a turbojet engine, the turboprop has

    better propulsion efficiency at flight speeds below about 500 miles per hour. Modern

    turboprop engines are equipped with propellers that have a smaller diameter but a

    larger number of blades for efficient operation at much higher flight speeds. To

    accommodate the higher flight speeds, the blades are scimitar-shaped with swept-back

    leading edges at the blade tips. Engines featuring such propellers are called propfans.

    TurbofanA turbofan engine has a large fan at the front, which sucks in air. Most of the air flows

    around the outside of the engine, making it quieter and giving more thrust at low

    speeds. Most of today's airliners are powered by turbofans. In a turbojet all the air

    entering the intake passes through the gas generator, which is composed of the

    compressor, combustion chamber, and turbine. In a turbofan engine only a portion of

    the incoming air goes into the combustion chamber. The remainder passes through a

    fan, or low-pressure compressor, and is ejected directly as a "cold" jet or mixed with the

    gas-generator exhaust to produce a "hot" jet. The objective of this sort of bypass system

    is to increase thrust without increasing fuel consumption. It achieves this by increasingthe total air-mass flow and reducing the velocity within the same total energy supply.

    Turboshaft

    This is another form of gas-turbine engine that operates much like a turboprop system.

    It does not drive a propeller. Instead, it provides power for a helicopter rotor. The

    turboshaft engine is designed so that the speed of the helicopter rotor is independent of

    the rotating speed of the gas generator. This permits the rotor speed to be kept constant

    even when the speed of the generator is varied to modulate the amount of power

    produced.Vectoring

    Vectoring is the procedure that makes the exhaust nozzle structure turn to make

    forward, vertical or side-to-side thrust. Vectoring supplies the directional thrust

    necessary for vertical take off and landing (VTOL) and short take off and landing

  • 7/27/2019 Ge Component Material

    7/7

    (STOL) military aircraft. Vectoring also gives aircraft a better rate of climb and increases

    control during flight.