gaussian markov random fields: efficient modelling of ... · efficient modelling of spatially...

33
Spatial GMRFs SPDE Data Generalisation Gaussian Markov random fields: Efficient modelling of spatially dependent data Johan Lindstr ¨ om 1 Finn Lindgren 2 avard Rue 2 1 Centre for Mathematical Sciences Lund University 2 Department of Mathematical Sciences Norwegian University of Science and Technology, Trondheim Lund, April 28 th , 2011 Johan Lindstr¨ om - [email protected] Gaussian Markov random fields

Upload: others

Post on 28-May-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation

Gaussian Markov random fields:

Efficient modelling of spatially

dependent data

Johan Lindstrom1 Finn Lindgren2 Havard Rue2

1Centre for Mathematical SciencesLund University

2Department of Mathematical SciencesNorwegian University of Science and Technology, Trondheim

Lund, April 28th, 2011

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 2: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Interpolation Gaussian fields Parameter estimation

Spatial interpolation — Kriging

The standard problem

Given observations at some locations, Y(si), i = 1 . . . nwe want to make statements about the value at unobservedlocation(s), Y(s0).

200m

−14

−9

−4

Data from Peter Jonsson (Engineering geology, Lund University).

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 3: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Interpolation Gaussian fields Parameter estimation

Spatial interpolation — Kriging

The standard problem

Given observations at some locations, Y(si), i = 1 . . . nwe want to make statements about the value at unobservedlocation(s), Y(s0).

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 4: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Interpolation Gaussian fields Parameter estimation

Gaussian fields

A Gaussian model

We often assume that the observations come from a Gaussianfield [

Y0

Y

]∈ N

([μ0

μ

],

[Σ00 Σ0n

Σ⊤0n Σnn

])

If the mean and covariance matrix are known the optimalpredictor is the conditional expectation

E(Y0|Y1, · · · , Yn

)= μ0 + Σ0nΣ

−1nn (Y − μ).

However the mean and covariance matrixare typically not known.

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 5: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Interpolation Gaussian fields Parameter estimation

Gaussian fields

A Gaussian model

We often assume that the observations come from a Gaussianfield [

Y0

Y

]∈ N

([μ0

μ

],

[Σ00 Σ0n

Σ⊤0n Σnn

])

If the mean and covariance matrix are known the optimalpredictor is the conditional expectation

E(Y0|Y1, · · · , Yn

)= μ0 + Σ0nΣ

−1nn (Y − μ).

However the mean and covariance matrixare typically not known.

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 6: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Interpolation Gaussian fields Parameter estimation

Parameter estimation

Assume a parametric form for the covariance and mean

Y ∈ N (μ(θ),Σ(θ)) .

The log-likelihood becomes

l(θ|Y) = −1

2log |Σ(θ)| −

1

2

(Y − μ(θ)

)⊤

Σ(θ)−1(

Y − μ(θ))

Problems:

1. The covariance matrix has O(n2

)unique elements.

2. Calculating l(θ|Y) takes O(n3

)time.

For the depth data:

◮ 11′705 observations

◮ Storing the covariance matrix ∼ 1 GB

◮ Evaluating l(θ|Y) once(!) 2.5 minutes.

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 7: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Interpolation Gaussian fields Parameter estimation

Parameter estimation

Assume a parametric form for the covariance and mean

Y ∈ N (μ(θ),Σ(θ)) .

The log-likelihood becomes

l(θ|Y) = −1

2log |Σ(θ)| −

1

2

(Y − μ(θ)

)⊤

Σ(θ)−1(

Y − μ(θ))

Problems:

1. The covariance matrix has O(n2

)unique elements.

2. Calculating l(θ|Y) takes O(n3

)time.

For the depth data:

◮ 11′705 observations

◮ Storing the covariance matrix ∼ 1 GB

◮ Evaluating l(θ|Y) once(!) 2.5 minutes.

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 8: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Interpolation Gaussian fields Parameter estimation

Parameter estimation

Assume a parametric form for the covariance and mean

Y ∈ N (μ(θ),Σ(θ)) .

The log-likelihood becomes

l(θ|Y) = −1

2log |Σ(θ)| −

1

2

(Y − μ(θ)

)⊤

Σ(θ)−1(

Y − μ(θ))

Problems:

1. The covariance matrix has O(n2

)unique elements.

2. Calculating l(θ|Y) takes O(n3

)time.

For the depth data:

◮ 11′705 observations

◮ Storing the covariance matrix ∼ 1 GB

◮ Evaluating l(θ|Y) once(!) 2.5 minutes.

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 9: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation The basics Matern & SPDE

Gaussian Markov random fields

Let the neighbours Ni to a point si be the points {sj, j ∈ Ni} thatare “close” to si.

Gaussian Markov random field (GMRF)

Gaussian random field x ∼ N (μ,Σ) that satisfies

p(xi|{xj : j 6= i}) = p(xi|{xj : j ∈ Ni})

is a Gaussian Markov random field.

Using the precision matrix, Q = Σ−1, the conditional expectationbecomes

E(xi|{xj : j 6= i}

)= μi −

1

Qii

j 6=i

Qij(xj − μj)

A GMRF has a sparse precision matrix j ∈ Ni ⇐⇒ Qi,j 6= 0.

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 10: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation The basics Matern & SPDE

Gaussian Markov random fields

Let the neighbours Ni to a point si be the points {sj, j ∈ Ni} thatare “close” to si.

Gaussian Markov random field (GMRF)

Gaussian random field x ∼ N (μ,Σ) that satisfies

p(xi|{xj : j 6= i}) = p(xi|{xj : j ∈ Ni})

is a Gaussian Markov random field.

Using the precision matrix, Q = Σ−1, the conditional expectationbecomes

E(xi|{xj : j 6= i}

)= μi −

1

Qii

j 6=i

Qij(xj − μj)

A GMRF has a sparse precision matrix j ∈ Ni ⇐⇒ Qi,j 6= 0.

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 11: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation The basics Matern & SPDE

Gaussian Markov random fields

Let the neighbours Ni to a point si be the points {sj, j ∈ Ni} thatare “close” to si.

Gaussian Markov random field (GMRF)

Gaussian random field x ∼ N (μ,Σ) that satisfies

p(xi|{xj : j 6= i}) = p(xi|{xj : j ∈ Ni})

is a Gaussian Markov random field.

Using the precision matrix, Q = Σ−1, the conditional expectationbecomes

E(xi|{xj : j 6= i}

)= μi −

1

Qii

j 6=i

Qij(xj − μj)

A GMRF has a sparse precision matrix j ∈ Ni ⇐⇒ Qi,j 6= 0.

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 12: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation The basics Matern & SPDE

The Markov property

The Markov property does not imply that events far apart areindependent.Only that if we know what happens close by we can ignore thingsfurther away.

Example

We want to predict the temperature in Lund

1. If we know the temperature in Copenhagen, thetemperature in London contributes very little information.

2. However, if we don’t know the temperature in Copenhagen,the temperature in London would help.

The sparse precision matrix makes GMRF computationallyeffective but it is hard to construct reasonable precision matrices.

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 13: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation The basics Matern & SPDE

The Markov property

The Markov property does not imply that events far apart areindependent.Only that if we know what happens close by we can ignore thingsfurther away.

Example

We want to predict the temperature in Lund

1. If we know the temperature in Copenhagen, thetemperature in London contributes very little information.

2. However, if we don’t know the temperature in Copenhagen,the temperature in London would help.

The sparse precision matrix makes GMRF computationallyeffective but it is hard to construct reasonable precision matrices.

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 14: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation The basics Matern & SPDE

The Markov property

The Markov property does not imply that events far apart areindependent.Only that if we know what happens close by we can ignore thingsfurther away.

Example

We want to predict the temperature in Lund

1. If we know the temperature in Copenhagen, thetemperature in London contributes very little information.

2. However, if we don’t know the temperature in Copenhagen,the temperature in London would help.

The sparse precision matrix makes GMRF computationallyeffective but it is hard to construct reasonable precision matrices.

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 15: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation The basics Matern & SPDE

The Markov property

The Markov property does not imply that events far apart areindependent.Only that if we know what happens close by we can ignore thingsfurther away.

Example

We want to predict the temperature in Lund

1. If we know the temperature in Copenhagen, thetemperature in London contributes very little information.

2. However, if we don’t know the temperature in Copenhagen,the temperature in London would help.

The sparse precision matrix makes GMRF computationallyeffective but it is hard to construct reasonable precision matrices.

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 16: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation The basics Matern & SPDE

A common covariance function

The Matern covariance family

The covariance between two points at distance ‖u‖ is

C(‖u‖) = σ2 21−nΓ(ν)

(κ ‖u‖)n Kn(κ ‖u‖)

The Matern family includes:

◮ Exponential, if ν = 1/2.

◮ Gaussian, when ν→ ∞.

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 17: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation The basics Matern & SPDE

A common covariance function

The Matern covariance family

The covariance between two points at distance ‖u‖ is

C(‖u‖) = σ2 21−nΓ(ν)

(κ ‖u‖)n Kn(κ ‖u‖)

Fields with Matern covariances are solutions to an SPDE(Whittle, 1954, 1963),

(κ2 −Δ

)a/2x(s) = W(s).

Here W(s) is white noise, Δ =∑

i∂2

∂s2i

, and α = ν+ d/2.

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 18: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Idea Basis functions Construction Examples

Constructing a GMRF from the SPDE

We want to construct a (GMRF) solution to the SPDE.

The basic idea

Construct the solution as a finite basis expansion

x(s) =

k

ψk(s) xk,

with a suitable distribution for the weights {xk}.

A stochastic weak solution is given by weights, {xi}, such that thejoint distribution fulfills

i

⟨ψj, (κ2 −Δ)a/2ψixi

⟩D=

⟨ψj, W

⟩∀j

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 19: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Idea Basis functions Construction Examples

Constructing a GMRF from the SPDE

We want to construct a (GMRF) solution to the SPDE.

The basic idea

Construct the solution as a finite basis expansion

x(s) =

k

ψk(s) xk,

with a suitable distribution for the weights {xk}.

A stochastic weak solution is given by weights, {xi}, such that thejoint distribution fulfills

i

⟨ψj, (κ2 −Δ)a/2ψixi

⟩D=

⟨ψj, W

⟩∀j

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 20: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Idea Basis functions Construction Examples

Possible basis functions

Several possible basis functions exist:

◮ Harmonic functions give a spectral representation.

◮ Eigenfunctions to the covariance matrix giveKarhunen-Loeve.

◮ A piecewise linear basis gives (almost) a GMRF.

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 21: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Idea Basis functions Construction Examples

Possible basis functions

Several possible basis functions exist:

◮ Harmonic functions give a spectral representation.

◮ Eigenfunctions to the covariance matrix giveKarhunen-Loeve.

◮ A piecewise linear basis gives (almost) a GMRF.

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 22: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Idea Basis functions Construction Examples

Construction of the precision matrix

We have the SPDE∑

i

⟨ψj, (κ2 −Δ)a/2ψixi

⟩D=

⟨ψj, W

SPDE solution

The distribution of the weights is x ∈ N(

0, Q−1

)

Q1,k = K Q2,k = KC−1K

Qa,k = KC−1Qa−2,kC−1K, α = 3, 4, . . .

where

C i,j =⟨ψi, ψj

⟩,

K i,j =⟨ψi, (κ2 −Δ)ψj

⟩= κ2

⟨ψi, ψj

⟩−

⟨ψi, Δψj

⟩= κ2C i,j + Gi,j,

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 23: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Idea Basis functions Construction Examples

Markov approximation

Since our basis functions have compact support the C and K

matrices are sparse.However, C

−1 is dense making Q2,k = KC−1

K dense.

GMRF approximation

To obtain sparse precision matrices we replace the C-matrix with

a diagonal matrix C with elements

C i,i = 〈ψi, 1〉

The resulting approximation error is small (Bolin & Lindgren,2009, and Simpson, Lindgren & Rue, 2010, tech.reps.)

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 24: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Idea Basis functions Construction Examples

Markov approximation

Since our basis functions have compact support the C and K

matrices are sparse.However, C

−1 is dense making Q2,k = KC−1

K dense.

GMRF approximation

To obtain sparse precision matrices we replace the C-matrix with

a diagonal matrix C with elements

C i,i = 〈ψi, 1〉

The resulting approximation error is small (Bolin & Lindgren,2009, and Simpson, Lindgren & Rue, 2010, tech.reps.)

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 25: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Idea Basis functions Construction Examples

Lattice on R2, step size h, regular triangulation

◮ Order α = 1:

κ2h2

1

+

−1−1 4 −1

−1

︸ ︷︷ ︸≈−D

◮ Order α = 2:

κ4h2

1

+ 2κ2

−1

−1 4 −1−1

︸ ︷︷ ︸≈−D +

1

h2

12 −8 2

1 −8 20 −8 12 −8 2

1

︸ ︷︷ ︸≈D2

◮ Not restricted to regular lattices; easy on triangulations

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 26: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Idea Basis functions Construction Examples

Example of neighbours for a = 2

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 27: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Observations Conditional distribution

Observations

Point observations

y(u) = x(u) + ε

=

k

ψk(u)xk + ε

Area observations

y(M) =

M

x(u) du + ε

=

k

xk

M

ψk(u) du + ε

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 28: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Observations Conditional distribution

Observations

Point observations

y(u) = x(u) + ε

=

k

ψk(u)xk + ε

Area observations

y(M) =

M

x(u) du + ε

=

k

xk

M

ψk(u) du + ε

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 29: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Observations Conditional distribution

Conditional expectation

Introducing a matrix A with rows

Ai· =[ψ1(ui) · · · ψN(ui)

]or Ai· =

[∫Miψ1(u) du · · ·

]

we can write the observation equation on matrix form as

y = Ax + ε x ∈ N(μ, Q

−1)

ε ∈ N(

0, Q−1e )

Kriging with GMRF

E (x|y) = μ+ Q−1x|y A⊤Qe (y − Aμ)

V (x|y) = Q−1x|y =

(Q + A⊤QeA

)−1

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 30: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Observations Conditional distribution

Conditional expectation

Introducing a matrix A with rows

Ai· =[ψ1(ui) · · · ψN(ui)

]or Ai· =

[∫Miψ1(u) du · · ·

]

we can write the observation equation on matrix form as

y = Ax + ε x ∈ N(μ, Q

−1)

ε ∈ N(

0, Q−1e )

Kriging with GMRF

E (x|y) = μ+ Q−1x|y A⊤Qe (y − Aμ)

V (x|y) = Q−1x|y =

(Q + A⊤QeA

)−1

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 31: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Oscillating Non-stationary

Example of an oscillating field

(κ2 exp(iπθ) −Δ

)(x1(u) + ix2(u)) = W1(u) + iW2(u)

0 10 200

0.5

1

0 10 20−0.5

0

0.5

1

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 32: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Oscillating Non-stationary

Example of a non-stationary field

(κ2(u) −Δ

)(τ(u)x(u)) = W(u)

Johan Lindstrom - [email protected] Gaussian Markov random fields

Page 33: Gaussian Markov random fields: Efficient modelling of ... · Efficient modelling of spatially dependent data Johan Lindstrom¨ 1 Finn Lindgren2 Havard Rue˚ 2 1Centre for Mathematical

Spatial GMRFs SPDE Data Generalisation Oscillating Non-stationary

Features and extensions, past, current and future work

◮ Just as easy for general manifolds, e.g. the globe, as for Rd.

◮ Oscillating fields

◮ Non-stationary versions, such as

(κ2(u) −Δ

)a/2(τ(u)x(u)) = W(u)

(κ2(u) + ∇ · m(u) −∇ · M(u)∇

)a/2x(u) = τ(u)W(u)

(Includes the Sampson & Guttorp deformation method)

◮ Non-stationarity that depends on covariates.

◮ Multivariate versions

◮ Spatio-temporal versions

◮ Works well with INLA (current & next generation) but is alsogenerally applicable

Johan Lindstrom - [email protected] Gaussian Markov random fields