gauss seidel method

19

Upload: maarce-lgs

Post on 10-Apr-2015

1.368 views

Category:

Documents


31 download

TRANSCRIPT

Page 1: Gauss Seidel Method
Page 2: Gauss Seidel Method

http://numericalmethods.eng.usf.edu

Gauss-Seidel Method

Basic Procedure:

-Algebraically solve each linear equation for xi

-Assume an initial guess solution array

-Solve for each xi and repeat

-Use absolute relative approximate error after each iteration to check if error is within a pre-specified tolerance.

Page 3: Gauss Seidel Method

http://numericalmethods.eng.usf.edu

Gauss-Seidel Method

The Gauss-Seidel Method allows the user to control round-off error.

Elimination methods such as Gaussian Elimination and LU Decomposition are prone to prone to round-off error.

Also: If the physics of the problem are understood, a close initial guess can be made, decreasing the number of iterations needed.

Page 4: Gauss Seidel Method

http://numericalmethods.eng.usf.edu

Gauss-Seidel MethodAlgorithm

A set of n equations and n unknowns:

11313212111 ... bxaxaxaxa nn

2323222121 ... bxaxaxaxa n2n

nnnnnnn bxaxaxaxa ...332211

. . . . . .

If: the diagonal elements are non-zero

Rewrite each equation solving for the corresponding unknown

ex:

First equation, solve for x1

Second equation, solve for x2

Page 5: Gauss Seidel Method

http://numericalmethods.eng.usf.edu

Gauss-Seidel MethodAlgorithm

Rewriting each equation

11

131321211 a

xaxaxacx nn

nn

nnnnnnn

nn

nnnnnnnnnn

nn

a

xaxaxacx

a

xaxaxaxacx

a

xaxaxacx

11,2211

1,1

,122,122,111,111

22

232312122

From Equation 1

From equation 2

From equation n-1

From equation n

Page 6: Gauss Seidel Method

http://numericalmethods.eng.usf.edu

Gauss-Seidel MethodAlgorithm

General Form of each equation

11

11

11

1 a

xac

x

n

jj

jj

22

21

22

2 a

xac

x

j

n

jj

j

1,1

11

,11

1

nn

n

njj

jjnn

n a

xac

x

nn

n

njj

jnjn

n a

xac

x

1

Page 7: Gauss Seidel Method

http://numericalmethods.eng.usf.edu

Gauss-Seidel MethodAlgorithm

General Form for any row ‘i’

.,,2,1,1

nia

xac

xii

n

ijj

jiji

i

How or where can this equation be used?

Page 8: Gauss Seidel Method

Gauss-Seidel Method

n

-n

2

x

x

x

x

1

1

Solve for the unknowns

Assume an initial guess for [X] Use rewritten equations to solve for each value of xi.

Important: Remember to use the most recent value of xi. Which means to apply values calculated to the calculations remaining in the current iteration.

Page 9: Gauss Seidel Method

http://numericalmethods.eng.usf.edu

Gauss-Seidel MethodCalculate the Absolute Relative Approximate Error

100

newi

oldi

newi

ia x

xx

So when has the answer been found?

The iterations are stopped when the absolute relative approximate error is less than a prespecified tolerance for all unknowns.

Page 10: Gauss Seidel Method

Example: Thermal CoefficientA trunnion of diameter 12.363” has to be cooled from a room temperature of 80°F before it is shrink fit into a steel hub.

The equation that gives the diametric contraction ΔD of the trunnion in dry-ice/alcohol (boiling temperature is −108°F is given by:

108

80

)(363.12 dTTD

Figure 1 Trunnion to be slid through the hub after contracting.

Page 11: Gauss Seidel Method

Example: Thermal CoefficientThe expression for the thermal expansion coefficient, is obtained using regression analysis and hence solving the following simultaneous linear equations:

Find the values of a1, a2,and a3 using Gauss-Seidel Method.

56799.2

1004162.1

10057.1

1024357.51086472.11026.7

1086472.11026.72860

1026.72860242

4

3

2

1

1085

85

5

a

a

a

2321 TaTaa

Page 12: Gauss Seidel Method

Example: Thermal Coefficient

56799.2

1004162.1

10057.1

1024357.51086472.11026.7

1086472.11026.72860

1026.72860242

4

3

2

1

1085

85

5

a

a

a

The system of equations is:

Initial Guess:

Assume an initial guess of

0

0

0

3

2

1

a

a

a

Page 13: Gauss Seidel Method

Example: Thermal Coefficient

56799.2

1004162.1

10057.1

1024357.51086472.11026.7

1086472.11026.72860

1026.72860242

4

3

2

1

1085

85

5

a

a

a

Rewriting each equationIteration 1

654

1 104042424

01026702860100571

...

a

95

862

2 100024310267

0108647211040424286010041621

.

.

...a

1210

9865

3 103269110243575

100024310864721104042410267567992

.

.

.....a

Page 14: Gauss Seidel Method

Example: Thermal Coefficient

%100100103269.1

100103269.1

%100100100024.3

1000100024.3

%100100104042.4

0104042.4

100

12

12

3

9

9

2

6

6

1

a

a

a

newi

oldi

newi

ia x

xx

Finding the absolute relative approximate error

At the end of the first iteration

The maximum absolute relative approximate error is 100%.

12

9

6

3

2

1

1032691

1000243

1040424

.

.

.

a

a

a

Page 15: Gauss Seidel Method

Example: Thermal CoefficientIteration 2

Using from Iteration 1

the values of ai are found:

12

9

6

3

2

1

1032691

1000243

1040424

.

.

.

a

a

a

6

12594

1

1080214

24

10326911026710002432860100571

.

....a

9

5

12862

2

1022914

10267

1032691108647211080214286010041621

.

.

....a

12

10

9865

3

1047382

10243575

102291410864721108021410267567992

.

.

.....a

Page 16: Gauss Seidel Method

Example: Thermal CoefficientFinding the absolute relative approximate error

At the end of the second iteration

The maximum absolute relative approximate error is 46.360%.

%360.46100104738.2

)103269.1(104738.2

%007.291001022911.4

100024.310221.4

%2864.8100108021.4

104042.4108021.4

12

1212

3

9

99

2

6

66

1

a

a

a

12

9

6

3

2

1

1047382

1022914

1080214

.

.

.

a

a

a

Page 17: Gauss Seidel Method

Iteration a1 a2 a3

1

2

3

4

5

6

4.4042×10−6

4.8021×10−6

4.9830×10−6

5.0636×10−6

5.0980×10−6

5.1112×10−6

100

8.2864

3.6300

1.5918

0.6749

0.2593

3.0024×10−9

4.2291×10−9

4.6471×10−9

4.7023×10−9

4.6033×10−9

4.4419×10−9

100

29.0073

8.9946

1.1922

2.1696

3.6330

−1.3269×10−12

−2.4738×10−12

−3.4917×10−12

−4.4083×10−12

−5.2399×10−12

−5.9972×10−12

100

46.3605

29.1527

20.7922

15.8702

12.6290

Example: Thermal CoefficientRepeating more iterations, the following values are obtained

%1a %

2a %3a

! Notice – After six iterations, the absolute relative approximate errors are decreasing, but are still high.

Page 18: Gauss Seidel Method

Iteration a1 a2 a3

7576

5.0692×10−6

5.0691×10−6

2.2559×10−4

2.0630×10−4

2.0139×10−9

2.0135×10−9

0.024280.02221

−1.4049×10−11

−1.4051×10−11

0.011250.01029

Example: Thermal CoefficientRepeating more iterations, the following values are obtained

%1a %

2a %3a

The value of closely approaches the true value of

11

9

6

3

2

1

1040511

1001352

1006915

.

.

.

a

a

a

11

9

6

3

2

1

1040661

1000872

1006905

.

.

.

a

a

a

Page 19: Gauss Seidel Method

Example: Thermal CoefficientThe polynomial that passes through the three data

points is then

2321 TaTaaT

21196 104051.11000135.21006915.5 TT