gauge&dynamics&and&& topological&insulators&

33
Gauge Dynamics and Topological Insulators David Tong Back in Swansea 2013 Based on arXiv:1305.2414 with Benjamin Béri and Kenny Wong

Upload: others

Post on 01-Jan-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gauge&Dynamics&and&& Topological&Insulators&

Gauge  Dynamics  and    Topological  Insulators  

David  Tong    Back  in  Swansea  2013  

Based  on  arXiv:1305.2414    with  Benjamin  Béri  and  Kenny  Wong  

Page 2: Gauge&Dynamics&and&& Topological&Insulators&

Story  1:  Massless  Fermions  

Page 3: Gauge&Dynamics&and&& Topological&Insulators&

SU(2)  Yang-­‐Mills  in  d=2+1  

phase is essentially that of quantum spin-Hall physics. We will show that SU(2) Yang-

Mills coupled to fundamental fermions contains within it the simplest Z2 topological

insulator.

We start in Section 2 by reviewing the gauge boson instability. We present a linearised

approximation to the full lattice solution. As we explain, this linearised approximation

is not a particularly good approximation. Nonetheless, it will prove sufficient for our

needs, acting as a springboard for the exact results that follow.

Section 3 studies the dynamics of massless fermions in this lattice. We diagonalise

the fermions in the background of the lattice and compute the location of the Dirac

points, before showing that the existence and location of these points is exact. We also

find something rather cute in the linearised regime: the off-diagonal gauge boson field

— which we refer to as the “W-boson” W (�x) — plays a dual role. It not only describes

the spatial lattice, but also, with a suitable rescaling, determines the energy over the

Brillouin zone, E = W (�p).

Section 4 deals with massive fermions. We explain in detail how to quantize the

fermions, pay particular attention to the discrete symmetries of the theory and provide

detailed calculations of the topological invariants. We also pause in number of places to

offer a translation between high-energy and condensed matter language. In particular,

we will see how one can vary the chemical potential of the system, to move between

trivial and non-trivial Z2 topological insulators. Finally, a number of more involved

calculations are relegated to a series of appendices.

2. Non-Abelian Magnetic Fields

Throughout this paper we discuss SU(2) Yang-Mills coupled to Dirac fermions1. We

work in d = 2 + 1 dimensions and start with the action

S = −�

d3x1

2e2TrFµνF

µν+ iψ̄1 /Dψ1 + iψ̄2 /Dψ2 (2.1)

Both Dirac fermions ψ1 and ψ2 transform in the fundamental representation of the

SU(2) gauge symmetry. The parity anomaly prohibits an odd number of fundamental

fermions [10, 11], which means that the pair of fermions above is the minimum number

1Our conventions: We use signature (−,+,+). The non-Abelian field strength is Fµν = F aµνT

a

where the SU(2) generators are T a =12σ

a. We chose the representation of gamma matrices γµ =

{iσ3,σ1,σ2}.

3

∂µjµA =

1

2π�µνF

µν

dp

dt= E

R ∝ T

R ∝ f 2/3

ψ1

ψ1

U(1)F

U(1)A ⊂ SU(2)F

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

6

∂µjµA =

1

2π�µνF

µν

dp

dt= E

R ∝ T

R ∝ f 2/3

ψ1

ψ2

U(1)F

U(1)A ⊂ SU(2)F

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

6

∂µjµA =

1

2π�µνF

µν

dp

dt= E

R ∝ T

R ∝ f 2/3

ψ1

ψ2

U(1)F

U(1)A ⊂ SU(2)F

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

6

∂µjµA =

1

2π�µνF

µν

dp

dt= E

R ∝ T

R ∝ f 2/3

ψ1

ψ2

U(1)F

U(1)A ⊂ SU(2)F

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

6

+   +  

+   _  

Global  Symmetries  

Page 4: Gauge&Dynamics&and&& Topological&Insulators&

Background  MagnePc  Field  

possible2. The theory admits a U(1)F×SU(2)F flavour symmetry, with ψi transforming

as a doublet.

Left to its own devices, the theory becomes strongly coupled at the scale ∼ e2. At

energies below this scale, it is expected to confine and exhibit a mass gap. However,

in this paper we are interested in the properties of the theory in the weakly coupled

regime. To avoid the flow to strong coupling, we turn on a background, non-Abelian

magnetic field which we choose to lie in the Cartan subalgebra of the gauge group,

F12 =B

2σ3

(2.2)

When B � e2, this magnetic field breaks the SU(2) gauge group to U(1) at a high

scale and the theory remains weakly coupled. The goal of this paper is to understand

the excitations of the theory in the background of this magnetic field.

Before proceeding, we pause to make a simple point. Abelian magnetic fields break

both time reversal symmetry and charge conjugation: under both they transform as

B → −B. However, for our non-Abelian magnetic field, B → −B is simply a gauge

transformation. (It is in the Weyl group of the Cartan subalgebra). This means

that the non-Abelian magnetic field (2.2) preserves time reversal invariance and charge

conjugation, a fact which will be important in Section 4.

In the background (2.2), the U(1) photon remains massless. All other states are

charged and form Landau levels. There is a simple, intuitive way to understand the

energies of these Landau levels. Consider first a massless scalar field of charge q in

a magnetic background B. The familiar Landau level quantization yields the energy

levels

E2scalar = qB (2n+ 1) n = 0, 1, 2, . . .

The solutions for the fermions and W-bosons take the same form, but with one further

ingredient: a Zeeman splitting which splits the degeneracy between different spin states.

2The action (2.1) can be obtained by dimensionally reducing 3 + 1 dimensional Yang-Mills theorycoupled to a single fundamental Dirac fermion Ψ,

S = −�

d4x1

2e2TrFµνF

µν + iΨ̄ /DΨ

Upon dimensional reduction, the Dirac spinor Ψ becomes ψ1 and ψ2 of (2.1). The presence of a Dirac,as opposed to a Weyl, spinor ensures that the theory is free from the Witten anomaly.

4

possible2. The theory admits a U(1)F×SU(2)F flavour symmetry, with ψi transforming

as a doublet.

Left to its own devices, the theory becomes strongly coupled at the scale ∼ e2. At

energies below this scale, it is expected to confine and exhibit a mass gap. However,

in this paper we are interested in the properties of the theory in the weakly coupled

regime. To avoid the flow to strong coupling, we turn on a background, non-Abelian

magnetic field which we choose to lie in the Cartan subalgebra of the gauge group,

F12 =B

2σ3

(2.2)

When B � e2, this magnetic field breaks the SU(2) gauge group to U(1) at a high

scale and the theory remains weakly coupled. The goal of this paper is to understand

the excitations of the theory in the background of this magnetic field.

Before proceeding, we pause to make a simple point. Abelian magnetic fields break

both time reversal symmetry and charge conjugation: under both they transform as

B → −B. However, for our non-Abelian magnetic field, B → −B is simply a gauge

transformation. (It is in the Weyl group of the Cartan subalgebra). This means

that the non-Abelian magnetic field (2.2) preserves time reversal invariance and charge

conjugation, a fact which will be important in Section 4.

In the background (2.2), the U(1) photon remains massless. All other states are

charged and form Landau levels. There is a simple, intuitive way to understand the

energies of these Landau levels. Consider first a massless scalar field of charge q in

a magnetic background B. The familiar Landau level quantization yields the energy

levels

E2scalar = qB (2n+ 1) n = 0, 1, 2, . . .

The solutions for the fermions and W-bosons take the same form, but with one further

ingredient: a Zeeman splitting which splits the degeneracy between different spin states.

2The action (2.1) can be obtained by dimensionally reducing 3 + 1 dimensional Yang-Mills theorycoupled to a single fundamental Dirac fermion Ψ,

S = −�

d4x1

2e2TrFµνF

µν + iΨ̄ /DΨ

Upon dimensional reduction, the Dirac spinor Ψ becomes ψ1 and ψ2 of (2.1). The presence of a Dirac,as opposed to a Weyl, spinor ensures that the theory is free from the Witten anomaly.

4

•  Preserves  Pme  reversal  T  

•  Semi-­‐classical  limit        

Note  

Page 5: Gauge&Dynamics&and&& Topological&Insulators&

Dynamics  in  a  MagnePc  Field:  Spin  0  

Massless  relaPvisPc  scalar:  

E2  

Landau    levels  

scalar  

∂µjµA =

1

2π�µνF

µν

dp

dt= E

R ∝ T

R ∝ f 2/3

ψ1

ψ2

U(1)F

U(1)A ⊂ SU(2)F

E2 = B(2n+ 1)

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

6

possible2. The theory admits a U(1)F×SU(2)F flavour symmetry, with ψi transforming

as a doublet.

Left to its own devices, the theory becomes strongly coupled at the scale ∼ e2. At

energies below this scale, it is expected to confine and exhibit a mass gap. However,

in this paper we are interested in the properties of the theory in the weakly coupled

regime. To avoid the flow to strong coupling, we turn on a background, non-Abelian

magnetic field which we choose to lie in the Cartan subalgebra of the gauge group,

F12 =B

2σ3

(2.2)

When B � e2, this magnetic field breaks the SU(2) gauge group to U(1) at a high

scale and the theory remains weakly coupled. The goal of this paper is to understand

the excitations of the theory in the background of this magnetic field.

Before proceeding, we pause to make a simple point. Abelian magnetic fields break

both time reversal symmetry and charge conjugation: under both they transform as

B → −B. However, for our non-Abelian magnetic field, B → −B is simply a gauge

transformation. (It is in the Weyl group of the Cartan subalgebra). This means

that the non-Abelian magnetic field (2.2) preserves time reversal invariance and charge

conjugation, a fact which will be important in Section 4.

In the background (2.2), the U(1) photon remains massless. All other states are

charged and form Landau levels. There is a simple, intuitive way to understand the

energies of these Landau levels. Consider first a massless scalar field of charge q in

a magnetic background B. The familiar Landau level quantization yields the energy

levels

E2scalar = qB (2n+ 1) n = 0, 1, 2, . . .

The solutions for the fermions and W-bosons take the same form, but with one further

ingredient: a Zeeman splitting which splits the degeneracy between different spin states.

2The action (2.1) can be obtained by dimensionally reducing 3 + 1 dimensional Yang-Mills theorycoupled to a single fundamental Dirac fermion Ψ,

S = −�

d4x1

2e2TrFµνF

µν + iΨ̄ /DΨ

Upon dimensional reduction, the Dirac spinor Ψ becomes ψ1 and ψ2 of (2.1). The presence of a Dirac,as opposed to a Weyl, spinor ensures that the theory is free from the Witten anomaly.

4

Page 6: Gauge&Dynamics&and&& Topological&Insulators&

Dynamics  in  a  MagnePc  Field:  Spin  1/2  

Massless  relaPvisPc  fermion:  

E2  

Landau    levels  

scalar  

∂µjµA =

1

2π�µνF

µν

dp

dt= E

R ∝ T

R ∝ f 2/3

ψ1

ψ2

U(1)F

U(1)A ⊂ SU(2)F

E2 = B(2n+ 1)

E2 = B(2n+ 1) + 2Bs

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

6

∂µjµA =

1

2π�µνF

µν

dp

dt= E

R ∝ T

R ∝ f 2/3

ψ1

ψ2

U(1)F

U(1)A ⊂ SU(2)F

E2 = B(2n+ 1)

E2 = B(2n+ 1) + 2Bs

s = ±1

2

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

6

fermion  

Massless  modes!  

Zeeman  spliXng  

Page 7: Gauge&Dynamics&and&& Topological&Insulators&

Degeneracy  of  Lowest  Landau  Level  

•  8  species  of  fermion  •  Dirac  spinor  is  2  component;  SU(2)  gauge;  SU(2)  flavour  

•  Lowest  Landau  has  4  excitaPons  •  All  others  have  8  excitaPons  

•  Pick  gauge  

E2  

∂µjµA =

1

2π�µνF

µν

dp

dt= E

R ∝ T

R ∝ f 2/3

ψ1

ψ2

U(1)F

U(1)A ⊂ SU(2)F

E2 = B(2n+ 1)

E2 = B(2n+ 1) + 2Bs

s = ±1

2

Ay =B

2xσ3

ψk(x) = e−ikye−B/4(x+2y/B)2

�#

#

6

∂µjµA =

1

2π�µνF

µν

dp

dt= E

R ∝ T

R ∝ f 2/3

ψ1

ψ2

U(1)F

U(1)A ⊂ SU(2)F

E2 = B(2n+ 1)

E2 = B(2n+ 1) + 2Bs

s = ±1

2

Ay =B

2xσ3

ψk(x, y) ∼ e−ikye−B/4(x+2k/B)2

�ξ(k)

0

ψ−i ∼ 4

�B

�dk

2πexp

�−iky − B

4

�x+

2k

B

�2��

ξ−i (k)

0

�(1.1)

ψ+i =

4

�B

�dk

2πexp

�+iky − B

4

�x+

2k

B

�2��

0

ξ+i (k)

�(1.2)

6

k  labels  degeneracy  of  Landau  level  

Page 8: Gauge&Dynamics&and&& Topological&Insulators&

Dynamics  in  a  MagnePc  Field:  Spin  1  

Massless  relaPvisPc  W-­‐boson:  

E2  

Landau    levels  

scalar  

∂µjµA =

1

2π�µνF

µν

dp

dt= E

R ∝ T

R ∝ f 2/3

ψ1

ψ2

U(1)F

U(1)A ⊂ SU(2)F

E2 = B(2n+ 1)

E2 = B(2n+ 1) + 2Bs

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

6

fermion  

∂µjµA =

1

2π�µνF

µν

dp

dt= E

R ∝ T

R ∝ f 2/3

ψ1

ψ2

U(1)F

U(1)A ⊂ SU(2)F

E2 = B(2n+ 1)

E2 = B(2n+ 1) + 2Bs

s = ±1

2

s = −1, 0,+1

Ay =B

2xσ3

ψk(x, y) ∼ e−ikye−B/4(x+2k/B)2

�ξ(k)

0

ψ−i ∼ 4

�B

�dk

2πexp

�−iky − B

4

�x+

2k

B

�2��

ξ−i (k)

0

�(1.1)

ψ+i =

4

�B

�dk

2πexp

�+iky − B

4

�x+

2k

B

�2��

0

ξ+i (k)

�(1.2)

6

W-­‐boson  

Tachyonic  modes!  

∂µjµA =

1

2π�µνF

µν

dp

dt= E

R ∝ T

R ∝ f 2/3

ψ1

ψ2

U(1)F

U(1)A ⊂ SU(2)F

E2 = B(2n+ 1)

E2 = B(2n+ 1) + 2Bs

s = ±1

2

s = −1, 0,+1

Ay =B

2xσ3

ψk(x, y) ∼ e−ikye−B/4(x+2k/B)2

�ξ(k)

0

ψ−i ∼ 4

�B

�dk

2πexp

�−iky − B

4

�x+

2k

B

�2��

ξ−i (k)

0

�(1.1)

ψ+i =

4

�B

�dk

2πexp

�+iky − B

4

�x+

2k

B

�2��

0

ξ+i (k)

�(1.2)

E2 = −B

6

Page 9: Gauge&Dynamics&and&& Topological&Insulators&

What  Becomes  of  the  W-­‐Bosons?  

•  W-­‐bosons  are  tachyonic  

•  They  condense  and  form  a  laXce  

Nielsen  and  Olesen;  Ambjorn  and  Olesen    

Page 10: Gauge&Dynamics&and&& Topological&Insulators&

W-­‐Boson  LaXce  

Plan:  Work  to  linear  order  

•  This  is  not  valid  

•  It’s  easy  to  make  it  valid  

•  But  it  doesn’t  mader  •  We  will  compute  topological  quanPPes  

Page 11: Gauge&Dynamics&and&& Topological&Insulators&

W-­‐Boson  LaXce  

ψk(x, y) ∼ e−ikye−B/4(x+2k/B)2

�ξ(k)

0

ψ−i ∼ 4

�B

�dk

2πexp

�−iky − B

4

�x+

2k

B

�2��

ξ−i (k)

0

�(1.1)

ψ+i =

4

�B

�dk

2πexp

�+iky − B

4

�x+

2k

B

�2��

0

ξ+i (k)

�(1.2)

E2 = −B

Wx = −iWy = W�

n∈Z

e−πin2/2e−2πiny/de−B/2(x+2πn/Bd)2

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

7

ψk(x, y) ∼ e−ikye−B/4(x+2k/B)2

�ξ(k)

0

ψ−i ∼ 4

�B

�dk

2πexp

�−iky − B

4

�x+

2k

B

�2��

ξ−i (k)

0

�(1.1)

ψ+i =

4

�B

�dk

2πexp

�+iky − B

4

�x+

2k

B

�2��

0

ξ+i (k)

�(1.2)

E2 = −B

Wx = −iWy = W�

n∈Z

e−πin2/2e−2πiny/de−B/2(x+2πn/Bd)2

Bd2 = 4π

Bd2 =4π√3

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

7

ψk(x, y) ∼ e−ikye−B/4(x+2k/B)2

�ξ(k)

0

ψ−i ∼ 4

�B

�dk

2πexp

�−iky − B

4

�x+

2k

B

�2��

ξ−i (k)

0

�(1.1)

ψ+i =

4

�B

�dk

2πexp

�+iky − B

4

�x+

2k

B

�2��

0

ξ+i (k)

�(1.2)

E2 = −B

Wx = −iWy = W�

n∈Z

e−πin2/2e−2πiny/de−B/2(x+2πn/Bd)2

Bd2 = 4π

Bd2 =4π√3

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

7

Square  laXce  

Triangular  laXce  

Page 12: Gauge&Dynamics&and&& Topological&Insulators&

W-­‐Boson  LaXce  

ψk(x, y) ∼ e−ikye−B/4(x+2k/B)2

�ξ(k)

0

ψ−i ∼ 4

�B

�dk

2πexp

�−iky − B

4

�x+

2k

B

�2��

ξ−i (k)

0

�(1.1)

ψ+i =

4

�B

�dk

2πexp

�+iky − B

4

�x+

2k

B

�2��

0

ξ+i (k)

�(1.2)

E2 = −B

Wx = −iWy = W�

n∈Z

e−πin2/2e−2πiny/de−B/2(x+2πn/Bd)2

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

7

W-­‐boson  winds  around  vortex  cores  

Page 13: Gauge&Dynamics&and&& Topological&Insulators&

What  Becomes  of  the  Fermions?  

Need  to  do  (very)  degenerate  perturbaPon  theory  

∂µjµA =

1

2π�µνF

µν

dp

dt= E

R ∝ T

R ∝ f 2/3

ψ1

ψ2

U(1)F

U(1)A ⊂ SU(2)F

E2 = B(2n+ 1)

E2 = B(2n+ 1) + 2Bs

s = ±1

2

Ay =B

2xσ3

ψk(x, y) ∼ e−ikye−B/4(x+2k/B)2

�ξ(k)

0

ψ−i ∼ 4

�B

�dk

2πexp

�−iky − B

4

�x+

2k

B

�2��

ξ−i (k)

0

�(1.1)

ψ+i =

4

�B

�dk

2πexp

�+iky − B

4

�x+

2k

B

�2��

0

ξ+i (k)

�(1.2)

6

ψk(x, y) ∼ e−ikye−B/4(x+2k/B)2

�ξ(k)

0

ψ−i ∼ 4

�B

�dk

2πexp

�−iky − B

4

�x+

2k

B

�2��

ξ−i (k)

0

�(1.1)

ψ+i =

4

�B

�dk

2πexp

�+iky − B

4

�x+

2k

B

�2��

0

ξ+i (k)

�(1.2)

E2 = −B

Wx = −iWy = W�

n∈Z

e−πin2/2e−2πiny/de−B/2(x+2πn/Bd)2

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

7

where  

ψk(x, y) ∼ e−iky

e−B/4(x+2k/B)2

�ξ(k)

0

ψ−i ∼ 4

�B

�dk

2πexp

�−iky − B

4

�x+

2k

B

�2��

ξ−i (k)

0

�(1.1)

ψ+i =

4

�B

�dk

2πexp

�+iky − B

4

�x+

2k

B

�2��

0

ξ+i (k)

�(1.2)

E2 = −B

Wx = −iWy = W

n∈Z

e−πin2/2

e−2πiny/d

e−B/2(x+2πn/Bd)2

Bd2 = 4π

Bd2 =

4π√3

S = SYM −�

d3x TrDµφD

µφ− λ

4

�Trφ2 − v

2

2

�2

B > e2v2

SU(2) → U(1)

∆H =

�d2x

k,k�

ψ1,k(x)γµWµ(x)ψ1,k�(x) + (1 ↔ 2)

ζ(p1, p2) =�

n

e−2πinp2/Bdψk=p1/2+2πn/d

7

Page 14: Gauge&Dynamics&and&& Topological&Insulators&

What  Becomes  of  the  Fermions?  

Diagonalise  with    

ψk(x, y) ∼ e−iky

e−B/4(x+2k/B)2

�ξ(k)

0

ψ−i ∼ 4

�B

�dk

2πexp

�−iky − B

4

�x+

2k

B

�2��

ξ−i (k)

0

�(1.1)

ψ+i =

4

�B

�dk

2πexp

�+iky − B

4

�x+

2k

B

�2��

0

ξ+i (k)

�(1.2)

E2 = −B

Wx = −iWy = W

n∈Z

e−πin2/2

e−2πiny/d

e−B/2(x+2πn/Bd)2

Bd2 = 4π

Bd2 =

4π√3

S = SYM −�

d3x TrDµφD

µφ− λ

4

�Trφ2 − v

2

2

�2

B > e2v2

SU(2) → U(1)

∆H =

�d2x

k,k�

ψ1,k(x)γµWµ(x)ψ1,k�(x) + (1 ↔ 2)

ζ(p1,p2) =�

n

e−2πinp2/Bdψk=p1/2+2πn/d

p1 ∈ [0, 4π/d)

p2 ∈ [0, Bd)

�p ∈ T2

7

ψk(x, y) ∼ e−iky

e−B/4(x+2k/B)2

�ξ(k)

0

ψ−i ∼ 4

�B

�dk

2πexp

�−iky − B

4

�x+

2k

B

�2��

ξ−i (k)

0

�(1.1)

ψ+i =

4

�B

�dk

2πexp

�+iky − B

4

�x+

2k

B

�2��

0

ξ+i (k)

�(1.2)

E2 = −B

Wx = −iWy = W

n∈Z

e−πin2/2

e−2πiny/d

e−B/2(x+2πn/Bd)2

Bd2 = 4π

Bd2 =

4π√3

S = SYM −�

d3x TrDµφD

µφ− λ

4

�Trφ2 − v

2

2

�2

B > e2v2

SU(2) → U(1)

∆H =

�d2x

k,k�

ψ1,k(x)γµWµ(x)ψ1,k�(x) + (1 ↔ 2)

ζ(p1,p2) =�

n

e−2πinp2/Bdψk=p1/2+2πn/d

p1 ∈ [0, 4π/d)

p2 ∈ [0, Bd)

�p ∈ T2

7

ψk(x, y) ∼ e−iky

e−B/4(x+2k/B)2

�ξ(k)

0

ψ−i ∼ 4

�B

�dk

2πexp

�−iky − B

4

�x+

2k

B

�2��

ξ−i (k)

0

�(1.1)

ψ+i =

4

�B

�dk

2πexp

�+iky − B

4

�x+

2k

B

�2��

0

ξ+i (k)

�(1.2)

E2 = −B

Wx = −iWy = W

n∈Z

e−πin2/2

e−2πiny/d

e−B/2(x+2πn/Bd)2

Bd2 = 4π

Bd2 =

4π√3

S = SYM −�

d3x TrDµφD

µφ− λ

4

�Trφ2 − v

2

2

�2

B > e2v2

SU(2) → U(1)

∆H =

�d2x

k,k�

ψ1,k(x)γµWµ(x)ψ1,k�(x) + (1 ↔ 2)

ζ(p1,p2) =�

n

e−2πinp2/Bdψk=p1/2+2πn/d

p1 ∈ [0, 4π/d)

p2 ∈ [0, Bd)

�p ∈ T2

7This  is  the  (magnePc)  Brilliouin  zone  (BZ)  

ψk(x, y) ∼ e−iky

e−B/4(x+2k/B)2

�ξ(k)

0

ψ−i ∼ 4

�B

�dk

2πexp

�−iky − B

4

�x+

2k

B

�2��

ξ−i (k)

0

�(1.1)

ψ+i =

4

�B

�dk

2πexp

�+iky − B

4

�x+

2k

B

�2��

0

ξ+i (k)

�(1.2)

E2 = −B

Wx = −iWy = W

n∈Z

e−πin2/2

e−2πiny/d

e−B/2(x+2πn/Bd)2

Bd2 = 4π

Bd2 =

4π√3

S = SYM −�

d3x TrDµφD

µφ− λ

4

�Trφ2 − v

2

2

�2

B > e2v2

SU(2) → U(1)

∆H =

�d2x

k,k�

ψ1,k(x)γµWµ(x)ψ1,k�(x) + (1 ↔ 2)

ζ(p1, p2) =�

n

e−2πinp2/Bdψk=p1/2+2πn/d

7

Page 15: Gauge&Dynamics&and&& Topological&Insulators&

And  something  nice  happens….  

Physical  W-­‐boson  laXce  becomes    energy  funcPon  over  BZ!  

p1 ∈ [0, 4π/d)

p2 ∈ [0, Bd)

�p ∈ T2

∆H =

�d2p ζ†1(�p)W (p1, p2) ζ1(�p) + (1 ↔ 2)

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

8

Page 16: Gauge&Dynamics&and&& Topological&Insulators&

Dirac  Cones  in  the  Brillouin  zone  

Bp1

Bp2

WE

Energy  

The  E<0  states  become  filled.  

Page 17: Gauge&Dynamics&and&& Topological&Insulators&

Robust  Dirac  Cones  in  the  Brillouin  zone  

Bp1

Bp2

WE

Comments:   •  The  Dirac  points  are  vorPces  in  momentum  space!  •  They  are  protected  by  topology  and  symmetry  

•  The  posiPon  Dirac  points  lie  at  non-­‐zero  Bloch  momenta  

 •  They  too  are  protected  by  symmetries  

 

p1 ∈ [0, 4π/d)

p2 ∈ [0, Bd)

�p ∈ T2

∆H =

�d2p ζ†1(�p)W (p1, p2) ζ1(�p) + (1 ↔ 2)

�p ∼ B

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

8

Volovik;  Wen  and  Zee;  Beri  

Page 18: Gauge&Dynamics&and&& Topological&Insulators&

Story  2:  Massive  Fermions  

Page 19: Gauge&Dynamics&and&& Topological&Insulators&

Adding  a  Mass  for  the  Fermion  

To conclude this section, let us finish by describing a property which is not robust

to corrections: the speed of propagation of the Dirac modes. For the linearised lattice

(2.7), it is clear that the dispersion relation near the Dirac point takes the form E = c|�p|where the speed is given by c ∼ |W̄ |/

√B � 1. For the full non-linear lattice, the only

scale in the game is the magnetic field B, so we must have c ∼ 1. It is interesting to

ask whether there is an accidental Lorentz symmetry (i.e. with c = 1) in this limit. We

do not know the answer to this question.

4. Massive Fermions

In this section, we would like to explore in more detail the structure of the fermionic

modes. To do so, we first open up a gap in the spectrum. This is achieved by simply

returning to our original action (2.1) and adding a mass for the fermions. We choose

to give the different species ψ1 and ψ2 equal and opposite masses,

Smass =

�d3x im(ψ̄1ψ1 − ψ̄2ψ2) (4.1)

The significance of this choice lies in the observation that it preserves time reversal, a

fact that will prove to be important later. To see this, note that in d = 2+1 dimensions

the fermionic bilinear ψ̄ψ is odd under time reversal. However, we can define a new

version of this symmetry in which we simultaneously exchange ψ1 and ψ2. The operator

(4.1) is invariant under this new symmetry and it also preserves charge conjugation.

Full details of the action of time reversal invariance as well as charge conjugation are

provided in Appendix D.

The addition of the mass term breaks the SU(2)F flavour symmetry down to a U(1)A

subgroup. Under the pair of Abelian symmetries U(1)F×U(1)A, ψ1 has charge (+1,+1)

while ψ2 has charge (+1,−1).

4.1 Quantisation

We now look a little closer at the quantum states in the n = 0 Landau level. The effect

of the mass is, unsurprisingly, to open up a gap in the spectrum. In terms of the Bloch

momenta, the Hamiltonian becomes

H =

T2

d2p

�mζ−�

1 ζ−1 −mζ+�1 ζ+1 + i

W√2ζ−�1 ζ+1 − i

W�

√2ζ+�1 ζ−1

−mζ−�2 ζ−2 +mζ+�

2 ζ+2 + iW√2ζ−�2 ζ+2 − i

W�

√2ζ+�2 ζ−2

14

•  Preserves  both  charge  conjugaPon  C    and  Pme  reversal  T    •  both  must  be  accompanied  by  

•  Flavour  symmetry    

ψk(x, y) ∼ e−iky

e−B/4(x+2k/B)2

�ξ(k)

0

ψ−i ∼ 4

�B

�dk

2πexp

�−iky − B

4

�x+

2k

B

�2��

ξ−i (k)

0

�(1.1)

ψ+i =

4

�B

�dk

2πexp

�+iky − B

4

�x+

2k

B

�2��

0

ξ+i (k)

�(1.2)

E2 = −B

Wx = −iWy = W

n∈Z

e−πin2/2

e−2πiny/d

e−B/2(x+2πn/Bd)2

Bd2 = 4π

Bd2 =

4π√3

S = SYM −�

d3x TrDµφD

µφ− λ

4

�Trφ2 − v

2

2

�2

B > e2v2

SU(2) → U(1)

∆H =

�d2x

k,k�

ψ1,k(x)γµWµ(x)ψ1,k�(x) + (1 ↔ 2)

ζ(p1, p2) =�

n

e−2πinp2/Bdψk=p1/2+2πn/d

7

p1 ∈ [0, 4π/d)

p2 ∈ [0, Bd)

�p ∈ T2

∆H =

�d2p ζ†1(�p)W (p1, p2) ζ1(�p) + (1 ↔ 2)

�p ∼ B

ABerryi (p) = i�ζ(p)| ∂

∂pi|ζ(p)�

|ζ(p)� → eiα(p)|ζ(p)� ⇒ A

Berryi → A

Berryi − ∂iα

C =1

BZ

FBerry

σxy =�

filled bands

C

SU(2)F → U(1)A

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

8

Page 20: Gauge&Dynamics&and&& Topological&Insulators&

Now  we  have  an  insulator  

Bp1

Bp2

WE

Energy  

Again,  the  E<0  states  become  filled.  

Page 21: Gauge&Dynamics&and&& Topological&Insulators&

Topology  of  Gapped  Fermions  

U(1)    gauge  connecPon  over  the  BZ    

Quantum  state  with  momentum  p  

p1 ∈ [0, 4π/d)

p2 ∈ [0, Bd)

�p ∈ T2

∆H =

�d2p ζ†1(�p)W (p1, p2) ζ1(�p) + (1 ↔ 2)

�p ∼ B

ABerryi (p) = i�ζ(p)| ∂

∂pi|ζ(p)�

|ζ(p)� → eiα(p)|ζ(p)� ⇒ A

Berryi → A

Berryi − ∂iα

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

8

Note:  

p1 ∈ [0, 4π/d)

p2 ∈ [0, Bd)

�p ∈ T2

∆H =

�d2p ζ†1(�p)W (p1, p2) ζ1(�p) + (1 ↔ 2)

�p ∼ B

ABerryi (p) = i�ζ(p)| ∂

∂pi|ζ(p)�

|ζ(p)� → eiα(p)|ζ(p)� ⇒ A

Berryi → A

Berryi − ∂iα

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

8

Page 22: Gauge&Dynamics&and&& Topological&Insulators&

TKNN  Invariant  

p1 ∈ [0, 4π/d)

p2 ∈ [0, Bd)

�p ∈ T2

∆H =

�d2p ζ†1(�p)W (p1, p2) ζ1(�p) + (1 ↔ 2)

�p ∼ B

ABerryi (p) = i�ζ(p)| ∂

∂pi|ζ(p)�

|ζ(p)� → eiα(p)|ζ(p)� ⇒ A

Berryi → A

Berryi − ∂iα

C =1

BZ

FBerry

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

8

A  lovely  result  

Hall  conducPvity:  

p1 ∈ [0, 4π/d)

p2 ∈ [0, Bd)

�p ∈ T2

∆H =

�d2p ζ†1(�p)W (p1, p2) ζ1(�p) + (1 ↔ 2)

�p ∼ B

ABerryi (p) = i�ζ(p)| ∂

∂pi|ζ(p)�

|ζ(p)� → eiα(p)|ζ(p)� ⇒ A

Berryi → A

Berryi − ∂iα

C =1

BZ

FBerry

σxy =e2

filled bands

C

SU(2)F → U(1)A

ψ1 : C = −1

ψ2 : C = +1

U(1)F × U(1)A

σFxy = σA

xy = 0

σF−Axy = 1

8

Page 23: Gauge&Dynamics&and&& Topological&Insulators&

TKNN  Invariants  for  Yang-­‐Mills  

Bp1

Bp2

WE

Two  flavours  of  fermions:  

p1 ∈ [0, 4π/d)

p2 ∈ [0, Bd)

�p ∈ T2

∆H =

�d2p ζ†1(�p)W (p1, p2) ζ1(�p) + (1 ↔ 2)

�p ∼ B

ABerryi (p) = i�ζ(p)| ∂

∂pi|ζ(p)�

|ζ(p)� → eiα(p)|ζ(p)� ⇒ A

Berryi → A

Berryi − ∂iα

C =1

BZ

FBerry

σxy =�

filled bands

C

SU(2)F → U(1)A

ψ1 : C = −1

ψ2 : C = +1

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

8

p1 ∈ [0, 4π/d)

p2 ∈ [0, Bd)

�p ∈ T2

∆H =

�d2p ζ†1(�p)W (p1, p2) ζ1(�p) + (1 ↔ 2)

�p ∼ B

ABerryi (p) = i�ζ(p)| ∂

∂pi|ζ(p)�

|ζ(p)� → eiα(p)|ζ(p)� ⇒ A

Berryi → A

Berryi − ∂iα

C =1

BZ

FBerry

σxy =�

filled bands

C

SU(2)F → U(1)A

ψ1 : C = −1

ψ2 : C = +1

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

8

p1 ∈ [0, 4π/d)

p2 ∈ [0, Bd)

�p ∈ T2

∆H =

�d2p ζ†1(�p)W (p1, p2) ζ1(�p) + (1 ↔ 2)

�p ∼ B

ABerryi (p) = i�ζ(p)| ∂

∂pi|ζ(p)�

|ζ(p)� → eiα(p)|ζ(p)� ⇒ A

Berryi → A

Berryi − ∂iα

C =1

BZ

FBerry

σxy =�

filled bands

C

SU(2)F → U(1)A

ψ1 : C = −1

ψ2 : C = +1

U(1)F × U(1)A

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

8

Two  flavour  symmetries:  

p1 ∈ [0, 4π/d)

p2 ∈ [0, Bd)

�p ∈ T2

∆H =

�d2p ζ†1(�p)W (p1, p2) ζ1(�p) + (1 ↔ 2)

�p ∼ B

ABerryi (p) = i�ζ(p)| ∂

∂pi|ζ(p)�

|ζ(p)� → eiα(p)|ζ(p)� ⇒ A

Berryi → A

Berryi − ∂iα

C =1

BZ

FBerry

σxy =e2

filled bands

C

SU(2)F → U(1)A

ψ1 : C = −1

ψ2 : C = +1

U(1)F × U(1)A

σFxy = σA

xy = 0

σF−Axy =

e2

π

8

p1 ∈ [0, 4π/d)

p2 ∈ [0, Bd)

�p ∈ T2

∆H =

�d2p ζ†1(�p)W (p1, p2) ζ1(�p) + (1 ↔ 2)

�p ∼ B

ABerryi (p) = i�ζ(p)| ∂

∂pi|ζ(p)�

|ζ(p)� → eiα(p)|ζ(p)� ⇒ A

Berryi → A

Berryi − ∂iα

C =1

BZ

FBerry

σxy =e2

filled bands

C

SU(2)F → U(1)A

ψ1 : C = −1

ψ2 : C = +1

U(1)F × U(1)A

σFxy = σA

xy = 0

σF−Axy =

e2

π

8

(Quantum  Spin-­‐Hall  Effect)  and  

(This  result  also  follows  from  usual  Chern-­‐Simons  calculaPon)  

Page 24: Gauge&Dynamics&and&& Topological&Insulators&

Story  3:  Edge  Modes  and  Topological  Insulators  

Page 25: Gauge&Dynamics&and&& Topological&Insulators&

Edge  Modes  

Gapped  system       Gapped  system  

Massless  modes  on  the  domain  wall/interface  

Bulk  1   Bulk  2  

(It’s  just  Jackiw-­‐Rebbi  to  you  and  me)  

Page 26: Gauge&Dynamics&and&& Topological&Insulators&

Bp1

Bp2

WE

Edge  Modes  in  Yang-­‐Mills  

•  Vary  the  chemical  potenPal  •  This  breaks  charge  conjugaPon  C    

Bulk  2  Bulk  1  

µ=0

µ=µ1

gapless  edge  modes  

filled   filled  

filled  

Page 27: Gauge&Dynamics&and&& Topological&Insulators&

Edge  Modes  in  Yang-­‐Mills  

∂µjµA =

1

2π�µνF

µν

dp

dt= E

R ∝ T

R ∝ f 2/3

ψ1

ψ1

U(1)F

U(1)A ⊂ SU(2)F

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

6

∂µjµA =

1

2π�µνF

µν

dp

dt= E

R ∝ T

R ∝ f 2/3

ψ1

ψ2

U(1)F

U(1)A ⊂ SU(2)F

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

6

We  get  a  chiral  edge  mode  from  the  first  fermion  

And  a  chiral  edge  mode  going  the  other  way  from  the  second  

Page 28: Gauge&Dynamics&and&& Topological&Insulators&

Can  we  Kill  the  Edge  Modes?  

•  Suppose  we  now  add  some  interacPon  between  the  fermions  •  Or  impuriPes  •  Just  something  that  kills  the  U(1)  flavour  symmetries.  

•  What  protects  the  massless  modes?  

Page 29: Gauge&Dynamics&and&& Topological&Insulators&

The  Z2  Invariant  

•  The  TKNN  Chern  all  now  vanish.  They  offer  no  protecPon.  

•  But  there  is  a  more  subtle  Z2  invariant  •  Relies  on  existence  of  Pme  reversal  with    

Kane  and  Mele  (2005)  

p2 ∈ [0, Bd)

�p ∈ T2

∆H =

�d2p ζ†1(�p)W (p1, p2) ζ1(�p) + (1 ↔ 2)

�p ∼ B

ABerryi (p) = i�ζ(p)| ∂

∂pi|ζ(p)�

|ζ(p)� → eiα(p)|ζ(p)� ⇒ A

Berryi → A

Berryi − ∂iα

C =1

BZ

FBerry

σxy =e2

filled bands

C

SU(2)F → U(1)A

ψ1 : C = −1

ψ2 : C = +1

U(1)F × U(1)A

σFxy = σA

xy = 0

σF−Axy =

e2

π

T : �p → −�p

T 2 = −1

8

Page 30: Gauge&Dynamics&and&& Topological&Insulators&

The  Importance  of  Time  Reversal  

•  Kramers  Theorem:  

�p ∼ B

ABerryi (p) = i�ζ(p)| ∂

∂pi|ζ(p)�

|ζ(p)� → eiα(p)|ζ(p)� ⇒ ABerryi → ABerry

i − ∂iα

C =1

BZ

FBerry

σxy =e2

filled bands

C

SU(2)F → U(1)A

ψ1 : C = −1

ψ2 : C = +1

U(1)F × U(1)A

σFxy = σA

xy = 0

σF−Axy =

e2

π

T : �p → −�p

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

8

p2 ∈ [0, Bd)

�p ∈ T2

∆H =

�d2p ζ†1(�p)W (p1, p2) ζ1(�p) + (1 ↔ 2)

�p ∼ B

ABerryi (p) = i�ζ(p)| ∂

∂pi|ζ(p)�

|ζ(p)� → eiα(p)|ζ(p)� ⇒ A

Berryi → A

Berryi − ∂iα

C =1

BZ

FBerry

σxy =e2

filled bands

C

SU(2)F → U(1)A

ψ1 : C = −1

ψ2 : C = +1

U(1)F × U(1)A

σFxy = σA

xy = 0

σF−Axy =

e2

π

T : �p → −�p

T 2 = −1

8

   implies  that  all  states  come  in  pairs  with    

At                          states  must  be  degenerate                      massless  edge  states  remain.  

σFxy = σA

xy = 0

σF−Axy =

e2

π

T : �p → −�p

T 2 = −1

�p = 0

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

9

•  This  is  the  essence  of  the  Z2  topological  insulator  

Page 31: Gauge&Dynamics&and&& Topological&Insulators&

Summary  

•  Massless  fermions  have  protected  Dirac  cones  

•  Massive  fermions  have  TKNN  invariants  

•  Adding  a  chemical  potenPal  gives  rise  to  the  simplest  Z2  topological  insulator.  

 

Fermions  in  a  the  background  of  a  W-­‐boson  laXce:  

Bp1

Bp2

WE

Page 32: Gauge&Dynamics&and&& Topological&Insulators&

The  End  

Page 33: Gauge&Dynamics&and&& Topological&Insulators&

A  Beder  W-­‐Boson  LaXce  

ψk(x, y) ∼ e−ikye−B/4(x+2k/B)2

�ξ(k)

0

ψ−i ∼ 4

�B

�dk

2πexp

�−iky − B

4

�x+

2k

B

�2��

ξ−i (k)

0

�(1.1)

ψ+i =

4

�B

�dk

2πexp

�+iky − B

4

�x+

2k

B

�2��

0

ξ+i (k)

�(1.2)

E2 = −B

Wx = −iWy = W�

n∈Z

e−πin2/2e−2πiny/de−B/2(x+2πn/Bd)2

Bd2 = 4π

Bd2 =4π√3

S = SYM −�

d3x TrDµφDµφ− λ

4

�Trφ2 − v2

2

�2

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

7

•   

•  W-­‐bosons  tachyonic  for  

•  Numerical  soluPons  found  (triangular  laXce  preferred)  •  (But  under  assumpPon  of  existence  of  a  laXce  structure)  

•  SoluPon  is  certainly  only  meta-­‐stable  in  quantum  theory  •  Monopoles  destroy  magnePc  field  

•  Is  soluPon  stable  classically?    

ψk(x, y) ∼ e−ikye−B/4(x+2k/B)2

�ξ(k)

0

ψ−i ∼ 4

�B

�dk

2πexp

�−iky − B

4

�x+

2k

B

�2��

ξ−i (k)

0

�(1.1)

ψ+i =

4

�B

�dk

2πexp

�+iky − B

4

�x+

2k

B

�2��

0

ξ+i (k)

�(1.2)

E2 = −B

Wx = −iWy = W�

n∈Z

e−πin2/2e−2πiny/de−B/2(x+2πn/Bd)2

Bd2 = 4π

Bd2 =4π√3

S = SYM −�

d3x TrDµφDµφ− λ

4

�Trφ2 − v2

2

�2

B > e2v2

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

7

ψk(x, y) ∼ e−ikye−B/4(x+2k/B)2

�ξ(k)

0

ψ−i ∼ 4

�B

�dk

2πexp

�−iky − B

4

�x+

2k

B

�2��

ξ−i (k)

0

�(1.1)

ψ+i =

4

�B

�dk

2πexp

�+iky − B

4

�x+

2k

B

�2��

0

ξ+i (k)

�(1.2)

E2 = −B

Wx = −iWy = W�

n∈Z

e−πin2/2e−2πiny/de−B/2(x+2πn/Bd)2

Bd2 = 4π

Bd2 =4π√3

S = SYM −�

d3x TrDµφDµφ− λ

4

�Trφ2 − v2

2

�2

B > e2v2

SU(2) → U(1)

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

7