gap optique geneva university 1 quantum communication with 1 photon: q cryptography with 2...

30
1 GAP Optique Geneva University Quantum Communication With 1 photon: Q cryptography With 2 photons: Q crypto, Bell tests, qutrits, plasmons With 3 photons: Q teleportation With 4 photons: entanglement swapping News from the industry forehead Nicolas Gisin Hugo Zbinden, Ivan Marcikic, Hugues de Riedmatten, Sylvain Fasel, Jeroen van Houwelingen, Rob Thew Group of Applied Physics, University of Geneva

Upload: corey-barnett

Post on 20-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

1

GA

P O

pti

que

Gen

eva

Uni

vers

ity

Quantum Communication

With 1 photon: Q cryptography

With 2 photons: Q crypto, Bell tests, qutrits, plasmons

With 3 photons: Q teleportation

With 4 photons: entanglement swapping

News from the industry forehead

Nicolas Gisin Hugo Zbinden, Ivan Marcikic, Hugues de Riedmatten,

Sylvain Fasel, Jeroen van Houwelingen, Rob Thew

Group of Applied Physics, University of Geneva

Page 2: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

2

GA

P O

pti

que

Gen

eva

Uni

vers

ity

Q communication in optical fibres

The transmission depends on the wavelength- Lower attenuation : 1310 nm (0.3 dB/km) and 1550 nm

(0.2dB/km) (telecom wavelengths)

Two problems : Losses and decoherence. How to minimize them ?

Time-bin coding with

Decoherence due to birefringence : Polarization Mode Dispersion

photons at telecom wavelength

Page 3: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

3

GA

P O

pti

que

Gen

eva

Uni

vers

ity

Time-bin qubits

qubit :

any qubit state can be created

and measured in any basis

variable coupler variable coupler

1 0

h

Alice Bob

D0

D1

switchswitch

1

0

10 10 iecc

0

1

2

10

2

10

2

1i0

2

1i0

10 10 iecc

State preparation Projective measurement

W. Tittel & G. Weihs, Quant. Inf. Comput. 1, Number 2, 3 (2001)

Page 4: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

4

GA

P O

pti

que

Gen

eva

Uni

vers

ity

BA

i

BAecc 1100

10

B

0A

01

B

1A

Detectors &Coincidence

Time-bin entanglement

PDC

Laser Variable coupler

Robust against decoherence

in optical fibers

0 20 40 60 80 1000

50

100

150

200

250

Noise level

coin

cide

nces

[/1

0s]

phase[arb unit]

After 2x2km of optical fibers

2 km optical fibers

V net =96% Photon pair creation in a non-linear

crystal

Parametric down-conversion (PDC)

Energy and momentum conservationispisp kkk

p=710nms=1310nm

i=1550nm

R. Thew et al., Phys. Rev. A 66, 062304 (2002)

Page 5: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

5

GA

P O

pti

que

Gen

eva

Uni

vers

ity

1-photon: Q cryptoAlice Bob

*2-

31 km

Siftedkey rate

OpticalQBER

Accident.QBER

DetectorQBER

Dispers.QBER

TotalQBER

Compensation 23 Hz 5.5 % 1 % 4 % 0 % 10.5 %Interf. Filter 11 Hz 4 % 1 % 1.7 % 0.5 % 7.2 %

Results: (PRA 63,012309, 2001 and S. Fasel et al., EJPD 30, 143, 2004)

CDCIF

Asynchronous heraldedsingle-photon source

TDC-like measurement (normalized)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

bin

Time between a click at detector A and a click at detector B [# trigger signals]

Num

ber

of e

vent

s ( n

orm

ailz

ed)

P(1)=60% P(2)=0.02% g(2)(0)=0.0012 34 KHz(quant-ph/0408136)

Page 6: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

6

GA

P O

pti

que

Gen

eva

Uni

vers

ity

A -1

A 1

B -1

B 1

2 5 k m S O F 2 5 k m D S F

2-photons: Bell test over 50 km2-photons: Bell test over 50 km

BobAlice

Bp00

Bp11

Bp10

Bp01

Time arrival on A1

Ap00

Ap11

Ap10

Ap01

Time arrival on B1

0 = short path

1 = long path

BABA

11002

1

Type I NLCCreating photons @ 1.3 & 1.55 m

deterministic sepation with WDM coupler

)cos(1),( ijVPij

Page 7: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

7

GA

P O

pti

que

Gen

eva

Uni

vers

ity

Idea: verify from time to time the phase

10800 10820 10840 10860 10880 10900 10920 10940

0

1

2

3

4

5

Stabilisation period~ 5 [s]

Measuring period~ 100 [s]

Inte

nsi

ty [

arb

. u

nits

]

Time [s]

Stabilisation of the interferometersStabilisation of the interferometers

APD

WDM

BS

FM

FM

EPRSource

PIN

Stabilised laser

Feedback

Phase controlerSwitch

Every 100 s the phase is brought back to a given value

Page 8: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

8

GA

P O

pti

que

Gen

eva

Uni

vers

ity

Bell test over 50 kmBell test over 50 km

With phase control we can choose four different settings = 0° or 90° and = -45° or 45°

Violation of Bell inequalities:)45,90()45,0()45,90()45,0( EEEES

0.0 0.2 0.4 0.6 0.8 1.0 1.2-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co

rre

latio

n F

un

ctio

n

Time [h]

006.0518.0)45,0( E

0.0 0.2 0.4 0.6 0.8 1.0 1.2-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co

rre

latio

n F

un

ctio

n

Time [h]

005.0554.0)45,90( E

0.0 0.2 0.4 0.6 0.8 1.0 1.2-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Cor

rela

tion

Fun

ctio

n

Time [h]

006.0533.0)45,0( E

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co

rre

latio

n F

un

ctio

n

Time [h]

007.0581.0)45,90( E

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co

rre

latio

n F

un

ctio

n

Time [h]

012.0185.2 SViolation of Bell inequalities

by more than 15

Marcikic et al., PRL, in press, quant-ph/0404124

Page 9: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

9

GA

P O

pti

que

Gen

eva

Uni

vers

ity

2-photons: Qutrit Entanglement

llecmmecssc llmm ii )(2

)(10

Page 10: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

10

GA

P O

pti

que

Gen

eva

Uni

vers

ity

Bell Violation with qutrits

I = 2.784 +/- 0.023

I(lhv) = 2 < I(2) = 2.829 < I(3) = 2.872

Page 11: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

11

GA

P O

pti

que

Gen

eva

Uni

vers

ity

2-photons: Plasmon assisted entanglement transfer

In collaboration with Prof. Erni, Zürich

SS+LL

SLLS

difference of detection tim e

eve

nts

TAC

150 m

G old 200nm th ick

700nm

300nm

Co

inci

de

nce

s

Phase Phase

phase

Reference fringesVisib ility : 90%

Plasm on assistedVisib ility : 90%

Co

inci

de

nce

s

a short lived phenomenon like a plasmon can be coherently excited at two times that differ by much more than its lifetime. At a macroscopic level this would lead to a “Schrödinger cat” living at two epochs that differ by much more than a cat’s lifetime.

Page 12: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

12

GA

P O

pti

que

Gen

eva

Uni

vers

ity

3 photons: Q teleportation & Q relays

EPR

Bell

2 bitsU

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0 50 100 150 200 250 300 350

Distance [km]

Fid

eli

ty

n=1 n=2 n=3 n=4

Alice Charlie

EPR source

Bob

BSM

Classical channel

2 km 2 km 2 km

J. D. Franson et al, PRA 66,052307,2002Collins et al.,quant-ph/0311101

Page 13: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

13

GA

P O

pti

que

Gen

eva

Uni

vers

ity

Q repeaters & relays

*entanglement

*entanglement

entanglement

Bellmeasurement

. .

QND measurement+ Q memory

*entanglement

*entanglement

Bellmeasurement

.??

RE

PE

AT

ER

R

EL

AY

H. Briegel, W. Dür, J. I. Cirac and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998)

J. D. Franson et al, PRA 66,052307,2002; D. Collins et al., quant-ph/0311101

Page 14: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

14

GA

P O

pti

que

Gen

eva

Uni

vers

ity

2 km of optical fiber 2 km of optical fiber

AliceAlice:creation of qubits to be teleportedAliceAlice:creation of qubits to be teleported

AliceAlice

55 m

BobBob:analysis of the teleported qubit, 55 m from Charlie

BobBob:analysis of the teleported qubit, 55 m from Charlie

BobBob

CharlieCharlie:the Bell measurementCharlieCharlie:the Bell measurement

CharlieCharliefs laser @ 710 nmfs laser @ 710 nm

Experimental setupExperimental setup

creation of entangled qubitscreation of entangled qubits

coincidence electronicscoincidence electronics

&

LBO

RG

WDM

RG

WDM

GeInGaAs

LBO

BS

InGaAs

fs l

aser

sync out

1.3

m 1.3m

1.5 m

1.5 m

2km 2km

2km

H. de Riedmaten et al.,PRL 92, 047904-1/4, 2004

I. Marcikic et al., Nature, 421, 509-513, 2003

Page 15: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

15

GA

P O

pti

que

Gen

eva

Uni

vers

ity

resultsresults

0 2 4 6 8 10 12 14 16 18

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18

0

5

10

15

20

25

30

35

40

fou

r-fo

ld c

oin

cid

ence

s [1

/50

0s]

Phase [arb. units]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Th

ree-

fold

co

inci

den

ce [

/500

s]

fou

r-fo

ld c

oin

cid

ence

s [1

/50

0s]

Phase [arb. units]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Th

ree-

fold

co

inci

den

ce [

/500

s]

Equatorial statesEquatorial states

Raw visibility : VRaw visibility : Vrawraw= 55 = 55 ±± 5 %5 %

2V1F raweq = 77.5 = 77.5 ±± 2.5 % 2.5 %

1

0

1,0F

0,1F

= = 78 78 ± ± 3%3%

= = 77 77 ± ± 3%3%

North & south polesNorth & south poles

wrongcorrect

correct

CC

CF

mean fidelity: mean fidelity: FFpolespoles=77.5 =77.5 ±± 3 % 3 %

0 1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

1.0

coin

cid

ence

[arb

un

it]

time between start and stop [ns]

3

1

3

2

peqmean FFF

77.5 ±2.5 %

Mean FidelityMean Fidelity

» 67 % (no entanglement)

Page 16: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

16

GA

P O

pti

que

Gen

eva

Uni

vers

ity

2 km of optical fiber 2 km of optical fiber

AliceAlice:creation of qubits to be teleportedAliceAlice:creation of qubits to be teleported

AliceAlice

55 m

BobBob:analysis of the teleported qubit, 55 m from Charlie

BobBob:analysis of the teleported qubit, 55 m from Charlie

BobBob

CharlieCharlie:the Bell measurementCharlieCharlie:the Bell measurement

CharlieCharliefs laser @ 710 nmfs laser @ 710 nm

Experimental setupExperimental setup

creation of entangled qubitscreation of entangled qubits

coincidence electronicscoincidence electronics

&

LBO

RG

WDM

RG

WDM

GeInGaAs

LBO

BS

InGaAs

fs l

aser

sync out

1.3

m 1.3m

1.5 m

1.5 m

2km 2km

2km

H. de Riedmaten et al.,PRL 92, 047904-1/4, 2004

On the same spool !

See Halder et alquant-ph/0408092

Page 17: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

17

GA

P O

pti

que

Gen

eva

Uni

vers

ity

A B C D

4-photons: Entanglement swapping

Bell state measurement

Entangled photons that never interacted

EPR source EPR source

BAi

BA e 1,10,0 )()( AB DC

iDC e 1,10,0 )()(

CD

Page 18: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

18

GA

P O

pti

que

Gen

eva

Uni

vers

ity

Sources of time-bin entangled photons

BAi

BAABe 1,10,0

2

1)(

BAi

BACDe 1,10,0

2

1)(

The experiment

Bell state measurement

CBCBBC0,11,0

2

1)(

CBCBi

AD)( 0,11,0e

21

Entanglement analysis

A lice B o b

Actively stabilized interferometers

1km1km

Page 19: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

19

GA

P O

pti

que

Gen

eva

Uni

vers

ity

In the experiment :Partial Bell state measurement

Entanglement swapping

)()( )()( CDABABCD

AD

i

BC

AD

i

BC

ADBC

ADBC

e

e

)()(

)()(

)()(

)()(

)2(

)2(

Four Bell states involved

in the experiment !

Page 20: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

20

GA

P O

pti

que

Gen

eva

Uni

vers

ity

Superposition basis: results

V = (80 ± 4) %F 90 %

78 hours of measurement !

100 200 300 400 500 6000

10

20

30

40

50

60

70

80

90

100

Four

-pho

ton

coin

cide

nces

[/6

h]

Phase [degrees]

0

1000

2000

3000

4000

5000

3-p

hoto

n co

inci

denc

es [

/6h]

with

out B

SM

Page 21: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

21

GA

P O

pti

que

Gen

eva

Uni

vers

ity

Results: computational basis

0

10

20

30

40

50

60

70

80

1 2 3 4

Fou

r ph

oton

coi

ncid

ence

s [

/ hou

r]

DA 0,0

DA 1,0DA 0,1

DA 1,1

%5.31.91

Total

CorrectMean Fidelity =

Page 22: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

22

GA

P O

pti

que

Gen

eva

Uni

vers

ity

News from the industry forehead

http://www.swissquantum.deckpoint.ch/embargo/index_en.php

Yesterday, September 29, id Quantique, DeckPoint and the University of Geneva officially inaugurated the first data archive site secured with Quantum Cryptography.

Page 23: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

23

GA

P O

pti

que

Gen

eva

Uni

vers

ity

Data archiving network secured byQuantum Crypto

10 km

http://www.swissquantum.deckpoint.ch/embargo/index_en.php

Page 24: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

24

GA

P O

pti

que

Gen

eva

Uni

vers

ity

Quantis: Quantum random numbers on demand (www.randomnumbers.info)

4 Mbit/s per module, up to 4 modules on one PC card

1 light source1 beam splitter2 photon countersin a few cm3

(4x5x1 cm3) !!!

www. idquantique.com

Page 25: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

25

GA

P O

pti

que

Gen

eva

Uni

vers

ity

Few « qubit » ApplicationsPhoton-counting OTDR

Coherent Q measurement of the degree of polarization:

0 20 40 60 80 100 120

0.00.10.20.30.40.50.60.70.80.91.0

symbole plein: polarimètre symbole vide: projection sur (-)

DOP=1 DOP=0.74 DOP=0.34

DO

P

temps(s)

J.Lightwave Tech, 2, 390, 2004

PRL 91, 167902, 2003

Page 26: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

26

GA

P O

pti

que

Gen

eva

Uni

vers

ity

Conclusions

Where are the applications?

Next September 29, id Quantique, DeskPoint and the University of Geneva will officially inaugurate the

first data archive site secured with Quantum Cryptography.

Page 27: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

27

GA

P O

pti

que

Gen

eva

Uni

vers

ity

Single Photon Sources

919 nm / 0.7 nm

650 nm/ >50 nm

1550 nm / 7nm

/

Quantum Dot

NVHigh pump

Low pump

271.40.12g(2)(0) [%]

0.040.0020.30.02P2 [%]

8.32.26060P1 [%]

76 MHz5.3 MHz803 kHz34 kHzNT

Beveratos et. al., PRL 89, 187901 (2002)Vuckovic et. al., APL 82, 3596 (2003)

Fasel et. al. in preparation 21

2)2(

P

P2)0(g

Page 28: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

28

GA

P O

pti

que

Gen

eva

Uni

vers

ity

Size of the classical communication

One proton in one cm3 at a temperature of 300 K:

][017.12m

pkT 10

2

mp

h

233

019.1)dim(

L

Hd

155)(ln 22 d bits

1020 protons in one cm3 at a temperature of 300 K 1020 x 155 1022 bits

To be compared to today’s optical fiber communication in labs:

1 Tbyte x 1024 WDW channels x 1000 fibers 1019 bits/sec.

1 hour !!

bits

Page 29: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

29

GA

P O

pti

que

Gen

eva

Uni

vers

ity

entangled time-bin qubit

variable coupler

non-linearcrystal B

sA

sl

B

lA

AAi

BA 11e00

depending on coupling ratio and phase , maximally and non-maximally entangled states can be createdR. Thew et al, PRA 66, 062304, 2002

Extensions to entanglement in higher dimensions:- qutrits: R. Thew et al, quant-ph/0307122- up to dimesnion 20: H. Deriedmatten et al, quant-ph/0309058 5 10 15 20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Vis

ibil

ity

Dimension d

Page 30: GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With

30

GA

P O

pti

que

Gen

eva

Uni

vers

ity

Bell state measurementBell state measurement

BABABBAAii 0110101010

21

BABABBAAii 0110101001

21

)1010(01102121 BBAA

i BABA

011001102121

H. Weinfurter, Europhysics Letters 25, 559-564 (1994)H. de Riedmatten et al., Phys. Rev. A 67, 022301 (2003)

1 2

A B