gamma and betta function adv calculus schaum

Upload: suta-vijaya

Post on 04-Apr-2018

233 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/30/2019 Gamma and Betta Function Adv Calculus Schaum

    1/17

    375

    Gamma and Beta

    Functions

    THE GAMMA FUNCTION

    The gamma function may be regarded as a generalization of n! (n-factorial), where n is any positive

    integer to x!, where x is any real number. (With limited exceptions, the discussion that follows will be

    restricted to positive real numbers.) Such an extension does not seem reasonable, yet, in certain ways,

    the gamma function defined by the improper integral

    x

    10

    tx1

    et

    dt 1

    meets the challenge. This integral has proved valuable in applications. However, because it cannot be

    represented through elementary functions, establishment of its properties take some effort. Some of the

    important ones are outlined below.

    The gamma function is convergent for x > 0. (See Problem 12.18, Chapter 12.)

    The fundamental property

    x 1 xx 2

    may be obtained by employing the technique of integration by

    parts to (1). The process is carried out in Problem 15.1.

    From the form (2) the function x can be evaluated for all

    x > 0 when its values in the interval 1 % x < 2 are known.

    (Any other interval of unit length will suffice.) The table and

    graph in Fig. 15-1 illustrates this idea.

    TABLES OF VALUES AND GRAPH OF THE GAMMA

    FUNCTION

    n n

    1.00 1.00001.10 0.9514

    1.20 0.9182

    1.30 0.8975

    5

    4

    3

    2

    1

    _1

    _2

    _3

    _4

    _5

    _5 _4_3 _2 _1 1 2 3 4 5

    n

    (n)

    Fig. 15-1

    Copyright 2002, 1963 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

  • 7/30/2019 Gamma and Betta Function Adv Calculus Schaum

    2/17

    1.40 0.8873

    1.50 0.8862

    1.60 0.8935

    1.70 0.9086

    1.80 0.93141.90 0.9618

    2.00 1.0000

    The equation (2) is a recurrence relationship that leads to the factorial concept. First observe that if

    x 1, then (1) can be evaluated, and in particular,1 1:

    From (2)

    x 1 xx xx 1x 1 xx 1x 2 x kx k

    Ifx n, where n is a positive integer, thenn 1 nn 1n 2 . . . 1 n! 3

    Ifx is a real number, then x! x 1 is defined by x 1. The value of this identification is inintuitive guidance.

    If the recurrence relation (2) is characterized as a differential equation, then the definition of xcan be extended to negative real numbers by a process called analytic continuation. The key idea is that

    even though x is defined in (1) is not convergent for x < 0, the relation x 1x

    x 1 allows themeaning to be extended to the interval 1 < x < 0, and from there to 2 < x < 1, and so on. Ageneral development of this concept is beyond the scope of this presentation; however, some information

    is presented in Problem 15.7.The factorial notion guides us to information about x 1 in more than one way. In the

    eighteenth century, Sterling introduced the formula (for positive integer values n)

    limn!1

    ffiffiffiffiffiffi

    2p

    nn1

    en

    n! 1 4

    This is called Sterlings formula and it indicates that n! asymptotically approachesffiffiffiffiffiffi

    2p

    nn1

    en for large

    values ofn. This information has proved useful, since n! is difficult to calculate for large values ofn.

    There is another consequence of Sterlings formula. It suggests the possibility that for sufficiently

    large values ofx,

    x!

    x

    1

    %

    ffiffiffiffiffiffi

    2p

    xx1

    ex

    5a

    (An argument supporting this is made in Problem 15.20.)

    It is known that x 1 satisfies the inequalityffiffiffiffiffiffi

    2p

    xx1

    ex

    < x 1 0;y > 0 and either or both x < 1 or y < 1, the

    integral is improper but convergent.It is shown in Problem 15.11 that the beta function can be expressed through gamma functions in the

    following way

    Bx;y xy

    xy17

    Many integrals can be expressed through beta and gamma functions. Two of special interest are

    =20

    sin2x1 cos2y1 d1

    2Bx;y

    1

    2

    xy

    xy18

    1

    0

    xp1

    1 xdx pp 1

    sin p0 < p < 1 19

    See Problem 15.17. Also see Page 377 where a classical reference is given. Finally, see Chapter 16,

    Problem 16.38 where an elegant complex variable resolution of the integral is presented.

    DIRICHLET INTEGRALS

    IfV denotes the closed region in the first octant bounded by the surfacex

    a

    p

    y

    b

    q

    z

    c

    r 1 and

    the coordinate planes, then if all the constants are positive,

    V

    x

    1

    y

    1

    z

    1

    dxdydz

    abc

    pqr

    p

    q

    r

    1

    p

    q

    r

    20

    Integrals of this type are called Dirichlet integrals and are often useful in evaluating multiple

    integrals (see Problem 15.21).

    Solved Problems

    THE GAMMA FUNCTION

    15.1. Prove: (a) x 1 xx; x > 0; b n 1 n!; n 1; 2; 3; . . . .

    a v 1

    10

    xv ex dx limM1

    M0

    xv ex dx

    limM1

    xvexjM0

    M0

    exvxv1 dx

    & '

    limM1

    Mv eM v

    M0

    xv1 ex dx

    & ' vv if v > 0

    b 1 1

    0

    ex dx limM1

    M

    0

    ex dx limM1

    1 eM 1:

    Put n 1; 2; 3; . . . in n 1 nn. Then

    2 11 1; 3 22 2 1 2!; 4 33 3 2! 3!

    In general, n 1 n! ifn is a positive integer.

  • 7/30/2019 Gamma and Betta Function Adv Calculus Schaum

    6/17

    15.2. Evaluate each of the following.

    a 623

    5!

    2 2! 5 4 3 2

    2 2 30

    b 52

    12

    323

    2

    12

    32 1

    21

    2

    12

    3

    4

    c 32:55:5

    2!1:50:50:54:53:52:51:50:50:5

    16

    315

    d 6 83

    5 23

    6532

    32

    3

    5 23

    4

    3

    15.3. Evaluate each integral.

    a 10

    x3 ex dx 4 3! 6

    b1

    0

    x6 e2x dx: Let 2x 7. Then the integral becomes1

    0

    y

    2

    6ey

    dy

    2 1

    27

    10

    y6 ey dy 727

    6!27

    458

    15.4. Prove that 12 ffiffiffip .

    12

    1

    0

    x1=2 ex dx. Letting x u2 this integral becomes

    2

    10

    eu2

    du 2ffiffiffip

    2

    ffiffiffip using Problem 12.31, Chapter 12

    This result also is described in equation (11a,b) earlier in the chapter.

    15.5. Evaluate each integral.

    a1

    0

    ffiffiffiy

    pey

    2

    dy. Letting y3 x, the integral becomes1

    0 ffiffiffiffiffiffiffiffix1=3

    pex 1

    3x2=3 dx 1

    3

    10

    x1=2 ex dx 13

    1

    2

    ffiffiffi

    p

    3

    b1

    0

    34x2

    dx 1

    0

    eln 34x2 dz 1

    0

    e4 l n 3z2

    dz. Let 4 l n 3z2 x and the integral becomes1

    0

    ex dx1=2ffiffiffiffiffiffiffiffiffiffiffi4 l n 3

    p !

    12ffiffiffiffiffiffiffiffiffiffiffi

    4 l n 3p

    10

    x1=2 ex dx 1=22ffiffiffiffiffiffiffiffiffiffiffi

    4 l n 3p

    ffiffiffi

    p

    4ffiffiffiffiffiffiffiffi

    ln 3p

    (c)

    10

    dxffiffiffiffiffiffiffiffiffiffiffiffi lnx

    p : Let lnx u. Then x eu. When x 1; u 0; when x 0; u 1. The integralbecomes

    1

    0

    euffiffiffiupdu

    1

    0

    u1=2 eu du

    1=2

    ffiffiffip

    15.6. Evaluate

    10

    xm eaxn

    dx where m; n; a are positive constants.

    380 GAMMA AND BETA FUNCTIONS [CHAP. 15

  • 7/30/2019 Gamma and Betta Function Adv Calculus Schaum

    7/17

    Letting axn y, the integral becomes1

    0

    y

    a

    1=n& 'mey d

    y

    a

    1=n& ' 1

    nam1=n

    10

    ym1=n1 ey dy 1nam1=n

    m 1n

    15.7. Evaluate (a) 1=2; b 5=2.

    We use the generalization to negative values defined by x x 1x

    .

    a Letting x 12; 1=2 1=21=2 2

    ffiffiffi

    p:

    b Letting x 3=2; 3=2 1=23=2 2 ffiffiffip3=2

    4ffiffiffi

    p

    3; using a:

    Then 5=2 3=25=2 8

    15

    ffiffiffi

    p:

    15.8. Prove that

    10

    xmln xn dx 1nn!

    m 1n1, where n is a positive integer and m > 1.

    Letting x ey, the integral becomes 1n1

    0

    yn em1y dy. Ifm 1y u, this last integral becomes

    1

    n

    1

    0

    un

    m 1n e

    u du

    m 1

    1n

    m 1n

    1

    1

    0

    un eu du

    1n

    m 1n

    1

    n

    1

    1nn!

    m 1n

    1

    Compare with Problem 8.50, Chapter 8, page 203.

    15.9. A particle is attracted toward a fixed point O with a force inversely proportional to its instanta-

    neous distance from O. If the particle is released from rest, find the time for it to reach O.

    At time t 0 let the particle be located on the x-axis at x a > 0 and let O be the origin. Then byNewtons law

    md2x

    dt2 k

    x1

    where m is the mass of the particle and k > 0 is a constant of proportionality.

    Letdx

    dt v, the velocity of the particle. Then d

    2x

    dt2 dv

    dt dv

    dx dxdt

    v dvdx

    and (1) becomes

    mvdv

    dx k

    xor

    mv2

    2 k lnx c 2

    upon integrating. Since v 0 at x a, we find c k ln a. Then

    mv2

    2 k ln a

    xor v dx

    dt

    ffiffiffiffiffi2k

    m

    r ffiffiffiffiffiffiffiffiffiln

    a

    x

    r3

    where the negative sign is chosen since x is decreasing as t increases. We thus find that the time T taken for

    the particle to go from x a to x 0 is given by

    Tffiffiffiffiffim

    2k

    r a0

    dxffiffiffiffiffiffiffiffiffiffi ffiffiffiln a=x

    p 4

    CHAP. 15] GAMMA AND BETA FUNCTIONS 381

  • 7/30/2019 Gamma and Betta Function Adv Calculus Schaum

    8/17

    Letting ln a=x u or x aeu, this becomes

    T a

    ffiffiffiffiffim

    2k

    r 10

    u1=2 eu du a

    ffiffiffiffiffim

    2k

    r1

    2 a

    ffiffiffiffiffiffiffim

    2k

    r

    THE BETA FUNCTION

    15.10. Prove that (a) Bu; v Bv; u; b Bu; v 2

    =20

    sin2u1 cos2v1 d.

    (a) Using the transformation x 1 y, we have

    Bu; v

    10

    xu11 xv1 dx

    10

    1 yu1yv1 dy

    10

    yv11yu1 dy Bv; u

    (b) Using the transformation x sin2 , we have

    Bu; v

    10

    xu11 xv1 dx

    =20

    sin2 u1cos2 v1 2sin cos d

    2

    =20

    sin2u1 cos2v1 d

    15.11. Prove that Bu; v uv

    u vu; v > 0.

    Letting z2 x2; we have u

    10

    zu1 ez dx 2

    10

    x2u1 ex2

    dx:

    Similarly, v 2

    10

    y2v1 ey2

    dy: Then

    uv 4

    10

    x2u1 ex2

    dx

    10

    y2v1 ey2

    dy

    4

    10

    10

    x2u1y2v1 ex2y2 dxdy

    Transforming to polar coordiantes, x cos;y sin,

    uv 4 =2

    01

    0

    2uv1 e

    2

    cos2u1 sin2v1 d d

    4

    10

    2uv1 e

    2

    d

    =20

    cos2u1 sin2v1 d

    2u v

    =20

    cos2u1 sin2v1 d u vBv; u

    u vBu; v

    using the results of Problem 15.10. Hence, the required result follows.

    The above argument can be made rigorous by using a limiting procedure as in Problem 12.31,

    Chapter 12.

    15.12. Evaluate each of the following integrals.

    a

    10

    x41 x3 dx B5; 4 54

    9

    4!3!

    8!

    1

    280

    382 GAMMA AND BETA FUNCTIONS [CHAP. 15

  • 7/30/2019 Gamma and Betta Function Adv Calculus Schaum

    9/17

    b2

    0

    x2 dxffiffiffiffiffiffiffiffiffiffiffi2 x

    p : Letting x 2v; the integral becomes

    4ffiffiffi

    2p 1

    0

    v2ffiffiffiffiffiffiffiffiffiffiffi1 vp dv 4 ffiffiffi2p

    1

    0 v2

    1 v1=2

    dv 4 ffiffiffi2p B3; 12 4 ffiffiffi2p

    3

    1=2

    7=2 64 ffiffiffi2

    p

    15

    ca

    0

    y4ffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffia2 y2

    qdy: Letting y2 a2x or y ffiffiffixp ; the integral becomes

    a61

    0

    x3=21 x1=2 dx a6B5=2; 3=2 a65=23=2

    4 a6

    16

    15.13. Show that

    =20

    sin2u1 cos2v1 d uv2u v u; v > 0.

    This follows at once from Problems 15.10 and 15.11.

    15.14. Evaluate (a)

    =20

    sin6 d; b=2

    0

    sin4 cos5 d; c

    0

    cos4 d.

    a Let 2u 1 6; 2v 1 0; i.e., u 7=2; v 1=2; in Problem 15.13:

    Then the required integral has the value7=21=2

    24 5

    32:

    b Letting 2u 1 4; 2v 1 5; the required integral has the value 5=23211=2 8315 :

    c The given integral 2=2

    0

    cos4 d:

    Thus letting 2u 1 0; 2v 1 4 in Problem 15.13, the value is 21=25=223

    3

    8.

    15.15. Prove

    =20

    sinp d=2

    0

    cosp d a 1 3 5 p 12 4 6 p

    2if p is an even positive integer,

    (b)2 4 6 p 1

    1

    3

    5

    pis p is an odd positive integer.

    From Problem 15.13 with 2u 1 p; 2v 1 0, we have=2

    0

    sinp d 12p 112

    212p 2

    (a) Ifp 2r, the integral equalsr 1

    21

    2

    2r 1 r 1

    2r 3

    2 1

    21

    2 1

    2

    2rr 1 1 2r 12r 3 1

    2r2r 2 2

    2 1 3 5 2r 1

    2 4 6 2r

    2

    (b) Ifp 2r 1, the integral equals

    r

    1

    12

    2r 32

    r

    r

    1

    1

    ffiffiffi

    p

    2r 12r 1

    2 1

    2

    ffiffiffip

    2

    4

    6

    2r

    1 3 5 2r 1

    In both cases

    =20

    sinp d=2

    0

    cosp d, as seen by letting =2 .

    CHAP. 15] GAMMA AND BETA FUNCTIONS 383

  • 7/30/2019 Gamma and Betta Function Adv Calculus Schaum

    10/17

    15.16. Evaluate (a)

    =20

    cos6 d; b=2

    0

    sin3 cos2 d; c2

    0

    sin8 d.

    (a) From Problem 15.15 the integral equals1 3 52

    4

    6 5

    32[compare Problem 15.14(a)].

    (b) The integral equals=20

    sin3 1 sin2 d=2

    0

    sin3 d=2

    0

    sin5 d 21 3

    2 41 3 5

    2

    15

    The method of Problem 15.14(b) can also be used.

    c The given integral equals 4=2

    0

    sin8 d 4 1 3 5 72 4 6 8

    2

    35

    64:

    15.17. Given

    10

    xp1

    1 x dx

    sinp, show that p1 p

    sinp, where 0 < p < 1.

    Lettingx

    1 x y or x y

    1 y, the given integral becomes1

    0

    yp11 yp dy Bp; 1 p p1 p

    and the result follows.

    15.18. Evaluate

    10

    dy

    1 y4.

    Let y4 x. Then the integral becomes 14

    10

    x3=4

    1

    xdx

    4sin=4

    ffiffiffi2

    p

    4by Problem 15.17 with p 1

    4.

    The result can also be obtained by letting y2 tan .

    15.19. Show that

    20

    xffiffiffiffiffiffiffiffiffiffiffiffiffi

    8 x33p

    dx 169ffiffiffi

    3p .

    Letting x3 8y or x 2y1=3, the integral comes1

    0

    2y1=3 ffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffi

    81 y3p

    23y2=3 dy 8

    3

    10

    y1=31 y1=3 dy 83B2

    3; 4

    3

    83

    234

    3

    2 8

    91

    32

    3 8

    9

    sin =3 16

    9 ffiffiffi3p

    STIRLINGS FORMULA

    15.20. Show that for large positive integers n; n! ffiffiffiffiffiffiffiffi

    2np

    nn en approximately.

    By definition z 1

    0

    tz1 et dt. Let lfz x 1 then

    x 1 1

    0

    tx et dt 1

    0

    etln tx

    dt 1

    0

    etx ln t dt 1

    For a fixed value ofx the function x ln t

    t has a relative maximum for t

    x (as is demonstrated by

    elementary ideas of calculus). The substutition t xy yields

    x 1 ex1x

    ex lnxyy dy xx ex1x

    ex ln1y

    xy dy 2

    384 GAMMA AND BETA FUNCTIONS [CHAP. 15

  • 7/30/2019 Gamma and Betta Function Adv Calculus Schaum

    11/17

    To this point the analysis has been rigorous. The following formal steps can be made rigorous by

    incorporating appropriate limiting procedures; however, because of the difficulty of the proofs, they shall be

    omitted.

    In (2) introduce the logarithmic expansion

    ln 1 yx

    y

    x y

    2

    2x2 y

    3

    3x3 3

    and also let

    y ffiffiffixp v; dy ffiffiffixp dvThen

    x 1 xx ex ffiffiffixp1x

    ev2=2v3=3ffiffixp dv 4

    For large values ofx

    x 1 % xx ex ffiffiffixp 1

    x ev

    2

    =2 dv xx ex ffiffiffiffiffiffiffiffi2xpWhen x is replaced by integer values n, then the Stirling relation

    n! x 1 %ffiffiffiffiffiffiffiffi

    2xp

    xx ex 5is obtained.

    It is of interest that from (4) we can also obtain the result (12) on Page 378. See Problem 15.72.

    DIRICHLET INTEGRALS

    15.21. Evaluate I

    V

    x1y1 z1 dxdydz where V is

    the region in the first octant bounded by the sphere

    x2 y2 z2 1 and the coordinate planes.Let x2 u;y2 v; z2 w. Then

    I r

    u1=2 v1=2 w1=2du

    2ffiffiffiu

    p dv2

    ffiffiffiv

    p dw2ffiffiffiffiw

    p

    18

    r

    u=21 v=21 w=21 dudvdw 1

    wherer is the region in the uvw space bounded by the plane

    u v w 1 and the uv; vw, and uw planes as in Fig. 15-2.Thus,

    I 18

    1u0

    1uv0

    1uvw0

    u=21 v=21 w=21 dudvdw 2

    14

    1u0

    1uv0

    u=21 v=211 u v=2 dudv

    14

    1u0

    u=211uv0

    v=21 1 u v=2 dv& '

    du

    Letting v 1 ut, we have1uv0

    v=21 1 u v=2 dv 1 u=2 1t0

    t=21 1 t=2 dt

    1 u=2 =2=2 1 =2 1

    CHAP. 15] GAMMA AND BETA FUNCTIONS 385

    Fig. 15-2

  • 7/30/2019 Gamma and Betta Function Adv Calculus Schaum

    12/17

    so that (2) becomes

    I 14

    =2=2 1 =2 1

    1u0

    u=21 1 u=2 du 3

    14

    =2

    =2 1 =2 1

    =2

    =2 1 =2 1

    =2

    =2

    =28 =2 1

    where we have used =2=2 =2 1.The integral evaluated here is a special case of the Dirichlet integral (20), Page 379. The general case

    can be evaluated similarly.

    15.22. Find the mass of the region bounded by x2 y2 z2 a2 if the density is x2y2z2.

    The required mass 8

    V

    x2y2z2 dxdydz, where V is the region in the first octant bounded by the

    sphere x2

    y2

    z2

    a2 and the coordinate planes.

    In the Dirichlet integral (20), Page 379, let b c a;p q r 2 and 3. Then therequired result is

    8 a3 a3 a32 2 2

    3=23=23=21 3=2 3=2 3=2

    4s9

    945

    MISCELLANEOUS PROBLEMS

    15.23. Show that

    10

    ffiffiffiffiffiffiffiffiffiffiffiffiffi1 x4

    pdx f1:4g

    2

    6 ffiffiffiffiffiffi2p .

    Let x4 y. Then the integral becomes1

    4

    10

    y3=41 y1=2 dy 14

    1=43=27=4

    ffiffiffi

    p

    6

    f1=4g21:43=4

    From Problem 15.17 with p 1=4;1=43=4 ffiffiffi

    2p

    so that the required result follows.

    15.24. Prove the duplication formula 22p1pp 1

    2 ffiffiffip 2p.

    Let I=2

    0

    sin2p xdx; J=2

    0

    sin2p 2xdx.

    Then I 12Bp 1

    2; 1

    2 p

    12 ffiffiffip

    2p 1Letting 2x u, we find

    J 12

    0

    sin2p u du =2

    0

    sin2p u du I

    J=2

    0

    2sinx cosx2pdx 22p=2

    0

    sin2p x cos2p x dxBut

    22p1 Bp 12;p 1

    2 2

    2p1fp 12g2

    2p 1Then since I J,

    p 12 ffiffiffip

    2pp 22p1fp 1

    2g2

    2p2p

    386 GAMMA AND BETA FUNCTIONS [CHAP. 15

  • 7/30/2019 Gamma and Betta Function Adv Calculus Schaum

    13/17

    and the required result follows. (See Problem 15.74, where the duplication formula is developed for the

    simpler case of integers.)

    15.25. Show that =2

    0

    dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffi1 1

    2sin2

    q f1=4g2

    4ffiffiffip

    .

    Consider

    I=2

    0

    dffiffiffiffiffiffiffiffiffifficos

    p =2

    0

    cos1=2 d 12B1

    4; 1

    2

    14 ffiffiffip

    234

    f14g2

    2ffiffiffiffiffiffi

    2p

    as in Problem 15.23.

    But I=2

    0

    dffiffiffiffiffiffiffiffiffifficos

    p =2

    0

    dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficos2 =2 sin2 =2

    p =20

    dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 2sin2 =2

    p :

    Lettingffiffiffi

    2p sin =2 sin in this last integral, it becomes ffiffiffi2p =2

    0

    dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 1

    2sin2

    q, from which the result

    follows.

    15.26. Prove that

    10

    cos x

    xpdx

    2p cosp=2 ; 0 < p < 1.

    We have1

    xp 1p

    10

    up1 exu du. Then

    10

    cosx

    xpdx 1

    p1

    0

    10

    up1 exu cosxdudx

    1

    p 1

    0

    up

    1 u2du

    1

    where we have reversed the order of integration and used Problem 12.22, Chapter 12.

    Letting u2 v in the last integral, we have by Problem 15.1710

    up

    1 u2 du 1

    2

    10

    vp1=2

    1 v dv

    2sinp 1=2

    2cosp=22

    Substitution of (2) in (1) yields the required result.

    15.27. Evaluate

    10

    cos x2 dx.

    Letting x2

    y, the integral becomes

    1

    21

    0

    cosyffiffiffiyp

    dy

    1

    2

    212 cos=4 ! 12 ffiffiffiffiffiffiffiffi=2p

    by Problem 15.26.

    This integral and the corresponding one for the sine [see Problem 15.68(a)] are called Fresnel integrals.

    Supplementary Problems

    THE GAMMA FUNCTION

    15.28. Evaluate (a)7

    243 ; b33=29=2 ; c 1=23=25=2.

    Ans. a 30; b 16=105; c 38

    3=2

    CHAP. 15] GAMMA AND BETA FUNCTIONS 387

  • 7/30/2019 Gamma and Betta Function Adv Calculus Schaum

    14/17

    15.29. Evaluate (a)

    10

    x4 ex dx; b1

    0

    x6 e3x dx; c1

    0

    x2 e2x2

    dx:

    Ans. a 24; b 80243

    ; cffiffiffiffiffiffi

    2p

    16

    15.30. Find (a)

    10

    ex2

    dx; b1

    0

    ffiffiffix4

    pe

    ffiffix

    pdx; c

    10

    y3 e2y5

    dy.

    Ans. a 13

    13; b 3

    ffiffiffi

    p

    2; c 4=5

    5ffiffiffiffiffi

    165p

    15.31. Show that

    10

    estffiffit

    p dt ffiffiffi

    8

    r; s > 0.

    15.32. Prove that v 1

    0

    ln1

    x

    v1dx; v > 0.

    15.33. Evaluate (a)

    10

    lnx4 dx; b1

    0

    x lnx3 dx; c1

    0

    ffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiln1=x3

    pdx.

    Ans: a 24; b 3=128; c 13

    13

    15.34. Evaluate (a) 7=2; b 1=3. Ans: a 16 ffiffiffip =105; b 3 2=315.35. Prove that lim

    x!mx 1 where m 0; 1; 2; 3; . . .

    15.36. Prove that ifm is a positive interger, m 12 1

    m2mffiffiffi

    p1

    3

    5

    2m

    1

    15.37. Prove that 01

    10

    ex lnx dx is a negative number (it is equal to , where 0:577215 . . . is calledEulers constant as in Problem 11.49, Page 296).

    THE BETA FUNCTION

    15.38. Evaluate (a) B3; 5; b B3=2; 2; c B1=3; 2=3: Ans: a 1=105; b 4=15; c 2=ffiffiffi

    3p

    15.39. Find (a)

    10

    x21 x3 dx; b1

    0

    ffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffi1 x=x

    pdx; c

    20

    4 x23=2 dx.

    Ans: a 1=60; b =2; c 3

    15.40. Evaluate (a)

    40

    u3=24 u5=2 du; b3

    0

    dxffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffi3x x2

    p : Ans: a 12; b

    15.41. Prove that

    a0

    dyffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffia4 y4

    p f1=4g24a

    ffiffiffiffiffiffi2

    p :

    15.42. Evaluate (a)

    =20

    sin4 cos4 d; b2

    0

    cos6 d: Ans: a 3=256; b 5=8

    15.43. Evaluate (a)

    0sin

    5

    d; b =2

    0cos

    5

    sin2

    d: Ans: a 16=15; b 8=105

    15.44. Prove that

    =20

    ffiffiffiffiffiffiffiffiffiffitan

    pd =

    ffiffiffi2

    p.

    388 GAMMA AND BETA FUNCTIONS [CHAP. 15

  • 7/30/2019 Gamma and Betta Function Adv Calculus Schaum

    15/17

    15.45. Prove that (a)

    10

    x dx

    1 x6

    3ffiffiffi

    3p ; b

    10

    y2dy

    1 y4

    2ffiffiffi

    2p .

    15.46. Prove that

    11

    e2x

    ae3x

    bdx

    2

    3ffiffiffi

    3

    pa

    2=3

    b

    1=3where a; b > 0.

    15.47. Prove that

    11

    e2x

    e3x 1 dx 2

    9ffiffiffi

    3p

    [Hint: Differentiate with respect to b in Problem 15.46.]

    15.48. Use the method of Problem 12.31, Chapter 12, to justify the procedure used in Problem 15.11.

    DIRICHLET INTEGRALS

    15.49. Find the mass of the region in the xy plane bounded by x y 1;x 0;y 0 if the density is ffiffiffiffiffiffixyp .Ans: =24

    15.50. Find the mass of the region bounded by the ellipsoidx2

    a2 y2b2

    z2c2

    1 if the density varies as the square ofthe distance from its center.

    Ans:abck

    30a2 b2 c2;k constant of proportionality

    15.51. Find the volume of the region bounded by x2=3 y2=3 z2=3 1.

    Ans: 4=35

    15.52. Find the centroid of the region in the first octant bounded by x2=3 y2=3 z2=3 1.

    Ans: "xx "yy "zz 21=128

    15.53. Show that the volume of the region bounded by xm ym zm am, where m > 0, is given by 8f1=mg3

    3m2 3=m a3.

    15.54. Show that the centroid of the region in the first octant bounded by xm ym zm am, where m > 0, is givenby

    "xx "yy "zz 32=m3=m41=m4=m a

    MISCELLANEOUS PROBLEMS

    15.55. Prove that b

    a x

    a

    p

    b

    x

    q dx

    b

    a

    pq1 B

    p

    1; q

    1

    where p >

    1; q >

    1 and b > a.

    [Hint: Let x a b ay:]

    15.56. Evaluate (a)

    31

    dxffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffix 13 x

    p ; b7

    3

    ffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffi7 xx 34

    pdx.

    Ans: a ; b 2 f1=4g2

    3ffiffiffi

    p

    15.57. Show thatf1=3g21=6

    ffiffiffi

    p ffiffiffi2

    3pffiffiffi

    3p .

    15.58. Prove that Bu; v 1

    21

    0

    xu1

    xv1

    1 xuv dx where u; v > 0.[Hint: Let y x=1 x:

    CHAP. 15] GAMMA AND BETA FUNCTIONS 389

  • 7/30/2019 Gamma and Betta Function Adv Calculus Schaum

    16/17

    15.59. If 0 < p < 1 prove that

    =20

    tanp d 2

    secp

    2.

    15.60. Prove that 1

    0

    xu11 xv1

    x ru

    v

    Bu; v

    ru

    1 ru

    v where u; v, and r are positive constants.

    [Hint: Let x r 1y=ry.]

    15.61. Prove that

    =20

    sin2u1 cos2v1 d

    a sin2 b cos2 uv Bu; v2avbu

    where u; v > 0.

    [Hint: Let x sin2 in Problem 15.60 and choose r appropriately.]

    15.62. Prove that

    10

    dx

    xx 1

    11 1

    22 1

    33

    15.63. Prove that for m

    2; 3; 4; . . .

    sin

    msin

    2

    msin

    3

    m sin m 1

    m m

    2m1

    [Hint: Use the factored form xm 1 x 1x 1x 2 x n1, divide both sides by x 1, andconsider the limit as x! 1.]

    15.64. Prove that

    =20

    ln sinx dx =2 ln 2 using Problem 15.63.[Hint: Take logarithms of the result in Problem 15.63 and write the limit as m!1 as a definite integral.]

    15.65. Prove that 1

    m

    2

    m

    3

    m

    m 1

    m

    2m1=2ffiffiffiffimp

    :

    [Hint: Square the left hand side and use Problem 15.63 and equation (11a), Page 378.]

    15.66. Prove that

    10

    ln x dx 12

    ln2.

    [Hint: Take logarithms of the result in Problem 15.65 and let m!1.]

    15.67. (a) Prove that

    10

    sinx

    xpdx

    2 p sinp=2 ; 0 < p < 1.

    (b) Discuss the cases p 0 and p 1.

    15.68. Evaluate (a)

    10

    sinx2 dx; b1

    0

    x cosx3 dx.

    Ans: a 12

    ffiffiffiffiffiffiffiffi=2

    p; b

    3ffiffiffi

    3p

    1=3

    15.69. Prove that

    10

    xp1 lnx1 x dx

    2 cscp cotp; 0 < p < 1.

    15.70. Show that

    10

    lnx

    x4 1 dx 2

    ffiffiffi2

    p

    16.

    15.71. Ifa > 0; b > 0, and 4ac > b2, prove that11

    11

    eax2bxycy2 dxdy 2ffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffi

    4ac b2p

    390 GAMMA AND BETA FUNCTIONS [CHAP. 15

  • 7/30/2019 Gamma and Betta Function Adv Calculus Schaum

    17/17

    15.72. Obtain (12) on Page 378 from the result (4) of Problem 15.20.

    [Hint: Expand ev

    3=3ffiffinp in a power series and replace the lower limit of the integral by 1.]15.73. Obtain the result (15) on Page 378.

    [Hint: Observe that x 1xx !, thus ln x lnx 1 lnx, and

    0x

    x 0x 1

    x 1 1

    x

    Furthermore, according to (6) page 377.

    x ! limk!1

    k! kx

    x 1 x kNow take the logarithm of this expression and then differentiate. Also recall the definition of the Euler

    constant, .

    15.74. The duplication formula (13a) Page 378 is proved in Problem 15.24. For further insight, develop it forpositive integers, i.e., show that

    22n1n 12n 2n ffiffiffip

    Hint: Recall that 12 , then show that

    n 12 2n 1

    2

    2n 1 5 3 1

    2nffiffiffi

    p:

    Observe that

    2n 12nn 1

    2n!2nn!

    2n 1 5 3 1

    Now substitute and refine.

    CHAP. 15] GAMMA AND BETA FUNCTIONS 391